
Solution 4 March 15, 2021

Exercise 1 (Random walk). Let (Xn)n≥0 be a one-dimensional random walk on the state
space Z defined by the following transition probabilities:

Pxy =
{
p, y = x+ 1,
q, y = x− 1,

(1) Prove that the random walk is recurrent if an only if p = q.
Hint: Note that p2n+1

00 = 0 for all n ∈ N, and find the probability p2n
00 . You can then use

Stirling’s approximation to n!

n! ∼
√

2πn(n/e)n, n→∞.

(2) In the transient case p 6= q, find the limit limn→∞Xn.

Solution. (1) This Markov chain is irreducible. Suppose we start at 0, then p(2n+1)
00 = 0 for

all n. Any given sequence of 2n steps from 0 to 0 has probability pnqn and the number
of sequences is the number of ways of choosing n steps up from 2n steps is. Thus

p
(2n)
00 =

(
2n
n

)
pnqn.

We will use Stirling’s approximation to n!

n! ∼
√

2πn(n/e)n, n→∞.

With this we obtain
p

(2n)
00 = (2n)!

(n!)2 (pq)n ∼ C(4pq)n

√
n

.

In the symmetric case p = q = 1/2, 4pq = 1 and so

∞∑
n=0

p
(2n)
00 ≈ C

∞∑
n=0

1√
n

=∞,

showing that the random walk is recurrent.
If p 6= q, then 4pq = r < 1 and thus

∞∑
n=0

p
(2n)
00 ≈ C

∞∑
n=0

rn

√
n
<∞,

where C > 0 is a constant. Thus the random walk is transient.

(2) The strong law of large numbers gives us that depending on the sign of p− q

lim
n→∞

Xn
a.s.= sgn(p− q)∞,

(please refer to the solution of the next exercice).
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Exercise 2 (Birth and Death chain). Let us consider a Markov chain (Xn)n≥0 on the
state space N defined by the following transition probabilities:

p(x, y) =


p if x > 0, y = x+ 1,
q if x > 0, y = x− 1,
1 if x = 0, y = 1.

Prove that:

(1) when p ≤ q the chain is recurrent.
Hint: study the probability u(k) = Pk (Xn 6= 0,∀n ∈ N) by showing that

u(k + 1)− u(k) = q

p
(u(k)− u(k − 1)) .

(2) when q < p the chain is transient.
Hint: consider writing the chain as Xn =

∑n
i=1 Yi1(Xi−1 > 0) + |Yi|1(Xi−1 = 0) where

Yi
i.i.d.∼

{
+1 with prob p

−1 with prob q
,

and compare with the biased random walk
∑n

i=1 Yi.

Solution. (1) in the case p ≤ q, we define the probability u(k) = Pk (Xn 6= 0, ∀n ∈ N).
The chain is recurrent if and only if u(k) = 0 for all k ∈ N. Clearly u(0) = 0, and
moreover by the Markov property

u(k) = qu(k − 1) + pu(k + 1),

which gives after rearranging

u(k + 1)− u(k) = q

p
(u(k)− u(k − 1)) =

(
q

p

)k

(u(1)− u(0)) =
(
q

p

)k

u(1).

Consequently,

u(k + 1) = (u(k + 1)− u(k)) + (u(k)− u(k − 1)) + · · ·+ (u(1)− u(0)) = u(1)
k∑

j=0

(
q

p

)j

.

Thus, if the sum diverges, i.e., q ≥ p, then u(1) = 0 = u(k), for all k ∈ N, since the u(k)
must be probabilities.

(2) in the case q < p, we will use a coupling argument. Let us consider a sequence of
independent and identically distributed random variables (Yn)n≥1 such that

Yi
i.i.d.∼

{
+1 with prob p

−1 with prob q
,
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This sequence will serve as a common source of randomness to couple the random walk
on Z with the birth and death chain on N. Indeed, if we consider the two processes:

Xn =
n∑

i=1
Yi1(Xi−1 > 0) + |Yi|1(Xi−1 = 0),

Zn =
n∑

i=1
Yi,

we remark that they both evolve according to the common sequence (Yn)n≥1 and we
can check that Xn is exactly the birth and death chain on N and Zn the biased random
walk on Z. We can now consider their asymptotic behaviour together. We have by
construction the pathwise inequality

Zn(ω) ≤ Xn(ω), for all n and ω ∈ E.

Then, since the expectation of the Yi’s is p− q > 0, we can deduce by the law of large
numbers that

1
n
Zn = 1

n

n∑
i=1

Yi
a.s.→ p− q > 0.

implying that Zn
a.s.→ +∞ and finally Xn

a.s.→ +∞. We thus conclude that the birth and
death chain is transient in this setting.

Exercise 3. Let Y1, Y2, · · · be independent identically distributed random variables with
P(Y1 = 1) = P(Y1 = −1) = 1

2 and set X0 = 1 and Xn = X0 + Y1 + · · ·+ Yn for n ≥ 1. Define
the stopping time

H0 = inf{n ≥ 0 | Xn = 0}.

