
EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

Exercise Sheet 12

Exercise 1. In this exercise, you will study partial identification (bounds) of the average
treatment effect. Suppose that Z,A, Y, U satisfy the single-world causal model corresponding
to the graph below. Suppose that the measured variables Z,A, Y ∈ {0, 1} are binary.
(a) Show that, without using Z, the average treatment effect of A and Y satisfies the fol-

lowing inequalities

−P (Y = 0, A = 1)−P (Y = 1, A = 0) ≤ E(Y a=1−Y a=0) ≤ P (Y = 1, A = 1)+P (Y = 0, A = 0).

What is the difference between the upper and the lower bounds (UB − LB)?
(b) Suppose A = 1 if an individual elects to get the annual influenza vaccine and A = 0

otherwise. Let Y a = 1 if an individual subsequently does develop flu-like symptoms
when A = a, and Y a = 0 otherwise. Suppose that the investigator is comfortable with
assuming that each individual is more or as likely to develop flu-like symptoms if they
are unvaccinated versus if they are vaccinated.1
(i) Formalize the investigator’s assumption as a counterfactual inequality.
(ii) What is the upper bound on E(Y a=1 − Y a=0) under this assumption?
(iii) Can we derive a tighter lower bound without adding additional assumptions?

(c) Now you will show some famous bounds using the instrumental variable Z. Suppose that
necessary consistency and positivity assumptions hold. Let p(y, a | z) denote P (Y =
y, A = a | Z = z) and p(y | z) denote P (Y = y | Z = z). Show that

LB ≤ E(Y a=1 − Y a=0) ≤ UB,

where

LB = max{ − p(0, 1 | 0)− p(1, 0 | 0),
− p(0, 1 | 1)− p(1, 0 | 1),
p(1 | 0)− p(1 | 1)− p(1, 0 | 0)− p(0, 1 | 1),
p(1 | 1)− p(1 | 0)− p(1, 0 | 1)− p(0, 1 | 0)},

1In this exercise we ignore interference, and suppose that individuals are iid and that positivity and
consistency hold.
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and
UB = min{p(1, 1 | 0) + p(0, 0 | 0),

p(1, 1 | 1) + p(0, 0 | 1),
p(1 | 0)− p(1 | 1) + p(0, 0 | 0)− p(1, 1 | 1),
p(1 | 1)− p(1 | 0) + p(0, 0 | 1) + p(1, 1 | 0)},

Conclude that
UB−LB ≤ min{P (A = 0 | Z = 0)+P (A = 1 | Z = 1), P (A = 0 | Z = 1)+P (A = 1 | Z = 0)} ≤ 1.

and that UB − LB = 1 if and only if A ⊥⊥ Z.

Exercise 2 (Efficiency of linear adjustment). (Inspired by [1]) Consider 3 different linear
models defined by population least squares,

β∗ = argmin
β

E
[
(Y − β1 − β2A)2

]
β′ = argmin

β
E
[
(Y − β1 − β2A− βT3 L)2

]
(ANCOVA model)

β† = argmin
β

E
[
(Y − β1 − β2A− βT3 L− βT4 AL)2

]
Suppose (L,A, Y ) are i.i.d., A ⊥⊥ L, E(L) = 0.
(a) Show that2 β∗1 = β′1 = β†1 and β∗2 = β′2 = β†2.
(b) A classical result from M-estimation theory implies that

√
n(β̂m1 − β1)

d−→ N(0, V m),

where m ∈ {∗,′ , †}, π = P (A = a | L), V m = E[(A−π)2ε2m]
π2(1−π)2 and εi∗, εi′ , εi† are the error

terms in the regression estimators, for example,

εi,† = Yi − (β†1 + β†2Ai + β†T3 Li + β†T4 AiLi) .

Use this result to show that
V † ≤ min{V ′, V ∗} .

In other words, asymptotically it is more efficient to use covariates L in the model
indicated by †.3
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2We have not said anything about the linear model being correctly specified. We have not given an
argument why E(L) = 0. However, we could center Li by using Li − 1

n

∑n
i=1 Li, which will give the same

point estimates of the β’s but β† has larger variance.
3Careful consideration is required to decide whether or not it is more efficient to use L in a finite sample.
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