
Solutions 6 March 30, 2021

Exercise 1. (Markov Chain in a library) In a library with n books, the ith book has
probability pi to be chosen at each request. To make it quicker to find the book the next
time, the librarian moves the book to the left end of the shelf. Define the state of a Markov
chain at any time to be the list of books we see as we examine the shelf from left to right.
Since all the books are distinct, the state space E is the set of all permutations of the set
{1, 2, . . . , n}. Show that

π(i1, · · · in) = pi1 ·
pi2

1− pi1
· · · pin

1− pi1 − · · · pin−1

is a stationary distribution.

Solution. The distribution π is stationary for the Markov chain if and only if, supposing
that there exists n > 0 such that Xn ∼ π, Xn+1 has also the same distribution π.
Suppose that Xn is distributed according to π. Notice that if we are in state (i1, · · · , in) at
time n+ 1, then the only possibilities for the chain at time n are

S = {(i1, · · · , in), (i2, i1, i3 · · · , in), (i2, i3, i1, i4, · · · , in), · · · (i2, i3, i4, · · · , in, i1)}. (1)

Hence, to reach (i1, · · · , in) at time n+ 1, we choose the book i1 at time n (starting from one
of the states in S given by (1)). We get

P(Xn+1 = (i1, · · · , in)) =
∑
v∈S

P(Xn = v)P(Xn+1 = (i1, · · · , in) | Xn = v) (2)

= pi1 (π(i1, · · · , in) + π(i2, i1, i3, · · · , in) + · · ·+ π(i2, i3, i4, · · · , in, i1)) ,

where we supposed that Xn is distributed according to π. It remains to show that the right
term of (2) is equal to π(i1, · · · , in). To simplify the computations, we suppose that n = 3.
We then obtain, noticing that 1− pi1 − pi2 = pi3 ,

pi1
pi2

1− pi1
?= pi1 · (pi1

pi2
1− pi1

+ pi2
pi1

1− pi2
+ pi2

pi3
1− pi2

) ⇐⇒

pi1
pi2

1− pi1
· (1− pi1) ?= pi1 · (pi2

pi1
1− pi2

+ pi2
pi3

1− pi2
) ⇐⇒

pi1pi2(1− pi1
1− pi2

) ?= pi1pi2pi3
1− pi2

⇐⇒

pi1pi2pi3
1− pi2

= pi1pi2pi3
1− pi2

.

Since the last equality is always verified, we deduce that all the others are also verified, and
thus P(Xn+1 = (i1, i2, i3)) = π(i1, i2, i3). Since the state (i1, i2, i3) is random, we deduce that
Xn+1 is distributed according to π.
The argument can be easily generalized to any n, and hence π is the stationary distribution
of the system.

Exercise 2. (Random walk on a graph)
An undirected graph G is a countable collection of states (that we call vertices) along with
some edges connecting them. The degree di of a vertex i is the number of edges incident to
i. We suppose the graph to be locally finite (i.e., each edge is incident to a finite number of
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edges). We say that a Markov chain on the state space E = G is a random walk on the graph
if the transition probabilities are given by

pi,j =
{

1/di if (i, j) is an edge,
0 otherwise,

for i, j ∈ G.

a) We assume that G is connected (implying that P is irreducible) and that
∑
i di <∞. Find

the stationary distribution of the random walk on G.
Hint: Assume that the random walk is reversible and find a stationary distribution veri-
fying the detailed balance equations. Explain why P is reversible.

b) We assume now that the graph is a chessboard, i.e., the vertices are G = {1, . . . , 8}2 and
the edges are the possible moves of a King. We assume that the King starts its random
walk in one of the four corners of the chessboard c ∈ G. Compute the mean return time
to the initial state Ec(Tc) of the King. Compute the same quantity for a Knight instead
of a King.

