
RANDOMIZATION AND CAUSATION (MATH-336)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Exam-style questions

• This document provides examples of exam-style questions.
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Question 1.
Consider six Non-Parametric Structural Equation Models with Independent Errors (NPSEM-
IEs) associated with the six directed acyclic graphs (DAGs) G1,G2, G3, GU1 ,GU2 and GU3 :
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(1) Draw the SWIGs1 corresponding to an intervention that sets A to a ∈ {0, 1} for:
(i) G1,G2, and G3;
(ii) GU1 ,GU2 , and GU3 .

(2) Using the SWIGs you drew in the previous point, state whether you can read off
Y a ⊥⊥ A and Y a ⊥⊥ A | W for every a ∈ {0, 1} from:
(i) G1,G2 , and G3;
(ii) GU1 , GU2 , and GU3 .

(3) Suppose:
(i) consistency I

A = a =⇒ Y a = Y, for all a ∈ {0, 1},

(ii) consistency II

W = w =⇒ Y w = Y, for all w ∈ W ,

A = a =⇒ W a = W, for all a ∈ {0, 1},

1Strictly speaking this is a Single World Intervention Template (SWIT).
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(iii) positivity

P (W = w,A = a) > 0, for all w ∈ W , a ∈ {0, 1}.

Show that P (Y a=1 = y) is identifiable for the causal model associated with GU3 and
derive its identification formula. Hint: use an exclusion restriction.
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Solution:

A a

W a

Y a

(a) SWIGG1
(a)

A a

W

Y a

(b) SWIGG2
(a)

A a W a Y a

(c) SWIGG3
(a)

A a

W a

Y a

U

(d) SWIGGU
1
(a)

A a

W

Y a

U

(e) SWIGGU
2
(a)

A a W a Y a

U

(f) SWIGGU
3
(a)

(1)
(2) (i) • SWIGG1(a): i) yes; ii) the independence is not implied by the SWIG;

• SWIGG2(a): i) no; ii) yes;
• SWIGG3(a): i) yes; ii) the independence is not implied by the SWIG;

(ii) for all the remaining models none of the conditional independencies hold,
(Y a ̸⊥⊥ A | L)SWIGG(a) and (Y a ̸⊥⊥ A)SWIGG(a) for every G ∈ {GU1 ,GU2 ,GU3 }.

(3) See exercise sheet 9, exo 1(b).
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Question 2 (Negative populations for the detection of unmeasured confounding and direct
effects).
Suppose that we have data from an observational study aimed at assessing the causal effect of
penicillin (A = 1), an antibiotic that is given to treat a bacterial disease, versus no treatment
(A = 0) on severe symptoms given by the indicator Y (the lower its value, the better).

(1) The principal investigator (PI) is worried that there is unmeasured confounding, that
is, A ̸⊥⊥ Y a for some a ∈ {0, 1}. Can the PI use the data from the observational study,
that is P (A, Y ), to test, or check, if A ̸⊥⊥ Y a? Justify your answer (1-2 sentences).

A student of the PI points out that penicillin should not have an effect on severe symptoms in
individuals with viral infections, because penicillin is only supposed to work against bacteria.
The student refers to the individuals with viral infections as a negative control population
and wonders if we can use them to rule out the presence of unmeasured confounding. To
make progress, she first considers a setting where data are generated by an NPSEM-IE
associated with a DAG G that includes the variables A, Y and an indicator V , taking
value V = 1 if an individual has a viral infection and V = 0 otherwise. Among those in the
negative control group (V = 1), she further specifies an NPSEM-IE associated with the DAG
G(| V = 1). Similarly, she specifies an NPSEM-IE associated with the DAG G(| V = 0) for
the population with V = 0. The rectangular boxes illustrate that G(| V = 0) and G(| V = 1)
describe populations where V only takes one value, i.e., is constant.

V

YA

G
V = 1

YA

G(| V = 1)

V = 0

YA

G(| V = 0)

(2) Under the causal model G(| V = 1) the following condition holds

V = 1 =⇒ Y a=1 = Y a=0,

that is, Y a=1 = Y a=0 when V = 1.
Show that E [Y a | V = 1] = E [Y | V = 1] for every a ∈ {0, 1}. In words, penicillin
has no effect on severe symptoms in individuals with viral infection, V = 1.

