
Solutions 9 May 5 2021

Exercise 1. Let (Xn)n≥0 be an irreducible Markov chain with transition matrix P . For a
fixed state k, let us denote P̄ (k) the matrix obtained from P by suppressing the line k and
colon k. Then the states (Xn) are recurrent if and only if{

P̄ (k)x = x

0 ≤ xi ≤ 1 ∀i

has only the null vector as a solution.
Use this result to discuss the nature of the states of the reflected random walk represented
by the graph (p+ q = 1):
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Solution. As p and q are strictly positive, all states are of the same type. We see easily
that the chain is irreducible and that all states are periodic with period 2. We know that the
states are positive recurrent if and only if the system{

πP = π,∑∞
i=0 πi = 1,

has a unique solution, where P is the transition matrix associated to the Markov chain

0 1 0 0 0 0 · · ·
q 0 p 0 0 0 · · ·
0 q 0 p 0 0 · · ·
0 0 q 0 p 0 · · ·
0 0 0 q 0 p · · ·
...

...
...

...
...

... . . .


The system is equivalent to 

qπ1 = π0,

π0 + qπ2 = π1,

pπn−1 + qπn+1 = πn, ∀n ≥ 2,∑∞
i=0 πi = 1.

We get πn = pn−1

qn π0 for all n ≥ 1.
The condition

∑∞
i=0 πi = 1 gives the value π0:

π0 +
∞∑
n=1

pn−1

qn
π0 = 1⇐⇒ π0(1 + 1

q

∞∑
n=0

(
p

q

)n
) = 1.
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The system has a unique solution provided
∑∞
n=0

(
p
q

)n
converges. We deduce then that the

states are positive recurrent if and only if p < q.
According to the result of the exercise, states are recurrent if and only if{

Q−→x = −→x ,
0 ≤ xi ≤ 1 ∀i

(1)

has as unique solution −→x = −→0 , where the matrix Q is obtained from P removing line k and
colon k for a fixed k. Taking k = 0, we obtain the system{

x1 = px2,

xn = qxn−1 + pxn+1 ∀n ≥ 2.

Multiplying by p+ q(= 1) on both sides, we have{
p(x2 − x1) = qx1,

p(xn+1 − xn) = q(xn − xn−1) ∀n ≥ 2.

We finally get xn+1 − xn =
(
q
p

)n
x1. For n ≥ 2, we have then

xn =
n−1∑
k=1

(xk+1 − xk) + x1 =
n−1∑
k=1

(
q

p

)k
x1 + x1 =

n−1∑
k=0

(
q

p

)k
x1.

If p = q = 1
2 , we get that xn = nx1. As xi ≤ 1 for all i ≥ 1, we deduce that the only possibility

is that xi = 0 for all i, implying that the states are recurrent.
If p > q, we have

xn =
n−1∑
k=0

(
q

p

)k
x1 =

1−
(
q
p

)n
1− q

p

x1.

In this case, taking for example x1 = 1 − q
p ∈]0, 1[, we get that xn = 1 −

(
q
p

)n
∈]0, 1[ for all

n ≥ 0. We finally found a solution to the system (1), implying transience of the states in this
case.

Exercise 2. M/M/1/∞ queue
Let us suppose that the arrivals at the EPFL service desk follow a Poisson process with pa-
rameter λ. When a client arrives, its service starts immediately if the desk is free. Otherwise,
he waits for his turn. A queue with infinite length is allowed.
We assume that the service time of one customer follow an exponential distribution with
parameter µ, the service duration of one customer is independent from the one of the others
and independent from the Poisson process of arrivals.
Let us consider the process (X(t))t≥0 where X(t) is the number of customers in the system
(while waiting or while being served) at time t.

1) Show that (X(t))t≥0 is a Markov process (homogenous).

2) Compute the generator of the process.

3) Find the transition matrix of the jumps and deduce again the generator of the chain.
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4) Determine the probability distribution of the time that the chain spends in each state.

5) Compute the asymptotic distribution of the number of customer in the queue.

6) Discuss the nature of the states with respect to the parameters µ and λ.

Solution. 1) Let (N(t))t≥0 be a Poisson process with parameter λ that gives the arrival
times in a system. For s, t > 0, we have

X(t+ s) = X(t) + (N(t+ s)−N(t))−# departures between t and t+ s.