Solution. a) We start from the detailed balance equations:

πiPij = πjPji, ∀i, j ∈ G. (3)

This is equivalent to
πi ·

1{i∼j}
di

= πj ·
1{j∼i}
dj

,

where {i ∼ j} indicate the event where i and j are connected by an edge. If i ∼ j, we have
πi
di

= πj
dj
. (4)

Otherwise, since the graph is connected, there exists a path k0 = i ∼ k1 ∼ · · · ∼ km = j
joining i and j. For all couple of points kr, kr+1 the equality (4) is verified (for πkr et πkr+1).
We deduce then that (4) is verified for all i and j of the graph. Using that

∑
i∈G πi = 1,

we get easily that πi = di∑
j∈G dj

.

b) By a theorem seen in the course, we know that Ec[Tc] = 1
πc

=
∑

j∈G dj

dc
. It remains to find

the degrees of all the vertices of the graph. If we are in one of the four corners, the degree
(= the number of possible moves of the King) is equal to 3. If we are on one of the 24
boxes at the border of the chessboard and which is not one of the 4 corners, the degree
of one of the box is 5. In all remaining states (for the 64-4-24=36 boxes remaining), the
degree is 8. We get then:

Ec[Tc] =
∑
j∈G dj

dc
= 4 · 3 + 24 · 5 + 8 · 36

3 = 140.

Starting from a corner c, we need in average 140 moves of the King to come back to c.
The random walk of the Knight: counting the number of possible moves of the Knight
starting from one of the 64 vertices of the graph, one gets the following configuration for
the degrees:
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2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2

Starting from one of the corners c, the expected time before return to c is given by:

Ec[Tc] = 1
πc

=
∑
j∈G dj

dc
= 2 · 4 + 3 · 8 + 4 · 20 + 16 · 6 + 16 · 8

2 = 168.

Exercise 3. Let P be a transition matrix on a finite state space E.

(a) Prove the following linear algebra result: Given a matrix Q, Q and Qt have the same
eigenvalues.
Use this to prove that P has a stationary distribution π(i.e. a probability measure πP =
π).

(b) Find an example, when E is an infinite state space, for which P doesn’t have any sta-
tionary distribution.

Solution. (a) A real number λ is an eigenvalue for a matrix Q if and only if det(Q−λI) = 0
where I is the identity matrix of the same size as Q. We can write:

det(Qt − λI) = det(Qt − λIt) = det
(
(Q− λI)t

)
= det(Q− λI).

This shows that Q and Qt have the same eigenvalues.
Since P is a transition matrix, we have

P1 = 1,
where 1 is a column vector of 1’s of size |E|. Therefore, λ = 1 is an eigenvalue for P . By
the above result, we know that there exists a vector v such that

P tv = v⇐⇒ vtP = vt.

Remark:
Using the Perron-Frobenius theorem (not seen in this course), we can choose
the eigenvector v = (v1, v2, · · · ) such that vi ≥ 0 for all i.
The vector π := vt/(‖vt‖) is a stationary distribution for P .

(b) If E is of infinite dimension, we can find examples for which ‖vt‖ = ∞ which implies
π ≡ 0 and so is not a distribution anymore. We can, for example, consider the Markov
chain in exercise 2a) in Serie 3. In this case we have

πi = (πP )i =
∑
j

πjPji = qπi + pπi+1.

This implies that πi = πi+1 for all i ≥ 0 and so
∑
i πi = ∞. In other words, π is not a

stationary distribution.
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Exercise 4. Let X be a Markov chain on E (not necessarily irreducible). Suppose that state
j ∈ E is positive recurrent and aperiodic. Show that

lim
n→∞

p
(n)
ij = πjP(τj <∞ | X0 = i), τj = inf{n ≥ 0 : Xn = j},

where π is the stationary distribution of the chain restricted to the communicating class of j.

Solution. By the total probability formula, we have

p
(n)
ij = P(Xn = j | X0 = i) =

n∑
r=1

P(τj = r | X0 = i)p(n−r)
jj .

By considering the sub-chain with valued in the communicating class of j, we see that this
sub-chain is irreducible and j is positive recurrent. We can thus apply a theorem from the
class that gives that p(n−r)

jj → πj . Since
∑n
r=1 P(τj = r | X0 = i) < ∞, we obtain, by the

dominated convergence theorem

p
(n)
ij = P(Xn = j | X0 = i) =

n∑
r=1

P(τj = r | X0 = i)p(n−r)
jj → πj

∞∑
r=1

P(τj = r | X0 = i)

= πjP(τj <∞ | X0 = i).

Exercise 5. Let X be a Markov chain with transition matrix P on E = {1, 2, 3, 4, 5} given
by

P =


1
3 0 0 2

3 0
0 1

4
1
2

1
4 0

0 0 1
2 0 1

2
1
2 0 0 1

2 0
0 0 1

4 0 3
4

 .

(a) Find the communicating classes of P . For the recurrent classes, find the corresponding
stationary distributions.

