
Solutions 5 March 22 2021

Exercise 1. Consider the following transition matrix:

P =


1
2 0 0 0 1

2
0 1

2 0 1
2 0

0 0 1 0 0
0 1

4
1
4

1
4

1
4

1
2 0 0 0 1

2

 .

Determine which states are recurrent and which are transient.

Solution. First we can find the communicating classes: {1, 5}, {3}, {2, 4}. If we start in
the class {1, 5}, we will remain in this class forever, in other words this class is closed. We
obviously have that {3} is closed too. We know that all states in a finite closed communicating
class are recurrent. We then deduce that the states 1,3 and 5 are recurrent.
On the other hand, starting from 2 or 4, there’s a positive probability to go to state 3 and
hence never go back to 2 or 4. More precisely, writing T2 for the number of steps to hit 2, we
have

P(T2 =∞ | X0 = 2) ≥ P2,4P4,3 > 0.

We deduce (using a similar argument for 4) that states 2 and 4 are transient.

Exercise 2. A particle moves on the eight vertices of a cube in the following way: at each
step the particle is equally likely to move to each of the three adjacent vertices, independently
of its past motion. Let the vertex 1 be the initial vertex occupied by the particle. Calculate
each of the following quantities:

(a) the expected number of steps until the particle returns to 1,

(b) the expected number of visits to 8 until the first return to 1,

(c) the expected number of steps until the first visit to 8.
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Solution. (a) Let g(i) := E[T1 | X0 = i] where T1 is the first time to hit state 1 for the
chain (Xn)n≥0 that has values on the vertices {1, · · · , 8} of the cube. By symmetry, we
see easily that we have g(2) = g(4) = g(6) and g(3) = g(5) = g(7). Using this, we get:

g(1) = 1 + 1
3g(2) + 1

3g(4) + 1
3g(6) = 1 + g(2)

g(2) = 1 + 1
3g(3) + 1

3g(5) = 1 + 2
3g(3)

g(3) = 1 + 1
3g(2) + 1

3g(4) + 1
3g(8) = 1 + 2

3g(2) + 1
3g(8)

g(8) = 1 + g(3).

Solving this, we get that g(1) = 8.

(b) Let k(i) = E[V8 | X0 = i] for i = 1, · · · , 8 where V8 represents the number of visits to
state 8 before returning to 1. Using the symmetry of the cube, we have in this case that

k(1) = 1
3k(2) + 1

3k(4) + 1
3k(6) = k(2)

k(2) = 2
3k(3)

k(3) = 2
3k(2) + 1

3(1 + k(8))

k(8) = k(3).

Solving this, we get k(1) = 1.

(c) Let T8 be the first time to hit 8 and l(i) := E[T8 | X0 = i] for i = 1, · · · , 8. Then we have

l(1) = 1 + l(2)

l(2) = 1 + 1
3 l(1) + 2

3 l(3)

l(3) = 1 + 2
3 l(2).

Solving this, we get that l(1) = 10.

Exercise 3. (a) A transition matrix P defined on a state space E and a distribution λ have
the detailed balance property if

λjPji = λiPij , ∀i, j ∈ E.

Show that in this case, λ is a stationary distribution for P .

(b) Consider two urns each of which contains m balls; b of these 2m balls are black, and
the remaining 2m − b are white. We say that the system is at state i if the first urn
contains i black balls and m − i white balls while the second contains b − i black balls
and m− b+ i white balls. Each trial consists of choosing a ball at random from each urn
and exchanging the two. Let Xn be the state of the system after n exchanges have been
made. Xn is a Markov chain.

(1) Compute its transition probability.
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(2) Verify (using (a)) that the stationary distribution is given by

π(i) =
(b
i

)(2m−b
m−i

)(2m
m

) .

(3) Can you give a simple intuitive explanation why the formula in (2) gives the right
answer?

Solution. (a) We need to show that λP = λ. Using the detailed balance equations, we get
easily for all i ∈ I:

(λP )i =
∑
j∈I

λjpji =
∑
j∈I

λipij = λi.

(b) (1) Let p(i, i+ 1) be the probability to go from i black balls to i+ 1 in the first urn after
one step (for i ≤ b∧m). This events happens if and only if we choose a white ball in
the first urn and a black ball in the second one, so we have

p(i, i+ 1) = m− i
m
· b− i
m

.