(3) Based on the causal models associated with G, G(| V = 0), and G(| V = 1) can you
conclude that P (A, Y, V ) is not faithful to G? Justify your answer (1-2 sentences).

In the next questions, suppose that faithfulness holds in the negative control population,
(P (A, Y | V = 1), G(| V = 1)), and in the remaining population, (P (A, Y | V = 0),
G(| V = 0)).

(4) Argue that Y ⊥⊥ A | V = 1 =⇒ Y a ⊥⊥ A | V = 1, for every a ∈ {0, 1}.
Hint: use the rules of d-separation in G(| V = 1) and note that V = 1 in G(| V = 1)
is a constant.

(5) Suppose further that positivity holds in both populations:
0 < P (A = 1 | V = v) < 1, for all v ∈ {0, 1}.
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Argue that
E[Y a=1 − Y a=0] = P (V = 0) (E[Y | A = 1, V = 0]− E[Y | A = 0, V = 0]) .

Hint: use the result of the previous point.
(6) Under the same assumptions of Question 5, show that

A ⊥⊥ V =⇒ E[Y a=1 − Y a=0] = E[Y | A = 1]− E[Y | A = 0].

(7) Is it possible that A ⊥⊥ V holds and nevertheless the NPSEM-IE associated with G
is the true causal model?

(8) Suppose now that the student, again, becomes uncertain about whether the NPSEM-
IE associated with G is the correct causal model. She subsequently analyzes the data
and finds evidence that E[Y | A = 1, V = 1] ̸= E[Y | A = 0, V = 1]. If her analysis
is correct, can the NPSEM-IE associated with G be the true causal model?
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Solutions :
(1) No, the dependence between A and Y maybe due to either a direct effect or to a

common cause.
(2) By consistency, Y = AY a=1+(1−A)Y a=0. By assumption, Y a=1 = Y a=0 ≡ Y ′ when

V = 1. Hence, Y = Y ′ when V = 1. So we conclude.
(3) No. It is easy to show that Y ⊥⊥ A|V = 1 and Y ̸⊥⊥ A|V = 0. Hence Y ̸⊥⊥ A|V which

is consistent with the DAG. So one cannot state that faithfulness does not hold.
(4)

Y ⊥⊥ A | V = 1

⇔(Y ⊥⊥ A)G(|V=1)

=⇒no paths from A to Y in G(| V = 1) besides A← V → Y

=⇒Y a ⊥⊥ A | V = 1, for every a ∈ {0, 1}

Arguments: faithfulness, definition of direct effect. Alternatively, one can simply
observe that Y = Y a for every a when V = 1 and conclude.

(5)

E[Y a=1 − Y a=0] = E[E[Y a=1 − Y a=0 | V ]]

= E[E[Y a=1 | V,A = 1]− E[Y a=0 | V,A = 0]]

= P (V = 0)(E[Y a=1 | V = 0, A = 1]− E[Y a=0 | V = 0, A = 0])

= P (V = 0)(E[Y | V = 0, A = 1]− E[Y | V = 0, A = 0])

where we used LOTP, Y a ⊥⊥ A | V = v for every v by faithfulness, positivity of the
negative control population, and no direct effect in the negative control population,
and consistency.

(6)

E[Y a=1 − Y a=0] = E[E[Y a=1 − Y a=0 | V ]]

= E[E[Y a=1 | V,A = 1]− E[Y a=0 | V,A = 0]]

= P (V = 0)(E[Y a=1 | V = 0, A = 1]− E[Y a=0 | V = 0, A = 0])

+ P (V = 1)(E[Y a=1 | V = 1, A = 1]− E[Y a=0 | V = 1, A = 0])

= P (V = 0 | A = 1)E[Y | V = 0, A = 1]− P (V = 0 | A = 0)E[Y | V = 0, A = 0])

+ P (V = 1 | A = 1)E[Y | V = 1, A = 1]− P (V = 1 | A = 0)E[Y | V = 1, A = 0]

= P (V = 0 | A = 1)E[Y | V = 0, A = 1] + P (V = 1 | A = 1)E[Y | V = 1, A = 1]

− (P (V = 0 | A = 0)E[Y | V = 0, A = 0] + P (V = 1 | A = 0)E[Y | V = 1, A = 0])

= E[Y | A = 1]− E[Y | A = 0]

where we used LOTP, Y a ⊥⊥ A | V = v for every v by faithfulness, positivity of the
negative control population, A ⊥⊥ V , rearranged terms, tower rule.