(b) Supposing that X0 ∼ α for a distribution α on E, find the limiting distribution of Xn

when n→∞.
Hint: Suppose that X starts in a transcient state of E and find the limiting distribution
in this case.

Solution. (a) The communicating classes of P are {1, 4}, {3, 5} et {2}. Closed (and re-
current) classes are {1, 4} et {3, 5}. The submatrix P1 corresponding to {1, 4} is given
by:

P1 =
(

1
3

2
3

1
2

1
2

)
.

The stationary distribution of the system π1 = (a, b) verifies
a
3 + b

2 = a,
2a
3 + b

2 = b,

a+ b = 1.
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The solution of this system is given by π1 = (3
7 ,

4
7).

The submatrix P2 corresponding to {3, 5} is given by:

P2 =
(

1
2

1
2

1
4

3
4

)
.

The stationary distribution of the system π2 = (c, d) verifies
c
2 + d

4 = c,
c
2 + 3d

4 = d,

c+ d = 1.

The solution of this system is given by π2 = (1
3 ,

2
3).

(b) State 2 is the only transient state of the system. Starting from 2, we know that Pn2i
n→∞−→

h(i)π(i) where
h(i) =: P(Ti <∞ | X0 = 2), i = 1, 3, 4, 5,

and π(i) corresponds to the component of the stationary distribution relative to state i
(π(1) = π1(1), π(3) = π2(1), π(4) = π1(2), π(5) = π2(2)).

We need to compute h(i) for i = 1, 3, 4, 5. Since {1, 4} is a closed and recurrent class, we have
that P(T1 <∞ | X0 = 4) = 1. Since {3, 5} is closed, we also have that P(T1 <∞ | X0 = 3) =
0. Using this, we obtain:

h(1) = 1
4h(1) + 1

2 · 0 + 1
4 · 1 =⇒ h(1) = 1

3 .

Similarly, we find: 
h(3) = 1

4h(3) + 1
2 =⇒ h(3) = 2

3 ,

h(4) = 1
4h(4) + 1

4 =⇒ h(4) = 1
3 ,

h(5) = 1
4h(5) + 1

2 =⇒ h(5) = 2
3 .

Since 2 is transient, Pn22
n→∞−→ 0. We thus get:

Pn21 →
1
3 ×

3
7 = 1

7 , P
n
23 →

2
9 , P

n
24 →

4
21 , P

n
25 →

4
9 .

Therefore, the transition matrix Pn converges to P∞ given by:

P∞ =


3
7 0 0 4

7 0
1
7 0 2

9
4
21

4
9

0 0 1
3 0 2

3
3
7 0 0 4

7 0
0 0 1

3 0 2
3

 .

So, if α = (α1, α2, α3, α4, α5) is the initial distribution of X, the limiting distribution of Xn,
denoted by α∞, is given by

α∞ = αP∞ = (3α1
7 + α2

7 + 3α4
7 , 0, 2α2

9 + α3
3 + α5

3 ,
4α1
7 + 4α2

21 + 4α4
7 ,

4α2
9 + 2α3

3 + 2α5
3 ).
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Exercise 6. Let (Xn)n≥0 and (Yn)n≥0 be two independent Markov chains, aperiodic and
irreducible, defined on the state spaces E and E′, respectively. Show that (Xn, Yn)n≥0 is an
aperiodic and irreducible Markov chain on E ×E′. Find an example of (Xn)n≥0 and (Yn)n≥0
independent and irreducible, but for which (Xn, Yn)n≥0 is not irreducible.

Solution. We write (pij)i,j∈E and (qij)i,j∈E′ for the transition probabilities for (Xn)n≥0 and
(Yn)n≥0 respectively. For all i0, i ∈ E, j0, j ∈ E′, there exist r > 0 and s > 0 with p

(r)
i0i

> 0
and q(s)

j0j
> 0. If Xn and Yn are aperiodic, then, by a theorem of the class, there exists n0 such

that for all n ≥ n0, we have p(n)
ii > 0 and q(n)

jj > 0. Thus, for all m ≥ r+ s+n0, we have that
p

(m)
i0i

> 0 and that q(m)
j0j

> 0, and thus

P
{

(Xm, Ym) = (i, j)|(X0, Y0) = (i0, j0)
}

= p
(m)
i0i

q
(m)
j0j

> 0.