Similarly, we have p(i, i− 1) = i
m ·

m−b+i
m . After one step, the number of black balls

can remain unchange i, or go to either i+ 1 or i− 1. Therefore

p(i, i) = 1− p(i, i+ 1)− p(i, i− 1) = i

m
· b− i
m

+ m− i
m
· m− b+ i

m
.

(2) A sufficient condition for π to be a stationary distribution is to verify the detailed
balance property:

π(i)p(i, i+ 1) = π(i+ 1)p(i+ 1, i), i ∈ [0, b ∧m]. (1)

If |i− j| > 1, the equalities π(i)p(i, j) = π(j)p(j, i) are clearly satisfied since p(i, j) =
p(j, i) = 0. By developping the left term in (1), we get(

2m
m

)
π(i)m2p(i, i+ 1) =

(
b

i

)(
2m− b
m− i

)
(m− i)(b− i)

= b!
i!(b− i− 1)! ·

(2m− b)!
(m− i− 1)!(m− b+ i)!

=
(

b

i+ 1

)
(i+ 1)

(
2m− b
m− i− 1

)
(m− b+ i+ 1)

= m2 ·
(

b

i+ 1

)(
2m− b
m− i− 1

)
i+ 1
m

m− b+ i+ 1
m

=
(

2m
m

)
π(i+ 1)m2p(i+ 1, i).

This shows that π verifies the detailed balance equations and so is the unique sta-
tionary distribution of the system.
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(3) We know that if X0 is distributed according to the stationary distribution π, then
Xn is also distributed according to π for all n ≥ 1. Suppose that we number the balls
from 1 to 2m and we arrange them randomly (by a permutation σ ∈ S2m) and we put
the first m balls in the first urn (this corresponds to the definition of π in (b)). By
exchanging two balls randomly chosen from the first and second urn, the new setting
of the balls is “as random as” before. In other words, if the 2m balls are arranged in
a uniform way at time t = 0, they will intuitively still be uniformly ordered after one
step of the process.

Exercise 4. Consider a Markov chain with state space S = {1, 2} and transition matrix(
1− a a
b 1− b

)
,

0 < a, b < 1. Use the Markov property to show that

P(Xn+1 = 1)− b

a+ b
= (1− a− b)

{
P(Xn = 1)− b

a+ b

}
,

and conclude that

P(Xn = 1) = b

a+ b
+ (1− a− b)n

{
P(X0 = 1)− b

a+ b

}
.

Further show that P(Xn = 1) converges exponentially fast to its limit distribution b/(a+ b).

Solution. By the law of total probabilities and using the given transition matrix, we have
for all n ≥ 0,

P(Xn+1 = 1) = P(Xn+1 = 1 | Xn = 1) · P(Xn = 1) + P(Xn+1 = 1 | Xn = 2) · P(Xn = 2)
= (1− a) · P(Xn = 1) + b · P(Xn = 2)
= b+ (1− a− b) · P(Xn = 1).

substracting b
a+b from both side, we obtain

P(Xn+1 = 1)− b

a+ b
= − b

a+ b
+b+(1−a−b) ·P(Xn = 1) = (1−a−b) ·

[
P(Xn = 1)− b

a+ b

]
.

Let us use induction for the second equation. It is clearly true for n = 0. Assume it is true
for n, we have

P(Xn+1 = 1) = b

a+ b
+ (1− a− b) ·

[
P(Xn = 1)− b

a+ b

]
= b

a+ b
+ (1− a− b) ·

(
(1− a− b)n

[
P(X0 = 1)− b

a+ b

])
= b

a+ b
+ (1− a− b)n+1[P(X0 = 1)− b

a+ b

]
.

We deduce that the equality is true for all n ≥ 0, and so P(Xn = 1) converges towards b
a+b

as n grows to infinity in the case where 0 < a+ b < 2.

Exercise 5. (Reversible Processes)
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a) Let P be an irreducible matrix with stationary distribution π. We assume that (Xn)0≤n≤N
is Markov(π, P ). The process Yn = XN−n, 0 ≤ n ≤ N is called the reverse process of
(Xn)0≤n≤N . Show that (Yn)0≤n≤N is Markov(π, P̂ ), where P̂ = (p̂ij) is given by

πj p̂ji = πipij , ∀ i, j,

and P̂ is also irreducible with stationary distribution π.

b) A transition matrix P is said to be doubly stochastic if its columns sum also to 1, that is∑
i pij = 1 for all j.