(7) yes, if P (A, V, Y ) is unfaithful to G. Counterexample, p = P (A = 1 | V = 1) =
P (A = 1 | V = 0) for p ∈ (0, 1). Notice that this does not contradict the fact that
P (A, Y | V = 1) and P (A, Y | V = 0) are faithful to G(| V = 1) and G(| V = 0)
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respectively. From G(|V = 0) and G(|V = 1) we cannot use faithfulness because it
also pertains to the A and Y variables.

(8) If G is a valid NPSEM-IE and G(| V = 1) is correct, then

E[Y | A = 1, V = 1] = E[Y a=1 | A = 1, V = 1]

= E[Y a=1 | V = 1]

= E[Y a=0 | V = 1]

= E[Y a=0 | A = 0, V = 1]

= E[Y | A = 0, V = 1],

where we used consistency, positivity, Y a ⊥⊥ A|V = 1 and Y a=1 = Y a=0 (no causal
effect) if V = 1. However, we assume that E[Y | A = 1, V = 1] ̸= E[Y | A = 0, V =
1], so there is a contradiction. Hence, either
(a) G(|V = 1) is false, which contradicts her assumptions,
(b) G(|V = 1) is correct, but not an NPSEM-IE : the error term of Y |A = 1, V = 1

and of Y |A = 0, V = 1 must be correlated for E[Y | A = 1, V = 1] ̸= E[Y | A =
0, V = 1] and hence dependent. However, if G is a NPSEM-IE, then G(|V = 1)
would also be an NPSEM-IE. Thus, G cannot be a NPSEM-IE. Note, however
that G can still be a valid causal model, but not an NPSEM-IE as she is testing
for.
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Question 3 (Time-to-event outcomes).
In this exercise, we consider treatments of cancer. Unlike traditional chemotherapy,
which attacks all cells, targeted therapy focuses on specific molecular targets that are
essential for cancer cell growth.

In particular, around 15-20% of breast cancer patients have tumors that overexpress
the protein HER2. Without appropriate treatment, these tumors are associated with
bad prognosis. Trastuzumab is a therapy that targets HER2, inhibiting the growth of
tumor cells that express this protein. Trastuzumab is expected to be more effective in
patients whose breast tumors overexpress HER2 than in those whose tumors do not or
only slightly express HER2. It is now used as a standard of care for HER2 -positive
tumors, and its use has significantly improved the prognosis of patients diagnosed
with HER2 -positive tumors.

Now imagine that you are conducting a randomized controlled trial where you en-
roll patients diagnosed with breast cancer. At enrollment, you randomize the patients
into two arms: take trastuzumab (treatment arm) versus do not take trastuzumab,
irrespectively of HER2 expression status. You then follow your patients and report
deaths (study outcome) every month. For simplicity, we will assume that there is
no loss-to-follow-up, and that the follow-up period lasted only 2 months. We also
assume consistency and positivity.

We have the following random variables:
• A: treatment assignment (1 if treatment arm, 0 if control arm).
• L: HER2 expression status, binarized into 1 if the patient’s tumor overexpress

HER2 (in this case we expect trastuzumab to be efficient), 0 otherwise. We
denote pl := Pr(L = 1), with 0 < pl < 1.
• Yk: the outcome at month k ∈ {1, 2}, with Yk = 1 if the patient died before the

end of month k. Notably, Y2 = 1 if Y1 = 1.
We assume the following DAG G:

A

Y1 Y2

L

G

In oncology (cancer medicine), it is frequent to report the hazard ratio (HR) as a
measure of treatment effect in randomized trials. In discrete time, the hazard ratio
at month 2 is defined as

HR =
Pr(Y 1

2 = 1|Y 1
1 = 0)

Pr(Y 0
2 = 1|Y 0

1 = 0)
.

Questions:
(a) On the hazard of hazard ratios

(i) Draw the SWIG G(a) corresponding to the intervention that assigns treat-
ment a.
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(ii) Derive an identification formula for the risk ratio RR at time point 12,
defined as

RR =
Pr(Y 1

1 = 1)

Pr(Y 0
1 = 1)

.

