SOLUTIONS 6 March 30, 2021

Exercise 1. (Markov Chain in a library) In a library with n books, the ith book has
probability p; to be chosen at each request. To make it quicker to find the book the next
time, the librarian moves the book to the left end of the shelf. Define the state of a Markov
chain at any time to be the list of books we see as we examine the shelf from left to right.
Since all the books are distinct, the state space E is the set of all permutations of the set
{1,2,...,n}. Show that
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is a stationary distribution.

Solution. The distribution 7 is stationary for the Markov chain if and only if, supposing
that there exists n > 0 such that X,, ~ 7, X,,+1 has also the same distribution .

Suppose that X, is distributed according to 7. Notice that if we are in state (i1,--- ,iy,) at
time n + 1, then the only possibilities for the chain at time n are

S = {(ib T 7in)7 (i27i17 i3 7in)7 (i27 13,01, 04, ain)a o (i27i37i47 ey in, Zl)} (1)
Hence, to reach (i1, -+ ,iy) at time n+ 1, we choose the book i1 at time n (starting from one
of the states in S given by (1)). We get
P(Xpt1 = (i1, ,in)) = ZP(Xn = 0)P(Xnq1 = (i1, 1 1p) | Xn =) (2)
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where we supposed that X, is distributed according to 7. It remains to show that the right
term of (2) is equal to 7(i1,- -+ ,i,). To simplify the computations, we suppose that n = 3.
We then obtain, noticing that 1 — p;; — ps, = Dis,
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Since the last equality is always verified, we deduce that all the others are also verified, and
thus P(X,+1 = (i1,492,13)) = (i1, 42,13). Since the state (i1,1i2,73) is random, we deduce that
Xp41 is distributed according to .

The argument can be easily generalized to any n, and hence 7 is the stationary distribution
of the system.

Exercise 2. (Random walk on a graph)

An undirected graph G is a countable collection of states (that we call vertices) along with
some edges connecting them. The degree d; of a vertex i is the number of edges incident to
i. We suppose the graph to be locally finite (i.e., each edge is incident to a finite number of



edges). We say that a Markov chain on the state space E = G is a random walk on the graph
if the transition probabilities are given by

- J1/d; if (i, 5) is an edge,
0 otherwise,

fori,57 € G.

2)

We assume that G is connected (implying that P is irreducible) and that >°; d; < co. Find
the stationary distribution of the random walk on G.

Hint: Assume that the random walk is reversible and find a stationary distribution veri-
fying the detailed balance equations. Explain why P is reversible.

We assume now that the graph is a chessboard, i.e., the vertices are G = {1,...,8}? and
the edges are the possible moves of a King. We assume that the King starts its random
walk in one of the four corners of the chessboard ¢ € G. Compute the mean return time
to the initial state E.(7) of the King. Compute the same quantity for a Knight instead
of a King.

Solution. a) We start from the detailed balance equations:

m Py = mj Py, Vi,j €G. (3)

This is equivalent to
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where {i ~ j} indicate the event where i and j are connected by an edge. If i ~ j, we have
= (4)

Otherwise, since the graph is connected, there exists a path kg =i ~ky ~ - ~k;, = J
joining i and j. For all couple of points k;, k.11 the equality (4) is verified (for 7y, et my, ).
We deduce then that (4) is verified for all < and j of the graph. Using that ) ;.5 m = 1,

i o di
we get easily that m; = S

By a theorem seen in the course, we know that E.[T,] = Tr% = Zjd#fd]. It remains to find
the degrees of all the vertices of the graph. If we are in one of the four corners, the degree
(= the number of possible moves of the King) is equal to 3. If we are on one of the 24
boxes at the border of the chessboard and which is not one of the 4 corners, the degree
of one of the box is 5. In all remaining states (for the 64-4-24=36 boxes remaining), the

degree is 8. We get then:

Yjegdj _4-3+24-5+8-36

= 140.
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Starting from a corner ¢, we need in average 140 moves of the King to come back to c.
The random walk of the Knight: counting the number of possible moves of the Knight
starting from one of the 64 vertices of the graph, one gets the following configuration for
the degrees:
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Starting from one of the corners ¢, the expected time before return to c is given by:

1 Yiegdi  2-4+3-8+4-204+16-6+16-8
EC[TC] - - j€G %I —

= 168.
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Exercise 3. Let P be a transition matrix on a finite state space F.

(a) Prove the following linear algebra result: Given a matrix @, Q and Q' have the same
eigenvalues.
Use this to prove that P has a stationary distribution 7(i.e. a probability measure 7P =
).

(b) Find an example, when F is an infinite state space, for which P doesn’t have any sta-
tionary distribution.