Notice that this implies that the periodicity of (Xn, Yn)n≥0 is equal to 1.
For the counterexample, we consider (Xn)n≥0 and (Yn)n≥0 to be two independent random
walks on Z. Notice that if we start at (0, 0), we can only reach vertices for which the sum of
its coordinates is even. Hence (Xn, Yn) is not irreducible.

Exercise 7. (Branching process with immigration) For n ∈ N, let (Nn
k )k≥0 be a sequence

of independent random variables on Z+ with a common generating function φ(t) = E(tNn
k ).

The branching process with immigration is defined as

Xn = Nn
1 + . . .+Nn

Xn−1 + In, n ≥ 0,

where (In)n>0 is a sequence of independent random variables with values in Z+ with a common
generating function ψ(t) = E(tIn). Show that if X0 = 1 then

E(tXn) = φ(n)(t)
n−1∏
k=0

ψ(φ(k)(t)).

In the case where the number of immigrants in each generation is a Poisson random variable
of parameter λ and P (Nn

k = 0) = 1 − p, P (Nn
k = 1) = p, find the proportion of time in the

long run for which the population is 0.

Solution. The equation for E(tXn) can be proved by induction by doing a one step decom-
position. Indeed, for n = 1, the result is straightforward by independence

E(tX1) = E(tN1+I1) = E(tN1)E(tI1) = φ(t)ψ(t).

Suppose that this holds for n. We obtain
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E(tXn+1) = E(E(tXn+1 | Xn)) =

=
∞∑
k=0

E(tXn+1 | Xn = k)P(Xn = k) =

=
∞∑
k=0

E(tN
n+1
1 +...+Nn+1

k
+In+1)P(Xn = k) =

= ψ(t)
∞∑
k=0

φ(t)kP(Xn = k) =

= ψ(t)E(φ(t)Xn).

We finally get, by using the induction relation:

E(tXn) = φ(n)(t)
n−1∏
k=0

ψ(φ(k)(t)).

In the special case of immigration that has a Poisson law, we get:

E(tXn) = (1 + pn(t− 1)) exp
(
λ(t− 1)1− pn

1− p

)
.

We conclude for 0 ≤ p < 1

lim
n→∞

P(Xn = 0) = lim
n→∞

lim
t→0

E(tXn)

= lim
n→∞

(1− pn) exp
(
−λ1− pn

1− p

)
= exp

(
− λ

1− p

)
.

That is the proportion of time for which the population is 0 since

lim
n→∞

1
n

n−1∑
k=0

P(Xk = 0) = lim
n→∞

P(Xn = 0) = exp
(
− λ

1− p

)
.

Exercise 8. (Metropolis–Hastings algorithm) Suppose that we have a distribution p
(called target distribution) on a countable space E. Then, for each x ∈ E, let qx be a
distribution on E (called the proposal distribution) with qx(y) > 0 whenever qy(x) > 0, for
all y ∈ E. The Metropolis–Hastings algorithm constructs a Markov chain (Xn)n≥0 as follows:

(i). Let X0 = x0 ∈ E be random fixed state.

(ii). For Xn = x, choose a candidate y according to the proposal distribution qx. In other
words, with probability qx(y), the state y is the candidate state to which we may jump
at time n+ 1. Once we have a candidate state, we will decide if we jump to it or stay
at x in the following way: Let U be a uniform random variable on [0, 1], the variable
Xn+1 is defined as

Xn+1 =

y if U ≤ min
(
p(y)qy(x)
p(x)qx(y) , 1

)
x otherwise.
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Show that if (Xn)n≥0 is irreducible and aperiodic, then it is a reversible chain with respect
to its stationary distribution p.

Solution. Note that in general, irreducibility and aperiodicity are simple to show given the
proposal distribution. In particular, note that if there exist x, y such that the ratio p(y)qy(x)

p(x)qx(y)
is not always equal to 1 (which is generally the case), then there is a positive probability to
stay in state x, and the chain is therefore aperiodic.
It is easy to show that the transition probability from x to y with x 6= y is

pxy = qx(y) min
(
p(y)qy(x)
p(x)qx(y) , 1

)
.

With this, we have by the detailed balance (suppose that p(x)qx(y) > p(y)qy(x) wlog)

πx
qx(y) p(y)qy(x)

p(x)qx(y)
qy(x) = πy

and thus πx = p(x) for all x ∈ E. Moreover, by the previous exercise sheet, the chain is
reversible with respect to its stationary distribution.
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