We known that N(t+s)−N(t) is independent from the arrivals before t (as it is a Poisson
process) and it is independent from X(u), 0 ≤ u ≤ t,by hypothesis.
On the other hand, the number of departures between t and t + s is independent from
what happens before t since the service times are exponentials.If a service starts between t
and t+ s, its length is independent from the past by hypothesis. If a service starts before
t and is still alive between t and t + s, then it will be independent from the past (before
t) by the memorylessness property of exponentials.
We deduce that the number of departures between t and t+s should depend only on X(t)
and N(t+ s)−N(t). We then have

P(X(t+ s) = n | X(u), 0 ≤ u ≤ t) = P(X(t+ s) = n | X(t)), n ≥ 0.

implying the Markov property of the process.
By homogeneity, note that |# departures − # arrivals| in a fixed interval of time does
not dependent on the position of this interval. As the Poisson process (N(t))t≥0 has
stationary increments and that the service times are i.i.d. Write Dt

s and Ats for the number
of departures/ arrivals between times s and t, respectively. We then have, for all n,m ≥ 0

P(X(t+ s) = n | X(t) = m) = P(# Dt+s
t −# At+st = m− n)

= P(# Ds
0 −# As0 = m− n)

= P(X(t) = n | X(0) = m).

2) To compute the generator, we start by computing Pij(h) for h small and i, j ≥ 0. In an
interval of length h(→ 0), we can have only one transition. For i = 0, we have then:

P(X(h) = 0 | X(0) = 0) = P(N(h) = 0) = e−λh = 1− λh+ o(h) (Taylor),
P(X(h) = 1 | X(0) = 0) = P(N(h) = 1) = λh+ o(h).

If i > 0, we have 3 possible transition in the interval [0, h]:

a) A new client arrives,
b) One departure,
c) No changes.

Similarly to the previous reasoning, we use the memorylessness property of the exponential
random variable and the Taylor development to get

a)
P(X(h) = i+ 1 | X(0) = i) = P(N(h) = 1) = λh+ o(h).
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b)
P(X(h) = i− 1 | X(0) = i) = P(Exp(µ) ≤ h) = 1− eµh = µh+ o(h).

c)

P(X(h) = i | X(0) = i) = 1− P(X(h) = i+ 1 | X(0) = i)− P(X(h) = i− 1 | X(0) = i)
= 1− (λ+ µ)h+ o(h).

The generator Q satisfy (for h small)

P (h) = I +Qh+ o(h),

where I is the identity matrix. We have then, for all i, j ≥ 0,

Qij = lim
h→0

Pij(h)− Iij
h

.

We get finally the following matrix Q (on the states {0, 1, 2, · · · })

Q =



−λ λ 0 0 0 · · ·
µ −(λ+ µ) λ 0 0 · · ·
0 µ −(λ+ µ) λ 0 · · ·

0 0 µ −(λ+ µ) λ
. . .

0 0 0 µ −(λ+ µ) . . .
...

...
...

...
... . . .


3) Let P̂ be the transition matrix of the Markov chain (X̂n)n≥0. When we start from state

0, we move with probability one to the state 1 as soon as there is a jump. In other terms

P̂0i =
{

1 si i = 1
0 sinon.

If we leave from i > 0, and if the system makes a jump, we move in i+ 1 or in i− 1. Let
us denote D the time of next leave and A the time of next arrival. By memorylessness,
we have D ∼ Exp(µ) and A ∼ Exp(λ) are independent. We get then

P̂i,i+1 = P(A < D) =
∫ ∞

0
P(A < D | D = x)µe−µxdx

=
∫ ∞

0
P(A < x)µe−µxdx

=
∫ ∞

0
(1− e−λx)µe−µxdx

= λ

λ+ µ
.

We deduce then that P̂i,i−1 = µ
λ+µ . Implying

P̂ =



0 1 0 0 0 0 · · ·
q 0 p 0 0 0 · · ·
0 q 0 p 0 0 · · ·
0 0 q 0 p 0 · · ·
0 0 0 q 0 p · · ·
...

...
...

...
...

... . . .