(a) Find the probability generating function φ(s) = E[sH0 ].

(b) Suppose that the distribution of the Y ′i s is changed to P(Y1 = 2) = P(Y1 = −1) = 1
2 .

Show that φ now satisfies
sφ(s)3 − 2φ(s) + s = 0.

Solution. (a) Suppose that we start at 2 (so X0 = 2 instead of 1) and write H1 for the first
time that Xn = 1. By the strong Markov property and conditioning on H1 < ∞ and
under P2, we have that H0 = H1 + H̃0 where H̃0 is the time needed to reach 0 once we
have reached 1 (at time H1), and H̃0 is independent of H1 and is distributed as H1. So
we get

E2[sH0 ] = E2[sH1 | H1 <∞]E2[sH̃0 | H1 <∞]P2(H1 <∞)

= E2[sH11H1<∞]E2[sH̃0 | H1 <∞]
= E2[sH1 ]2 = φ(s)2.

Returning to our original process Xn = 1 + Y1 + · · ·Yn, and conditioning on X1 = 2, we
have that H0 = 1 + H̄0 where H̄0 is the time taken, starting from 2 to reach 0, and so is
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distributed as H0 under P2. So we get

φ(s) = E1[sH0 ] = 1
2 E1[sH0 | X1 = 2] + 1

2 E1[sH0 | X1 = 0]

= 1
2 E1[s1+H̄0 | X1 = 2] + 1

2 E1[sH0 | X1 = 0]

= 1
2sE2[sH0 ] + 1

2s

= 1
2sφ(s)2 + 1

2s.

Solving this, we get

φ(s) = 1±
√

1− s2

s
.

Since φ(0) ≤ 1 and φ is continuous, we get that φ(s) = 1−
√

1−s2

s for s ∈]0, 1[.

(b) We use a similar argument as before by applying twice the strong Markov property to
get:

E3[sH0 ] = φ(s)3.

On the other hand, conditioning on X1 = 3 (which happens with probability 1
2), H0 =

1 + H ′0 where H ′0 is the time needed strating from 3 to reach 0 and is distributed as H0
under P3. So we get

φ(s) = E1[sH0 ] = 1
2 E1[sH0 | X1 = 3] + 1

2 E1[sH0 | X1 = 0]

= 1
2 E1[s1+H′

0 | X1 = 3] + 1
2 E1[sH0 | X1 = 0]

= 1
2sE3[sH0 ] + 1

2s

= 1
2sφ(s)3 + 1

2s.

Exercise 4. (Gambler’s ruin) Assume that a gambler is making bets for 1 dollar on fair
coin flips, and that she will abandon the game when her fortune falls to 0 or reaches n dollar.
Let Xt be the Markov chain on {0, . . . , n} describing the gambler’s fortune at time t, that
is, P(Xt+1 = k + 1 | Xt = k) = P(Xt+1 = k − 1 | Xt = k) = 1/2, k = 1, . . . , n − 1, and
P(Xt+1 = 0 | Xt = 0) = P(Xt+1 = n | Xt = n) = 1. Let T be the time required to be
absorbed at one of 0 or n. Assume that X0 = k, where 0 ≤ k ≤ n.

(i). Find the probability Pk(XT = n) for the gambler to reach n dollars with initial capital k.

(ii). Compute Ek[T ], the expected time to reach n or 0 starting from k.

Solution. (i). Let pk be the probability that the gambler reaches a fortune of n before ruin,
given that she starts with k dollars. We solve simultaneously for p0, p1, · · · , pn. Clearly
p0 = 0 and pn = 1. By the total probability formula, we have

pk = 1
2pk−1 + 1

2pk+1, 1 ≤ k ≤ n− 1. (1)
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It’s easy to solve this system to obtain pk = k
n for 0 ≤ k ≤ n (by defining ∆k := pk−pk−1

similarly to the next part). Another method to solve this recursive equation is by using
its characteristic equation:

x = 1
2 + 1

2x
2 ⇐⇒ x2 − 2x+ 1 = 0. (2)

If we have, in general, two distinct roots x1, x2 for this equation, then the solution of
the recursive equation would be of the form

pk = Axk
1 +Bxk

2,

where A and B are constants.
But in our case, the equation (2) has one root x0 = 1 with multiplicity 2. In this case,
the solution for (1) is given by

pk = xk
0(Ak +B) = Ak +B,

where A and B are constants. Since p0=0 and pn = 1, we get:

pk = k

n
, 0 ≤ k ≤ n.

(ii). We write fk for the expected time Ek[T ] to be absorbed, starting at position k. Clearly,
f0 = fn = 0. For 1 ≤ k ≤ n− 1, we have, conditioning on the first step

fk = 1
2(1 + fk+1) + 1

2(1 + fk−1).

To solve this system, we let ∆k = fk − fk−1. It is easy to verify that ∆k = ∆k+1 + 2.
Using that

∑n
k=1 ∆k = 0, we obtain

∆k = n− 1− 2(k − 1), =⇒ fk = k(n− k), 0 ≤ k ≤ n.
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