State the assumptions you used.
(iii) Derive an identification formula for the hazard ratio HR. State the as-

sumptions you used.
(iv) Table 1 summarises the results you obtained from your randomized con-

trolled trial.
Compute, i.e., estimate,
(A) the risk ratio at time point 1 in the HER2 -positive population Pr(Y 1

1 =1|L=1)

Pr(Y 0
1 =1|L=1)

,

(B) the risk ratio at time point 1 in the HER2 -negative population Pr(Y 1
1 =1|L=0)

Pr(Y 0
1 =1|L=0)

,

(C) the risk ratio at time point 1 in the combined population Pr(Y 1
1 =1)

Pr(Y 0
1 =1)

,
(D) the hazard ratio (at time point 2) in the HER2 -positive population

Pr(Y 1
2 =1|Y 1

1 =0,L=1)

Pr(Y 0
2 =1|Y 0

1 =0,L=1)
,

(E) the hazard ratio (at time point 2) in the HER2 -negative population
Pr(Y 1

2 =1|Y 1
1 =0,L=0)

Pr(Y 0
2 =1|Y 0

1 =0,L=0)
,

(F) the hazard ratio (at time point 2) in the combined population Pr(Y 1
2 =1|Y 1

1 =0)

Pr(Y 0
2 =1|Y 0

1 =0)
.

(v) Compare the results you obtained for the first time point, which are risk
ratios, and for the second time point, which are hazard ratios. What do
you observe? Why could hazard ratios be misleading? Give your answer
in 3-5 sentences.

Hazard ratios are controversial in causal inference for at least two reasons: they
have a built-in selection bias, and they are non-collapsible. In the rest of the
exercise, we will discuss these two caveats.

(b) Built-in selection bias
For this question, assume that 0 < Pr(Y1 = 1|L = l, A = a) < 1 for all a, l, and
define p ∈ (0, 1) and γ, α, β ∈ R+∗ as

p = Pr(Y1 = 1|L = 0, A = 0),

γ =
Pr(Y1 = 1|L = 1, A = 0)

p
,

α =
Pr(Y1 = 1|L = 1, A = 1)

Pr(Y1 = 1|L = 1, A = 0)
,

β =
Pr(Y1 = 1|L = 0, A = 1)

p
.

(i) Give the probability of overexpressing HER2 in the treatment arm, Pr(L =
1|A = 1), and control arm, Pr(L = 1|A = 0), as a function of pl, α, β, γ
and p.

2Generally, we set Y 1
0 ≡ 0 for convenience, so that the risk ratio equals the hazard ratio for the first time

point
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(ii) Give the probability of overexpressing HER2 in survivors of control and
treatment arm at the second time point, that is Pr(L = 1|Y1 = 0, A = 1)
and Pr(L = 1|Y1 = 0, A = 0), as functions of pl, α, β, γ and p.

(iii) Show that Pr(L = 1|Y1 = 0, A = 1) = Pr(L = 1|Y1 = 0, A = 0) if and
only if α = γ·(1−pβ)+β−1

γ·(1−p) .
(iv) Show that Pr(L = 1|Y1 = 0, A = 1) = Pr(L = 1|Y1 = 0, A = 0) if the

treatment had no effect in any of the subgroups at time point 1.
(v) Show that Pr(L = 1|Y1 = 0, A = 1) = Pr(L = 1|Y1 = 0, A = 0) if the

following two conditions hold: (i) the effect of the treatment (trastuzumab)
on the ratio scale is identical in the two subgroups at time point 1 and
(ii) patients who overexpress HER2 and those who do not overexpress
HER2 have the same risk of death at time point 1 without treatment
(trastuzumab).

(vi) In general, the equality Pr(L = 1|Y1 = 0, A = 1) = Pr(L = 1|Y1 = 0, A =
0) does not hold. What can you say about the causal interpretation of
the hazard ratio in the combined population, HR :=

Pr(Y 1
2 =1|Y 1

1 =0)

Pr(Y 0
2 =1|Y 0

1 =0)
, in the

general case where Pr(L = 1|Y1 = 0, A = 1) ̸= Pr(L = 1|Y1 = 0, A = 0)?
(c) Non-collapsibility For this question, let us parametrize the hazard as follows:

log(Pr(Yk = 1|Yk−1 = 0, A = a)) = µ+ ψa (marginal hazard model)
log(Pr(Yk = 1|Yk−1 = 0, A = a, L)) = ν(L) + κa (conditional hazard model)

for k ∈ 1, 2 and µ, ψ, ν(L), κ ∈ R, where we set Y0 ≡ 0. log denotes the natural
logarithm (in base e).

