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SOLUTIONS & Saliba, May 1, 2019

Exercise 1. A simple birth process (X (t))i>0 on {0,1,2,...} is a generalisation of a Poisson
process by introducing a correlation between the parameter A and the actual state of the
process. More precisely, if the process is in state 4, it will go to state ¢+ 1 after an exponential
random time of parameter 0 < §; < oo. This process is also a Markov process (using similar
arguments as those used to prove that a Poisson process is Markovian.)

(i). Find the @-matrix corresponding to the simple birth process.

(ii). Let X (0) = 0 and T; be the time when the ith jump occurs. Find an example of a simple
birth process such that lim 7; < oo a.s. This phenomena is called "the explosion”. Find
1—00
a general condition on the §;’s so that the process explodes almost surely in a finite
amount of time.

(iii). Do we have an explosion in the Poisson process case?

(iv). More generally, use the strong law of large numbers to show that if

supd; < oo, then lim; o, T; = oo almost surely.
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Solution. (i). The transition rates matrix @ on {0,1,2,---} is given by
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(ii). We let &; = (i + 1) for all i > 0. We can easily verify that lim 7; < oo almost surely

1— 00
by computing its expectation:

E[limTj] = E lZ(Ti - Ti—l)] =D 6= Z%g < 00
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Similarly, the process explodes almost surely if

oo oo
E[limT;] = E lZ(Ti — Ti_l)] =) 6 < oo (1)
11— 00 . .
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(iii)-(iv). Let S;—1 = T; — T;—1 the waiting time between the (i — 1) and the ith jump, that
follows an exponential law of parameter d;_; (since we start at Xo = 0). It is easy to see
that 6;5; follows an exponential law of parameter 1. By the strong law of large numbers, we

obtain: .
Z?:_() 61 Sz 2}

n

1.

For n sufficiently large, we thus get
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This is equivalent to Y7~ 1 5:S; > 5 for n sufficiently large, and this implies that »;'"; 15:S; —
00 a.s.
If supd; < oo, we can write

jeN
n—1 1 n—1
: Sup; 0 “—
=0 J =0

Thus we have that lim; oo T3 = > 72, (17 — Ti—1) = > 5o Si = oo almost surely and so the
process does not explode in this case.
In particular, the Poisson process does not explode since all the §;’s are equal in this case (to

some A < 00) and so we have supd; < oo.

jeN
We can even obtain a stronger result that shows that if the sum in (1) is infinite, then the
process does not explode. (see theorem 2.3.2 in Norris)

Exercise 2. A radioactive source emits particles according to a Poisson process of rate A.
The particles are spread in random directions independently from each other. A Geiger
counter placed next to the source measures a fraction p of the emitted particles. What is the
distribution of the number of particles detected by time ¢?

Solution. The number of emitted particles up to time ¢ follows has a law Poisson (At). For
each emitted particle, the probability that it is detected by the counter is p. Knowing that
the number of emitted particles until time ¢ is equal to n,the number of detected particles
has a law Binomial (n,p). We use this to obtain

n=r
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Exercise 3. The arrival times of the bus number 1 are modeled by a Poisson process with
an average frequency of one bus per hour, whereas the arrival times of the bus number 7 are
modeled by a Poisson process independent of the first one with frequency of 7 buses per hour.

(1) What is the probability that we see exactly 3 buses (no matter which buses) in one
hour?
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(2)

What is the probability that we see exactly 3 buses 7 while we are waiting for the bus
17

Solution. (1) By a result seen in class, we know that that buses are arriving according to

a Poisson process of rate A = 1+ 7 = 8. By exercise 1, The number of buses passing
in one hour follows a Poisson distribution of mean 8. Then the probability that we see
exactly 3 buses is given by e~883/3!.

Let E; ~ Exp(1) and E! ~ Exp(7) be the waiting times between two consecutive arrivals
of buses 1 and 7 respectively. The probability that the first bus is 7 is given by

P(E] < Ey) = / fer () P(Ey > s)ds = / Te TSe Sds = 7/ 8e 8ds = !
0 ! 0 8 Jo 8

Using the independence of Eq, E] and Ej, the probability that the second bus is also
the 7 is given by

S S P(E > s+ t) [y (8) fry (t)dsdt
Jo B(Ey > ) [y (s)ds
. 15" Jo e_(s+t)ng(5)fE§(t)d5dt
B Jo~ e fiy (s)ds
107 e fiy(s)ds 57 e iy (t)dt
Joo e 5 fe(s)ds

= /OOO e_thé (t)dt = P(El > Eé) = =

P(El > El +E2 | E1 > El)

Following the same reasoning, The probability that the third bus is again the 7 is %.
Letting A; be the event "the i*" bus is the 7”, we finally get

7\3 1
P(AyNAsNA5NAS) = P(A;)-P(As|Ar)-P(As| 1N As)- (1—P(A4| A1 AsNA5)) = <8) =

Alternative method: Let S, := 31" E; and Sy, := >/ E where E; ~ Exp(1) and
E; ~ Exzp(7). The probability of seeing exactly 3 buses 7 before the arrival of bus 1 is
given by

P(S5 < 81 < S)).

Using that S5 has an Erlang distribution (see exercise 4 in Serie 7) with parameters
n=3and A =7, we get

73
P(S, < S, < ) / P(s < 81 < s+ By St2e ods

3
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Exercise 4. Hockey teams 1 and 2 score goals at times of Poisson processes with rates 1 and
2. Suppose that N1(0) = 3 and N2(0) = 1.

a) What is the probability that Ny (¢) will reach 5 before Ny(t) does?
b) Answer part a) for Poisson processes with rates A\; and Aq.

Solution. a) The probabiliy that team 2 (7%) scores the first goal is % (using the exercise 2
of serie 1). Therefore, using the memorlyness property of the exponenial distribution, the
probability that at least 4 of the 5 next goals are scored by Team 2 is

P(Team 2 wins) = P(T> scores at least 4 of the next 5 goals)
SOV () )
4/ \3 3 5/\3)

Hence, the probability the Team 1 (7%) wins is

P(Ty wins) =1 — (i) <§>4 . é + (2) (3)5 = %

Another way of computing this probability is by noticing that the waiting time for T3 to
score 2 goals has the Erlang (or Gamma) distribution with parameters 2 and 1. Likewise,
the wating time for team T to score 4 goals is distributed as I'(4,2). Therefore, the
probability that we are looking for is given by

P(I(2,1) <T(4,2)) = /OOO tet (/too 26_2;(23)3d5> dt.

After some computations, we gett

131

%0 4
P(Ty wins) =P (I'(2,1) <T'(4,2)) = / e <t4 + 263 + 262 + 3t> dt= 3.
0

3

b) Similarly to part a), the probability that 77 wins is

) A2 N A2 >
P(T; =1- — .
(Ty wins) 5<>\1+)\2> AL+ A2 <)\1+>\2>