Show that the stationary distribution of an irreducible Markov chain on N states is the
uniform distribution (π(i) = 1

N , 1 ≤ i ≤ N) if and only if its transition matrix is doubly
stochastic.

c) We say that an irreducible Markov chain X ∼ Markov(λ, P ) is reversible if P̂ = P (in that
case λ should be stationary). Find an irreducible chain on E = {1, 2, 3} with a stationary
distribution but not reversible.

Solution. a) We first verify that P̂ is indeed a stochastic matrix:∑
i∈I

p̂ji = 1
πj

∑
i∈I

πipij = 1,

where I is the set of states, and where we used that π is an invariant distribution under
P . We verify now that π is also a stationary distribution of P̂ :∑

j∈I
πj p̂ji =

∑
j∈I

πipij = πi.

We have by the Markov property

P(Y0 = i0, Y1 = i1, · · · , YN = iN ) = P(X0 = iN , X1 = iN−1, · · · , XN = i0)
= πiNpiN iN−1 · · · pi1i0 = πi0 p̂i0i1 · · · p̂iN−1iN .

This shows that (Yn)0≤n≤N is Markov(π, P̂ ).
Finally, since P is irreducible, for all pair of states i, j ∈ I, there exists a pair of states
i0 = i, i1, · · · in = j with pi0i1 · · · pin−1in > 0. We finally get:

p̂inin−1 · · · p̂i1i0 = πi0pi0i1 · · · pin−1in/πin > 0,

we deduce that P̂ is irreducible.

b) Suppose first that π = ( 1
N , · · · ,

1
N ) is the stationary distribution corresponding to P . Then

we have, for 1 ≤ i, j ≤ N
1
N

= π(j) =
∑
i

π(i)pij = 1
N

∑
i

pij =⇒
∑
i

pij = 1.

Conversely, suppose that P is doubly stochastic. To show that the uniform distribution
λ(i) = 1

N is the stationary distribution in this case, we verify that λ verifies∑
i

λ(i)pij = 1
N
×
∑
i

pij = 1
N

= λ(j), 1 ≤ j ≤ N.

Since the stationary distribution π is unique, we deduce that π ≡ λ, and so the uniform
distribution is indeed the stationary distribution of the system in this case.
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c) Consider the Markov chain on E = {1, 2, 3} with transition matrix P given by

P =

0 2
3

1
3

1
3 0 2

3
2
3

1
3 0

 .
By part b), we have that π = (1

3 ,
1
3 ,

1
3) is the stationary distribution corresponding to P .

We obtain in this case that P̂ = P T . As P is not symmetric, P̂ 6= P and so the chain is
not reversible.

Exercise 6. Consider two boxes filled with gas molecules and joined by a small gap allowing
them to pass from one box to the other. Assume that in total N molecules are in this
configuration. We model the system so that at each time only one (randomly chosen) molecule
is able to move from one box to the other.

(1) Show that the number of molecules in a box evolves according to a Markov process.

(2) Give the transition probabilities.

(3) What is the stationary distribution (detailed balance equations)?

Figure 1: Configuration of the problem.

Solution. (1-2) One update of the system consists in a transition of a randomly selected
particle moving from one box to the other. If we denote by Xn the number of molecules
in the box A, the possible states are S = {0, 1, . . . N}. The transitions of the system
are given by pr,r+1 = 1− r

N and pr,r−1 = r
N .

(3) We can guess that the equilibrium should be πr = 2−N
(N
r

)
, it is then sufficient to verify

that ∀r
πr =

∑
pvrπv = πr−1pr−1,r + πr+1pr+1,r.

Otherwise we can start from detailed balance equations 0 6 r 6 N :

πr−1pr−1,r = πrpr,r−1

⇔ πr−1
N − r + 1

N
= πr

r

N

⇒ πr = N − r + 1
r

πr−1

⇒ πr = N !
r!(N − r)!π0.
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Then using that π should be a probability, we find π0 = 1
2N . We finally get that:

πr = 1
2N

(
N

r

)
.

Exercise 7. Consider the aging chain on {0, 1, 2, · · · } in which for any n ≥ 0 the individual
gets one day older from n to n + 1 with probability pn but dies and returns to age 0 with
probability 1− pn. Find conditions that guarantee that

(a) 0 is recurrent,

(b) 0 is positive recurrent.

(c) Find the stationary distribution of the chain.