Solution. (a) A real number ) is an eigenvalue for a matrix @) if and only if det(Q —AI) =0
where [ is the identity matrix of the same size as ). We can write:

det(Q" — AI) = det(Q" — AI') = det ((Q = AI)") = det(Q — AI).

This shows that @ and Q* have the same eigenvalues.
Since P is a transition matrix, we have

P1=1,

where 1 is a column vector of 1’s of size |E|. Therefore, A = 1 is an eigenvalue for P. By
the above result, we know that there exists a vector v such that

Plv = v < vtP = v'.

Remark:

Using the Perron-Frobenius theorem (not seen in this course), we can choose
the eigenvector v = (v1,vs,---) such that v; > 0 for all i.

The vector m := vt/(||[vt|)) is a stationary distribution for P.

(b) If F is of infinite dimension, we can find examples for which ||[v*|| = co which implies
7 = 0 and so is not a distribution anymore. We can, for example, consider the Markov
chain in exercise 2a) in Serie 3. In this case we have

T = (WP)Z = ZWjJDjz' = qm; + PTiy1.
J

This implies that m; = m;41 for all 7 > 0 and so ), m; = oo. In other words, 7 is not a
stationary distribution.



Exercise 4. Let X be a Markov chain on E (not necessarily irreducible). Suppose that state
J € E is positive recurrent and aperiodic. Show that

lim p(n)

n—oo"- 4J

:Wj]P’(Tj < 00 |X0:i), T; :inf{nZO:Xn:j},
where 7 is the stationary distribution of the chain restricted to the communicating class of j.

Solution. By the total probability formula, we have

n
Py =P(Xy=j| Xo=1i) =Y P(ry =7 | Xo =il ",
r=1
By considering the sub-chain with valued in the communicating class of j, we see that this
sub-chain is irreducible and j is positive recurrent. We can thus apply a theorem from the
class that gives that pg»?_T) — mj. Since Y P(r; = r | Xo = i) < oo, we obtain, by the
dominated convergence theorem

n o0
BV =PXy=j | Xo=0)=Y Plry=r| Xo=i)p\) " = Y P(ry =1 | Xo =1)
r=1 r=1

= m;iP(1; < 00 | Xo =1).

Exercise 5. Let X be a Markov chain with transition matrix P on E = {1,2,3,4,5} given

by 1 2
10020
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(a) Find the communicating classes of P. For the recurrent classes, find the corresponding
stationary distributions.

(b) Supposing that Xy ~ « for a distribution « on F, find the limiting distribution of X,
when n — oo.
Hint: Suppose that X starts in a transcient state of £/ and find the limiting distribution
in this case.

Solution. (a) The communicating classes of P are {1,4}, {3,5} et {2}. Closed (and re-
current) classes are {1,4} et {3,5}. The submatrix P; corresponding to {1,4} is given
by:

b
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Wby,
a+b =1



The solution of this system is given by m = ( %, %)
The submatrix P» corresponding to {3,5} is given by:
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The stationary distribution of the system my = (¢, d) verifies
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The solution of this system is given by my = (%, %)

(b) State 2 is the only transient state of the system. Starting from 2, we know that P23 e
h(i)m (i) where
h(i) = P(T; < oo | X0 =2), i=1,3,4,5,

and m(i) corresponds to the component of the stationary distribution relative to state i
(r(1) = m (1), 7(3) = (1), 7(4) = m1 (2), 7(5) = ma(2)).
We need to compute h(i) for i = 1,3,4,5. Since {1,4} is a closed and recurrent class, we have
that P(71 < oo | Xo =4) = 1. Since {3,5} is closed, we also have that P(T} < oo | Xg =3) =
0. Using this, we obtain:

A1) = gh(1)+ 5 -0+ ;1= h(1) =

Similarly, we find:

h(3)=1h(3)+3 = h(3)=3,
h(4) = jh(4) + 3 = h(4) =3,
h(5)=1in(5)+3 = h() =32
Since 2 is transient, Pj, "= 0. We thus get:
L1 .3 1 . 2 4 4
P21—>§>< 72?7P23—>§»P24%57P25—>§~

Therefore, the transition matrix P" converges to Py, given by:
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So, if @ = (a1, a9, a3, ay, as) is the initial distribution of X, the limiting distribution of X,
denoted by ao, is given by
3041 (6] 30&4 2042 as (673 40(1 40&2 40&4 4042 2043 2045
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Exercise 6. Let (X,,)n>0 and (Y;,)n>0 be two independent Markov chains, aperiodic and
irreducible, defined on the state spaces E and E’, respectively. Show that (X, Y, )n>0 is an
aperiodic and irreducible Markov chain on E x E’. Find an example of (X,,)n>0 and (Y,)n>0
independent and irreducible, but for which (X, Y,,)n>0 is not irreducible.