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where p = λ
λ+µ et q = µ

λ+µ . Knowing Q, we can then find again P̂ directly since P̂ii = 0
for all i and for i 6= j:

P̂ij = Qij
−Qii

.

4) If we are in state 0 at time t, the time while we are still at 0 is the time before the
arrival of a new client and so follows an exponential distribution with parameter λ (by
memorylessness).
If we are in the state i > 0, The time we spend in this state has the same law as min(X,Y )
where X ∼ Exp(λ) and Y ∼ Exp(µ) and both X and Y are independent. Then, this time
follows an exponential distribution with parameter λ+ µ.

5) We have to solve the system {
~πQ = ~0,
~π~1 = 1.

(2)

We get easily that πn =
(
λ
µ

)n
π0 for all n ≥ 0. as the sum of components of π should be

equal to 1, π0 should verify then
∞∑
n=0

(
λ

µ

)n
π0 = 1.

If µ > λ, we have that
∑∞
n=0

(
λ
µ

)n
= µ

µ−λ and so we get that π0 = 1− λ
µ . The system (2)

has a unique solution π given by πn =
(
λ
µ

)n
(1− λ

µ) for all n ≥ 0.

In the case that µ ≤ λ, the series
∑∞
n=0

(
λ
µ

)n
diverges and so the system (2) has no solution

(we could have deduce it thanks to the previous point, since the states are not positive
recurrent in this case). We have then πn = 0 for all n ≥ 0.

6) We know that if i is transient/null recurrent for P̂ , then it is transient/null recurrent for
the Markov process. This also is the case for the positive recurrence, whenever the jump
rates of the Markov process are bounded away from 0 and ∞. By previous exercise, we
have then that all states are positive recurrent for λ < µ, null recurrent for p = q = 1

2 and
transients for λ > µ.

Exercise 3. M/M/1/m queue
We consider again the queuing system of last exercise, except that the waiting room has a
maximum capacity of m− 1 customers. So that if the system starts with less than m clients,
the number of clients in the system will never be bigger than m, because a client who arrives
while m clients are already in the system goes away and never comes back. Nevertheless it is
possible that the initial state is bigger than m.

1) Compute the generator and the transition matrix of the Markov chain for the jumps.

2) Determine the nature of the state for the associated Markov chain.

3) Compute the asymptotic distribution of the number of clients in the queue.
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Solution. 1) The Q-matrix corresponding to the states {0, · · · ,m}is given by

Q =



−λ λ 0 0 0 · · · 0 0 0
µ −(λ+ µ) λ 0 0 · · · 0 0 0
0 µ −(λ+ µ) λ 0 · · · 0 0 0
... . . . . . . . . . ... · · ·

...
...

...
0 0 0 0 0 · · · µ −(λ+ µ) λ
0 0 0 0 0 · · · 0 µ −µ


The transition matrix of jumps is given by

P̂ =



0 1 0 0 0 0 · · · 0
q 0 p 0 0 0 · · · 0
0 q 0 p 0 0 · · · 0
0 0 q 0 p 0 · · · 0
0 0 0 q 0 p · · · 0
...

...
...

...
...

... . . . 0
0 0 0 0 0 · · · 1 0


2) Starting with maximum m clients, we see that the chain is irreducible and finite, so all

states are positive recurrent.

3) We look for the solution to the system{
~πQ = ~0∑m
i=0 πi = 1.

By a simple computation we get for 0 ≤ n ≤ m

πn =


(λ
µ

)n(1−λ
µ

)

1−
(
λ
µ

)m+1 , if λ 6= µ,

1
m+1 si λ = µ.

Exercise 4. M/M/∞ queue
Let us assume that the arrivals time of clients in a system follow a Poisson process with
parameter λ. The system is built from a countable collection of servers so that when a client
arrives, his service starts immediately.
We assume that the service time follows an exponential distribution with parameter µ, the
service duration of one customer is independent from the one of the others and independent
from the Poisson process of arrivals.
Let us consider the process (X(t))t≥0 where X(t) is the number of clients in the system at
time t.

1) Compute the generator and the transition matrix of the Markov chain fo the jumps.

