
EPFL - Stochastic Processes Thomas Mountford

Solutions 8 Saliba, May 1, 2019

Exercise 1. A simple birth process (X(t))t≥0 on {0, 1, 2, . . . } is a generalisation of a Poisson
process by introducing a correlation between the parameter λ and the actual state of the
process. More precisely, if the process is in state i, it will go to state i+1 after an exponential
random time of parameter 0 ≤ δi <∞. This process is also a Markov process (using similar
arguments as those used to prove that a Poisson process is Markovian.)

(i). Find the Q-matrix corresponding to the simple birth process.

(ii). Let X(0) = 0 and Ti be the time when the ith jump occurs. Find an example of a simple
birth process such that lim

i→∞
Ti <∞ a.s. This phenomena is called ”the explosion”. Find

a general condition on the δi’s so that the process explodes almost surely in a finite
amount of time.

(iii). Do we have an explosion in the Poisson process case?

(iv). More generally, use the strong law of large numbers to show that if
sup
i∈N

δi <∞, then limi→∞ Ti =∞ almost surely.

Solution. (i). The transition rates matrix Q on {0, 1, 2, · · · } is given by

Q =



−δ0 δ0 0 0 · · ·
0 −δ1 δ1 0 · · ·

0 0 −δ2 δ2
. . .

0 0 0 −δ3 δ3
...

...
... . . . −δ4


(ii). We let δi = (i + 1)2 for all i ≥ 0. We can easily verify that lim

i→∞
Ti < ∞ almost surely

by computing its expectation:

E[ lim
i→∞

Ti] = E
[ ∞∑
i=1

(Ti − Ti−1)
]

=
∞∑
i=1

δ−1
i−1 =

∞∑
i=1

1
i2
<∞.

Similarly, the process explodes almost surely if

E[ lim
i→∞

Ti] = E
[ ∞∑
i=1

(Ti − Ti−1)
]

=
∞∑
i=1

δ−1
i−1 <∞. (1)

(iii)-(iv). Let Si−1 = Ti − Ti−1 the waiting time between the (i − 1) and the ith jump, that
follows an exponential law of parameter δi−1 (since we start at X0 = 0). It is easy to see
that δiSi follows an exponential law of parameter 1. By the strong law of large numbers, we
obtain: ∑n−1

i=0 δiSi
n

a.s.−→ 1.

For n sufficiently large, we thus get ∑n−1
i=0 δiSi
n

>
1
2 .
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This is equivalent to
∑n−1
i=0 δiSi >

n
2 for n sufficiently large, and this implies that

∑n−1
i=0 δiSi →

∞ a.s.
If sup

j∈N
δj <∞, we can write

n−1∑
i=0

Si ≥
1

supj δj

n−1∑
i=0

δiSi →∞.

Thus we have that limi→∞ Ti =
∑∞
i=1(Ti − Ti−1) =

∑∞
i=0 Si = ∞ almost surely and so the

process does not explode in this case.
In particular, the Poisson process does not explode since all the δi’s are equal in this case (to
some λ <∞) and so we have sup

j∈N
δj <∞.

We can even obtain a stronger result that shows that if the sum in (1) is infinite, then the
process does not explode. (see theorem 2.3.2 in Norris)

Exercise 2. A radioactive source emits particles according to a Poisson process of rate λ.
The particles are spread in random directions independently from each other. A Geiger
counter placed next to the source measures a fraction p of the emitted particles. What is the
distribution of the number of particles detected by time t?

Solution. The number of emitted particles up to time t follows has a law Poisson (λt). For
each emitted particle, the probability that it is detected by the counter is p. Knowing that
the number of emitted particles until time t is equal to n,the number of detected particles
has a law Binomial (n, p). We use this to obtain

P (# detected particles = r) =
∞∑
n=r

P (#of particles = n)
(
n

r

)
pr (1− p)n−r =

=
∞∑
n=r

e−λt
(λt)n

n!
n!

r! (n− r)!p
r (1− p)n−r =

= e−λtpr

r!

∞∑
n=r

(λt)n

(n− r)! (1− p)n−r =

= e−λtpr (λt)r

r!

∞∑
n=r

(λt (1− p))n−r

(n− r)! =

= e−λt (λtp)r

r!

∞∑
n=0

(λt (1− p))n

n! =

= e−λt (λtp)r

r! eλt(1−p) =

= e−λtp
(pλt)r

r! .

Exercise 3. The arrival times of the bus number 1 are modeled by a Poisson process with
an average frequency of one bus per hour, whereas the arrival times of the bus number 7 are
modeled by a Poisson process independent of the first one with frequency of 7 buses per hour.

(1) What is the probability that we see exactly 3 buses (no matter which buses) in one
hour?
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(2) What is the probability that we see exactly 3 buses 7 while we are waiting for the bus
1?