(i) Prove that, with these parametrizations, HRL=1 = HRL=0 = eκ, where

HRL=l :=
Pr(Y2 = 1|Y1 = 0, A = 1, L = l)

Pr(Y2 = 1|Y1 = 0, A = 0, L = l)

for l ∈ {0, 1}. If the hazard ratio were a collapsible estimand, we would
then expect HR = HRL=1 = HRL=0. We will now show that this equality
does not hold in general.

(ii) Prove that
Pr(Y2 = 1|A = 1, L) = fκ(Pr(Y2 = 1|A = 0, L))

where fκ(x) = 1−
(
1− eκ + eκ · (1− x)1/2

)2 defined for x ∈ (0, 1).
(iii) Derive the second derivative of fκ with respect to x, and discuss its sign

with respect to κ.
(iv) Show that ψ = log(1 − (1 − p1)

1/2) − log(1 − (1 − p0)
1/2), where pa =

Pr(Y2 = 1|A = a) for a ∈ {0, 1}.
(v) Show that κ = log(1− (1− fκ(p0))1/2)− log(1− (1− p0)1/2).
(vi) Under what conditions for κ does HR < HRL=0, HR = HRL=0, and

HR > HRL=0? Conclude that HR ̸= HRL=0 in general.
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A L Y1 Y2 n

0 0 0 0 2560
0 0 0 1 640
0 0 1 1 800
0 1 0 0 40
0 1 0 1 160
0 1 1 1 800
1 0 0 0 2560
1 0 0 1 640
1 0 1 1 800
1 1 0 0 80
1 1 0 1 200
1 1 1 1 720

Table 1. Number of patients (n) for each group in the randomized controlled
trial (Exercise 2).

Solution:
(a) On the hazard of hazard ratios

(i) The desired SWIG is shown below:
A a

Y a
1 Y a

2

L

G(a)

(ii) From the SWIG, we can read off the independency : Y a
1 ⊥⊥ A. From that,

and using consistency, we have that:

Pr(Y a
1 = 1) = Pr(Y a

1 = 1|A = a)

= Pr(Y1 = 1|A = a),

Finally,

RR :=
Pr(Y 1

1 = 1)

Pr(Y 0
1 = 1)

=
Pr(Y1 = 1|A = 1)

Pr(Y1 = 1|A = 0)

(iii) From the SWIG, we can read off the independency : Y a
2 ⊥⊥ A|Y a

1 . From
that, and using consistency, we have that:

Pr(Y a
2 = 1|Y a

1 = 0) = Pr(Y a
2 = 1|A = a, Y a

1 = 0)

= Pr(Y2 = 1|A = a, Y1 = 0),
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so that

HR =
Pr(Y2 = 1|A = 1, Y1 = 0)

Pr(Y2 = 1|A = 0, Y1 = 0)

which concludes the identification proof.
(iv) (A) Since Y a

1 ⊥⊥ A|L for all a ∈ {0, 1}, Pr(Y 1
1 =1|L=1)

Pr(Y 0
1 =1|L=1)

= Pr(Y1=1|A=1,L=1)
Pr(Y1=1|A=0,L=1)

=
720
1000
· ( 800

1000
)−1 = 0.9

(B) Pr(Y 1
1 =1|L=0)

Pr(Y 0
1 =1|L=0)

= Pr(Y1=1|A=1,L=0)
Pr(Y1=1|A=0,L=0)

= 800
4000
· ( 800

4000
)−1 = 1

(C) Pr(Y 1
1 =1)

Pr(Y 0
1 =1)

= Pr(Y1=1|A=1)
Pr(Y1=1|A=0)

= 800+720
5000

· (800+800
5000

)−1 = 0.95

(D) Pr(Y 1
2 =1|Y 1

1 =0,L=1)

Pr(Y 0
2 =1|Y 0

1 =0,L=1)
= Pr(Y2=1|Y1=0,A=1,L=1)

Pr(Y2=1|Y1=0,A=0,L=1)
= 200

200+80
· ( 160

40+160
)−1 ≈ 0.89

(E) Pr(Y 1
2 =1|Y 1

1 =0,L=0)

Pr(Y 0
2 =1|Y 0

1 =0,L=0)
= Pr(Y2=1|Y1=0,A=1,L=0)