2) Compute the asymptotic distribution of the number of clients in the queue.
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Solution. 1) The Q-matrix corresponding to the system is

Q =



−λ λ 0 0 0 · · ·
µ −(λ+ µ) λ 0 0 · · ·
0 2µ −(λ+ 2µ) λ 0 · · ·
0 0 3µ −(λ+ 3µ) λ · · ·
0 0 0 4µ −(λ+ 4µ) · · ·
...

...
... . . . . . . . . .


The transition matrix of jumps is given by

P̂ =



0 1 0 0 0 0 · · ·
q1 0 p1 0 0 0 · · ·
0 q2 0 p2 0 0 · · ·
0 0 q3 0 p3 0 · · ·
0 0 0 q4 0 p4 · · ·
...

...
...

...
...

... . . .


where qi = iµ

λ+iµ and pi = λ
λ+iµ for all i ≥ 1.

2) We look for the solution to the following system{
~πQ = ~0∑∞
i=0 πi = 1.

A simple computation gives

πn = π0

(
λ
µ

)n
n! , n ∈ N.

Comme
∑∞
i=0 πi = 1, on obtient que π0 = e

−λ
µ .

Exercise 5. M/M/m/∞ queue
Let us assume that the arrivals time of clients in a system follow a Poisson process with pa-
rameter λ. The system is built from m servers and a waiting room of infinite capacity (when
a client arrives, his service starts immediately if one of the m desk is free, otherwise he goes
in the waiting room).
The service duration of one customer is independent from the one of the others and indepen-
dent from the Poisson process of arrivals.
Consider the process (X(t))t≥0 where X(t) is the number of clients in the system at time t.

1) Compute the generator and the transition matrix of the Markov chain fo the jumps.

2) Compute the asymptotic distribution of the number of clients in the queue.

Solution. 1) If the number of clients k in the system is smaller than m, then all clients are
being served, and so we will have to wait an amount of time distributed as the minimum
of k exponential random variables µ to pass to k − 1 clients. If k > m, we spend a time
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equivalent to the minimum of m exponential random variables with parameter µ to move
to k − 1 clients in the system. Coefficients of the Q-matrix are then given by

Qk,k+1 = λ, Qk,k−1 =
{
kµ si 0 ≤ k ≤ m,
mµ si k ≥ m.

The first m lines of the transition matrix corresponding to the Markov chain of jumps are
the same as in the previous exericise. For k > m, we have

P̂k,k−1 = mµ

−λ+mµ
, P̂k,k+1 = λ

λ+mµ
.

2) conditions of detailed balance equations give{
λπ(k − 1) = kµπ(k) si k ≤ m,
λπ(k − 1) = mµπ(k) si k ≥ m.

A simple computation gives

π(k) =


c
k!

(
λ
µ

)k
si k ≤ m,

c
m!mk−m

(
λ
µ

)k
si k ≥ m,

where π(0) = c is such that
∑∞
i=0 πi = 1.

Exercise 6. Let us assume that the arrivals time of clients in a system follow a Poisson
process with parameter λ. The system is built from one server and a waiting room of infinite
capacity (when a client arrives, his service starts immediately if the desk is free, otherwise he
goes in the waiting room).
We assume that the service time follows an exponential distribution with parameter µ, the
service duration of one customer is independent from the one of to the others and independent
from the Poisson process of arrivals.
Clients are busy: a client that cannot be served immediately waits a random time exponen-
tially distributed with parameter γ, then if his service has not already started he goes away
and never comes back (there s however no restriction on the duration of service).
Consider the process (X(t))t≥0 where X(t) is the number of clients in the system at time t.

1) Compute the generator and the transition matrix of the Markov chain fo the jumps.

2) Gives the stationary distribution for every state i > 0 of this process in term of the
stationary probability that the system is void.

Solution. 1) The Q-matrix corresponding is

Q =



−λ λ 0 0 0 · · ·
µ −(λ+ µ) λ 0 0 · · ·
0 µ+ γ −(λ+ µ+ γ) λ 0 · · ·

0 0 µ+ 2γ −(λ+ µ+ 2γ) λ
. . .

0 0 0 µ+ 3γ −(λ+ µ+ 3γ) . . .
...

...
...

...
... . . .


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2) We are looking for the solution of the system{
~πQ = ~0∑∞
i=0 πi = 1.

A simple computation gives

πn = π0
λn∏n−1

i=0 (µ+ iγ)
, n ≥ 1.
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