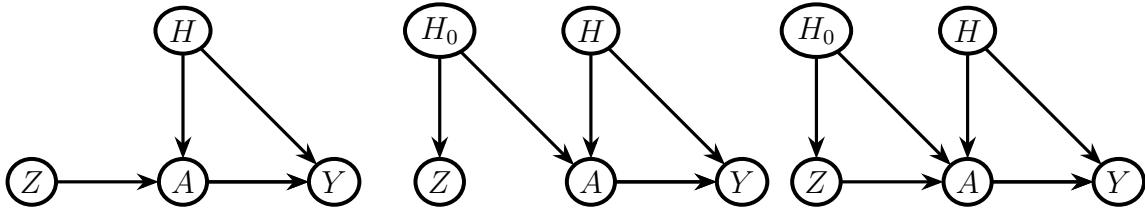


EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

EXERCISE SHEET 11

Exercise 1 (Instrumental variables). (From [1]) Consider an instrumental variable setting which is described by one of the following three DAGs.



(a) Can we use the main IV assumptions (1)-(3) to infer any (conditional) independencies between the observed variables A, Z, Y , that is, any factorization of the law $p(y, a, z)$ that describes the observed data? We reproduce the main IV assumptions below for convenience:

- (1) $\text{cor}(Z, A) \neq 0$ (instrument strength)
- (2) $Y^{z,a} = Y^a$ for all a, z (exclusion restriction)
- (3) $Z \perp\!\!\!\perp Y^a$ for all a (unconfoundedness of Z).

(b) Consider the following structural equation model for Y :

$$(1) \quad Y = f_Y(A, H, \epsilon_Y) = h(\epsilon_Y)A + g(H, \epsilon_Y) .$$

The model does allow certain effect heterogeneity, because the individual level causal effect

$$Y^a - Y^{a'} = h(\epsilon_Y)(a - a')$$

is a random variable. The average causal effect is defined as

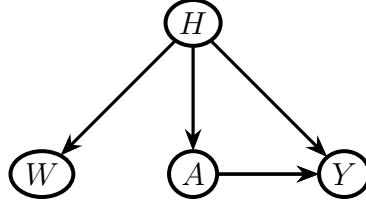
$$E[Y^a] - E[Y^{a'}] = E[h(\epsilon_Y)](a - a') .$$

Assume that the linear structural equation model Eq. 1 holds, that $Y^{a=0} \perp\!\!\!\perp Z$ and that $E[h(\epsilon_Y) | Z, A] = E[h(\epsilon_Y)]$. Show that the additive average causal effect is then given by

$$E[h(\epsilon_Y)] = \frac{\text{Cov}(Z, Y)}{\text{Cov}(Z, A)} .$$

(c) Assume that the model in Eq. 1 holds, and that $E[h(\epsilon_Y) | Z, A] = E[h(\epsilon_Y)]$. Show that then, there exists a constant β such that

$$E[Y | Z, A] - E[Y^0 | Z, A] = \beta A .$$



Exercise 2 (A sensitivity analysis). Consider the treatment A , outcome Y , unmeasured variable H and measured pre-treatment variable W satisfying the graph below.

As we can see from the graph, both W and A are confounded for Y by H . Suppose that

$$E[Y^{a=0} | A = 1] - E[Y^{a=0} | A = 0] = E[W | A = 1] - E[W | A = 0] .$$

- (a) Use this assumption to find an identification formula for $E[Y^{a=1} - Y^{a=0} | A = 1]$ in terms of the observed data A, W, Y .
- (b) Can we interpret this as an average total effect in the entire population?

Exercise 3 (Sensitivity analysis with IVs). Consider a binary instrument Z , a binary treatment A and a binary outcome Y satisfying:

- (1) Exclusion restriction: $Y^{z,a} = Y^a$
- (2) IV exchangeability: $Y^a \perp\!\!\!\perp Z$

Show that under assumptions (1)-(2),

$$P(Y = 0, A = 1 | Z = 0) + P(Y = 1, A = 1 | Z = 1) \leq 1 .$$

Hint: Use the fact that $p(x_1, x_2 | x_3) \leq p(x_1 | x_3)$. Likewise, it can also be shown that

- $P(Y = 0, A = 1 | Z = 0) + P(Y = 1, A = 1 | Z = 1) \leq 1$
- $P(Y = 0, A = 1 | Z = 1) + P(Y = 1, A = 1 | Z = 0) \leq 1$
- $P(Y = 0, A = 0 | Z = 1) + P(Y = 1, A = 0 | Z = 0) \leq 1$

These inequalities can be used to falsify IV exchangeability assumption. With some more arguments, it is also possible to use the IV inequalities to obtain bounds on causal effects.

REFERENCES

- [1] Andrea Rotnitzky. BST 257 (Harvard T.H. Chan School of Public Health).