Solution. We write (p;;)i jer and (gij)i jer for the transition probabilities for (X,,),>0 and

(Yn)n>o0 respectively. For all ig,7 € E, jo,j € E', there exist » > 0 and s > 0 with ngz) >0
and q](gg > 0. If X,, and Y,, are aperiodic, then, by a theorem of the class, there exists ng such

that for all n > ng, we have p(ﬂ) > 0 and q(.?) > 0. Thus, for all m > r 4+ s+ ng, we have that

i J
pggr;) > 0 and that qj(gr;-) > 0, and thus
P{(Xm, Yin) = (0. 9)](Xo, Yo) = (io.o) } = p7ally) > 0.

Notice that this implies that the periodicity of (X, ¥y )n>0 is equal to 1.

For the counterexample, we consider (X,),>0 and (Y;,),>0 to be two independent random
walks on Z. Notice that if we start at (0,0), we can only reach vertices for which the sum of
its coordinates is even. Hence (X, Y,,) is not irreducible.

Exercise 7. (Branching process with immigration) For n € N, let (N}');>0 be a sequence
of independent random variables on Z* with a common generating function ¢(t) = E(t"Vx).
The branching process with immigration is defined as

Xn=N{"+...+ Ny, _ +1In, n >0,

where (I,),>0 is a sequence of independent random variables with values in Z* with a common
generating function v(t) = E(t*). Show that if Xo = 1 then

n—1

E(t*) =" () [T v(6™ (1))

k=0

In the case where the number of immigrants in each generation is a Poisson random variable
of parameter A and P(N}' =0) =1 —p, P(N' = 1) = p, find the proportion of time in the
long run for which the population is 0.

Solution. The equation for E(t%") can be proved by induction by doing a one step decom-
position. Indeed, for n = 1, the result is straightforward by independence

E(™1) = BV ) = EGVOE() = ¢(0)v(0).
Suppose that this holds for n. We obtain



E(t*+1) = E(E(E ] X)) =

= i E(tX+1] X, = B)P(X, = k) =

k=0
- i BN AN ) p(X, = k) =
k=0
0> GB(X, = k) =
k=0
= (OB,

We finally get, by using the induction relation:

n—1
E(t*) = o™ () [T ¢(6™ (1))
k=0

In the special case of immigration that has a Poisson law, we get:

1 —pn
E(t*") = (14 p"(t — 1)) exp ()\(t -1) 1 P ) :
-D
We conclude for 0 <p < 1

lim P(X, =0) = lim lim E(t*")

n—00 n—00 t—0
1—p"
1 _.n _
—nlgngo(l p)exp( )\l—p)

A
= exXp —ﬂ .

That is the proportion of time for which the population is 0 since

I . A
Jim — g]P’(Xk =0) = lim P(X, =0) = exp (—1_p) .
Exercise 8. (Metropolis—Hastings algorithm) Suppose that we have a distribution p
(called target distribution) on a countable space E. Then, for each x € E, let ¢, be a
distribution on E (called the proposal distribution) with g;(y) > 0 whenever g,(x) > 0, for
all y € E. The Metropolis-Hastings algorithm constructs a Markov chain (X,,),>0 as follows:

(i). Let Xo = z9 € E be random fixed state.

(ii). For X,, = z, choose a candidate y according to the proposal distribution ¢,. In other
words, with probability ¢,(y), the state y is the candidate state to which we may jump
at time n + 1. Once we have a candidate state, we will decide if we jump to it or stay
at = in the following way: Let U be a uniform random variable on [0, 1], the variable

X1 is defined as
. o (p()ay (@)
Xpi1 = {y iU < min (G505 1)

x otherwise.



Show that if (X,,),>0 is irreducible and aperiodic, then it is a reversible chain with respect
to its stationary distribution p.

Solution. Note that in general, irreducibility and aperiodicity are simple to show given the
proposal distribution. In particular, note that if there exist x,y such that the ratio %
is not always equal to 1 (which is generally the case), then there is a positive probability to
stay in state x, and the chain is therefore aperiodic.

It is easy to show that the transition probability from x to y with x # y is

p(y)gy(x) 1) '

Pay = ¢:(y) min (p(w)qz(y)’

With this, we have by the detailed balance (suppose that p(x)q.(y) > p(v)gy(z) wlog)

p(y)ay(x)
%) pelarty) _
qy() Y

and thus 7, = p(x) for all z € E. Moreover, by the previous exercise sheet, the chain is
reversible with respect to its stationary distribution.