Solution. (a) Let T0 = min{n ≥ 1 | Xn = 0}. By definition, the state 0 is recurrent if and
only if P0(T0 <∞) = 1. We have in this case

P0(T0 <∞) = 1− P0(T0 =∞) = 1−
∞∏
i=0

pi.

Therefore, 0 is recurrent if and only if
∏∞
i=0 pi = 0.

(b) By definition, 0 is positive recurrent if and only if E0[T0] <∞. Computing this expecta-
tion, we get

E0[T0] = 1 · (1− p0) + 2p0(1− p1) + 3p0p1(1− p2) + · · ·

=
∞∑
k=0

(k + 1)p0 · · · pk−1 · (1− pk)

= 1− p0 + 2p0 − 2p0p1 + 3p0p1 − 3p0p1p2 + · · ·
= 1 + p0 + p0p1 + p0p1p2 + · · ·

Hence, E0[T0] <∞ if and only if
∑∞
k=0

∏k
i=0 pi <∞.

(c) We suppose that the chain is positive recurrent. It is straightforward to see that it is
irreducible. Then it has a unique stationary distribution π that satisfies, for all x ≥ 0,{∑

y≥0 p(y, x)π(y) = π(x),∑
y≥0 π(y) = 1.

We get π(k + 1) = pkπ(k) for all k ≥ 0, and so, by writing π(0) = c, we get π(k + 1) =∏k
i=0 pic. Since the sum over all the components of π is 1, we get c = (1+p0+p0p1+· · · )−1.

Notice that π(0) > 0 by (b).

Exercise 8. (Random walk on a graph)
An undirected graph G is a countable collection of states (that we call vertices) along with
some edges connecting them. The degree di of a vertex i is the number of edges incident to
i. We suppose the graph to be locally finite (i.e., each edge is incident to a finite number of
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edges). We say that a Markov chain on the state space E = G is a random walk on the graph
if the transition probabilities are given by

pi,j =
{

1/di if (i, j) is an edge,
0 otherwise,

for i, j ∈ G.

a) We assume that G is connected (implying that P is irreducible) and that
∑
i di <∞. Find

the stationary distribution of the random walk on G.
Hint: Assume that the random walk is reversible and find a stationary distribution veri-
fying the detailed balance equations. Explain why P is reversible.

b) We assume now that the graph is a chessboard, i.e., the vertices are G = {1, . . . , 8}2 and
the edges are the possible moves of a King. We assume that the King starts its random
walk in one of the four corners of the chessboard c ∈ G. Compute the mean return time
to the initial state Ec(Tc) of the King. Compute the same quantity for a Knight instead
of a King.

Solution. a) We start from the detailed balance equations:

πiPij = πjPji, ∀i, j ∈ G. (2)

This is equivalent to
πi ·

1{i∼j}
di

= πj ·
1{j∼i}
dj

,

where {i ∼ j} indicate the event where i and j are connected by an edge. If i ∼ j, we have
πi
di

= πj
dj
. (3)

Otherwise, since the graph is connected, there exists a path k0 = i ∼ k1 ∼ · · · ∼ km = j
joining i and j. For all couple of points kr, kr+1 the equality (3) is verified (for πkr et πkr+1).
We deduce then that (3) is verified for all i and j of the graph. Using that

∑
i∈G πi = 1,

we get easily that πi = di∑
j∈G dj

.

b) By a theorem seen in the course, we know that Ec[Tc] = 1
πc

=
∑

j∈G dj

dc
. It remains to find

the degrees of all the vertices of the graph. If we are in one of the four corners, the degree
(= the number of possible moves of the King) is equal to 3. If we are on one of the 24
boxes at the border of the chessboard and which is not one of the 4 corners, the degree
of one of the box is 5. In all remaining states (for the 64-4-24=36 boxes remaining), the
degree is 8. We get then:

Ec[Tc] =
∑
j∈G dj

dc
= 4 · 3 + 24 · 5 + 8 · 36

3 = 140.

Starting from a corner c, we need in average 140 moves of the King to come back to c.
The random walk of the Knight: counting the number of possible moves of the Knight
starting from one of the 64 vertices of the graph, one gets the following configuration for
the degrees:
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2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2

Starting from one of the corners c, the expected time before return to c is given by:

Ec[Tc] = 1
πc

=
∑
j∈G dj

dc
= 2 · 4 + 3 · 8 + 4 · 20 + 16 · 6 + 16 · 8

2 = 168.
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