Solution. (1) By a result seen in class, we know that that buses are arriving according to
a Poisson process of rate λ = 1 + 7 = 8. By exercise 1, The number of buses passing
in one hour follows a Poisson distribution of mean 8. Then the probability that we see
exactly 3 buses is given by e−883/3!.

(2) Let Ei ∼ Exp(1) and E′i ∼ Exp(7) be the waiting times between two consecutive arrivals
of buses 1 and 7 respectively. The probability that the first bus is 7 is given by

P(E′1 < E1) =
∫ ∞

0
fE′

1
(s)P(E1 > s)ds =

∫ ∞
0

7e−7se−sds = 7
8

∫ ∞
0

8e−8sds = 7
8 .

Using the independence of E1, E
′
1 and E′2, the probability that the second bus is also

the 7 is given by

P(E1 > E′1 + E′2 | E1 > E′1) =
∫∞

0
∫∞

0 P(E1 > s+ t)fE′
1
(s)fE′

2
(t)dsdt∫∞

0 P(E1 > s)fE′
1
(s)ds

=
∫∞

0
∫∞

0 e−(s+t)fE′
1
(s)fE′

2
(t)dsdt∫∞

0 e−sfE′
1
(s)ds

=
∫∞

0 e−sfE′
1
(s)ds

∫∞
0 e−tfE′

2
(t)dt∫∞

0 e−sfE′
1
(s)ds

=
∫ ∞

0
e−tfE′

2
(t)dt = P(E1 > E′2) = 7

8 .

Following the same reasoning, The probability that the third bus is again the 7 is 7
8 .

Letting Ai be the event ”the ith bus is the 7”, we finally get

P(A1∩A2∩A3∩Ac4) = P(A1)·P(A2|A1)·P(A3|A1∩A2)·(1−P(A4|A1∩A2∩A3)) =
(7

8

)3
·18 .

Alternative method: Let Sn :=
∑n
i=1Ei and S′m :=

∑m
j=1E

′
j where Ei ∼ Exp(1) and

E′j ∼ Exp(7). The probability of seeing exactly 3 buses 7 before the arrival of bus 1 is
given by

P(S′3 ≤ S1 ≤ S′4).

Using that S′3 has an Erlang distribution (see exercise 4 in Serie 7) with parameters
n = 3 and λ = 7 , we get

P(S′3 ≤ S1 ≤ S′4) =
∫ ∞

0
P(s ≤ S1 ≤ s+ E′4)73

2 t
2e−7sds

=
∫ ∞

0

(∫ ∞
0

P(s ≤ E1 ≤ s+ t) 7e−7tdt

) 73

2 t
2e−7sds

=
∫ ∞

0

e−s

8 ×
73

2 t
2e−7sds

=
∫ ∞

0

73

16 × t
2e−8sds = 73

84 .
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Exercise 4. Hockey teams 1 and 2 score goals at times of Poisson processes with rates 1 and
2. Suppose that N1(0) = 3 and N2(0) = 1.

a) What is the probability that N1(t) will reach 5 before N2(t) does?

b) Answer part a) for Poisson processes with rates λ1 and λ2.

Solution. a) The probabiliy that team 2 (T2) scores the first goal is 2
3 (using the exercise 2

of serie 1). Therefore, using the memorlyness property of the exponenial distribution, the
probability that at least 4 of the 5 next goals are scored by Team 2 is

P(Team 2 wins) = P(T2 scores at least 4 of the next 5 goals)

=
(

5
4

)(2
3

)4
· 1

3 +
(

5
5

)(2
3

)5
.

Hence, the probability the Team 1 (T1) wins is

P(T1 wins) = 1−
(

5
4

)(2
3

)4
· 1

3 +
(

5
5

)(2
3

)5
= 131

243 .

Another way of computing this probability is by noticing that the waiting time for T1 to
score 2 goals has the Erlang (or Gamma) distribution with parameters 2 and 1. Likewise,
the wating time for team T2 to score 4 goals is distributed as Γ(4, 2). Therefore, the
probability that we are looking for is given by

P (Γ(2, 1) ≤ Γ(4, 2)) =
∫ ∞

0
te−t

(∫ ∞
t

2e−2s(2s)3

6 ds

)
dt.

After some computations, we gett

P(T1 wins) = P (Γ(2, 1) ≤ Γ(4, 2)) =
∫ ∞

0
e−3t

(4
3 t

4 + 2t3 + 2t2 + 3t
)
dt = 131

243 .

b) Similarly to part a), the probability that T1 wins is

P(T1 wins) = 1− 5
(

λ2
λ1 + λ2

)4 λ1
λ1 + λ2

−
(

λ2
λ1 + λ2

)5
.
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