Pr(Y2=1|Y1=0,A=0,L=0)
= 640

2560+640
· ( 640

2560+640
)−1 = 1

(F) Pr(Y 1
2 =1|Y 1

1 =0)

Pr(Y 0
2 =1|Y 0

1 =0)
= Pr(Y2=1|Y1=0,A=1)

Pr(Y2=1|Y1=0,A=0)
= 640+200

2560+640+200+80
·( 640+160

2560+640+40+160
)−1 =

119
116
≈ 1.02

(v) First, note that at both time points, treatment (trastuzumab) does not
affect relapse in survivors among HER2 -negative group (risk ratio / hazard
ratio is 1 in this subgroup) and prevents relapse in survivors among HER2 -
positive patients (risk ratio / hazard ratio is below 1 in this subgroup). At
the first time point, the marginal risk ratio is the average of the subgroup
risk ratios, and this is the behavior we would have expected.
However, at the second time point, the marginal hazard ratio in the com-
bined population is above 1, even though it is 1 in one subgroup (sur-
vivors, HER2 -negative) and below 1 in the other subgroup (survivors,
HER2 -positive). This suggests that HRs cannot be provided with a causal
interpretation.

(b) Built-in selection bias
(i) By randomization Pr(L = 1|A = 1) = Pr(L = 1|A = 0) = Pr(L =

1) = pl. Indeed, by randomization, we expect the same proportion of
HER2 -positive and HER2 -negative in the treatment and control arms.

(ii) We have :

Pr(L = 1|Y1 = 0, A = a) =
Pr(Y1 = 0|A = a, L = 1) · Pr(L = 1, A = a)

Pr(Y1 = 0, A = a)

=
Pr(Y1 = 0|A = a, L = 1) · Pr(L = 1) · Pr(A = a)

Pr(Y1 = 0|A = a)Pr(A = a)
(A ⊥⊥ L)

=
pl · Pr(Y1 = 0|A = a, L = 1)

Pr(Y1 = 0|A = a)

=
pl · Pr(Y1 = 0|L = 1, A = a)

pl · Pr(Y1 = 0|A = a, L = 1) + (1− pl) · Pr(Y1 = 0|A = a, L = 0)

For a = 0 this can be written as:

Pr(L = 1|Y1 = 0, A = 0) =
pl · (1− γp)

pl · (1− γp) + (1− pl) · (1− p)
13



For a = 1 this can be written as:

Pr(L = 1|Y1 = 0, A = 1) =
pl · (1− αγp)

pl · (1− αγp) + (1− pl) · (1− βp)
(iii) We have :

Pr(L = 1|Y1 = 0, A = 0) = Pr(L = 1|Y1 = 0, A = 0)

⇐⇒ pl · (1− γp)
pl · (1− γp) + (1− pl) · (1− p)

=
pl · (1− αγp)

pl · (1− αγp) + (1− pl) · (1− βp)
⇐⇒ (1− γp) · (1 + p · (plβ − β − plαγ)) = (1− αγp) · (1 + p · (pl − 1− γpl))

(We used that pl ̸= 0)
⇐⇒ γ · p · (1− pl) · (α− β) = (1− pl) · (1 + αγ − βγ) (We used that p ̸= 0)

⇐⇒ α =
γ · (1− pβ) + β − 1

γ(1− p)
(pl, p ̸= 1)

This concludes the proof.
(iv) This corresponds to the case where α = β = 1. The right hand side of the

equality above becomes :
γ · (1− p)
γ(1− p)

= 1 = α

so that the equality holds trivially.
(v) This corresponds to the case where γ = 1 and α = β.The right hand side

of the equality above becomes :
1− pβ + β − 1

(1− p)
= β = α

so that the equality holds trivially as well.
(vi) If the distribution of L differs by treatment arm at the second time point,

then the two populations are biased and the benefit of randomization is
lost. In fact, by conditioning on Y 1

1 = 0 in the numerator and Y 1
0 = 0 in the

denominator, HR compares two populations that are no longer comparable
at the second time point.

