Exercice 1

1. In what dimensions is a simple random walk recurrent.

9. Give an example of a non irreducible Markov chain with a unique stationary dis-

tribution.
3. An irreducible Markov chain on {1,2,3,4} has statiionary distribution (1, 3, +3).
If X, = 1, what is the expectation of the number of visits to 2 before the chain

returns to 1 for the first time ?
4. Give an approximation to the matrix P°%,

5. If 7 is a stationary distribution and z is a null recurrent site, then 7(xz) = 0. True
or False. Justify your answer. '

6. Define a stopping time for a Markov chain and give a random time that is not a
stopping time.
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Exercice 2

Consider the transition matrix P =

with state space § = {1,2--

/1/3 2/9 0 1/3 0
0 0 1/2 0 0
0 1/3 1/3 0 0
1/2 1/4 0 1/4 0
0 0 0 0 2/3
0 0 1/4 0 0

L0 0 0 o0 1/

0
1/2
1/3

0

0
3/4

0

0
0
0

1/

0
4/5 )
-7} and let (X, )nzo be corresponding Markov chain.

1/”

3

1. List the transient states and the closed communicating classes subsets.

2. Give a good approximation to P13°.
3. For v = inf{n>0:X, ¢ {1,4}}, find E'[7].
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Exercice 3

A knight moves on a reduced chess board (4 by 4 subsquares instead of 8 by 8) : at each
turn he chooses a possible move .

1. In equilibrium is the resulting markov chain reversible 7

2. If the knight starts in a corner, what approximately is the probability that after
1000 moves he is again in the same corner ?

3. In the time interval [0, 1000], how many visits (approximately) will he have made
to this corner ?

4. The 16 = 4 x 4 positions contain 12 positions on the border (which touch the
exterior and which are thus a distance 1 from the exterior) and 4 central points of
distance 2 from the exterior. After 1000 moves what is approximatively the average
of distance from the extérior for the knight 7
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