(c) Non-collapsibility
(i) Using the conditional hazard model, we have

Pr(Y2 = 1|Y1 = 0, A = 1, L = l) = eν(l) · eκ

and
Pr(Y2 = 1|Y1 = 0, A = 0, L = l) = eν(l)

so that HRL=l = eκ, which does not depend on L.
(ii) We have :

Pr(Y2 = 1|A = a, L) = 1− Pr(Y2 = 0|A = a, L)

= 1− Pr(Y2 = 0|Y1 = 0, A = a, L) · Pr(Y1 = 0|A = a, L)
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= 1− [1− Pr(Y2 = 1|Y1 = 0, A = a, L)] · [1− Pr(Y1 = 1|A = a, L)]

= 1−
[
1− eν(L)+κ·a

]2
so that

Pr(Y2 = 1|A = 1, L) = 1−
[
1− eν(L)+κ

]2
= 1−

[
1− eν(L)eκ

]2
and

Pr(Y2 = 1|A = 0, L) = 1−
[
1− eν(L)

]2
By evaluating the function fκ on x = Pr(Y2 = 1|A = 0, L), we get :

fκ(Pr(Y2 = 1|A = 0, L)) = 1−
(
1− eκ + eκ

(
1− eν(L)

)2·1/2)2

= 1−
(
1− eκeν(L)

)2
= Pr(Y2 = 1|A = 1, L)

which concludes the proof.
(iii) First note that fκ is differentiable twice on (0, 1). let us derive the first

derivative

f ′
k(x) = −2 ·

(
1− eκ + eκ(1− x)1/2

)
· (−1

2
)eκ(1− x)−

1
2

= eκ
[
(1− eκ)(1− x)−

1
2 + eκ

]
.

From which we get that

f ′′
k (x) =

1

2
eκ(1− eκ)(1− x)−

3
2 .

Now, we have that, for x ∈ (0, 1), the sign of f ′′
k (x) is the same as the sign

of (1 − eκ), that is strictly negative if κ > 0, zero if κ = 0, and strictly
positive if κ < 0. From that, we conclude that the function fκ is concave
if κ > 1, linear if κ = 1 and convex if κ < 1.

(iv) Using the same arguments than in question (c)(ii), we obtain

pa = Pr(Y2 = 1|A = a) = 1− (1− Pr(Y2 = 1|Y1 = 0, A = a)) (1− Pr(Y1 = 1|A = a)) ,

which, from the marginal hazard model, could be re-written as

pa = Pr(Y2 = 1|A = a) = 1−
(
1− eµ+ψa

)2
.

From that, we have that

log
(
(1− (1− pa)

1
2 )
)
= µ+ ψa
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and

log
(
(1− (1− p1)

1
2 )
)
− log

(
(1− (1− p0)

1
2 )
)
= µ+ ψ · 1− µ− ψ · 0 = ψ

which concludes the proof.
(v) By definition of the function fκ,

∀x ∈ (0, 1), 1− (1− fκ(x))
1
2 = eκ

(
1− (1− x)

1
2

)
,

so that

log(1− (1− fκ(x))
1
2 ) = κ+ log

(
1− (1− x)

1
2

)
Using x = p0 ∈ (0, 1) we get :

κ = log(1− (1− fκ(p0))
1
2 )− log

(
1− (1− p0)

1
2

)
,

which concludes the proof.
(vi) With our parametrization, HR = ψ. Then, notice that

p1 = Pr(Y2 = 1|A = 1) (Definition of p1)
= E [Pr(Y2 = 1|A = 1, L)] (Law of total expectation)
= E [fκ(Pr(Y2 = 1|A = 0, L))] (From (b)(ii))

Using Jensen’s inequality and question (b)(iii) we have that

p1

 < if κ > 0
= if κ = 0
> if κ < 0

 fκ(E(Pr(Y2 = 1|A = 0, L]) = fκ(p0)

Finally, as the function g : x→ log
(
1− (1− x) 1

2

)
is strictly non-decreasing

for x ∈ (0, 1) (The first derivative of g is g′(x) = (1−x)−3/2

1−
√
1−x > 0 for

x ∈ (0, 1)), we get that

HR = ψ = g(p1)− g(p0)

 < if κ > 0
= if κ = 0
> if κ < 0

 g(fκ(p0))− g(p0) = κ = HRL=l

which means that, when there is a non-null subgroup effect (i.e. when
HRL=l ̸= 1), HR ̸= HRL=l. This proves that hazard ratios are not col-
lapsible in general. Of note, remark that the marginal HR is always closer
to the null (1) than the subgroup hazard ratios.
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