
Solutions 3 March 8, 2021

Exercise 1. Let (Xn)n≥0 be a Markov chain determined by the following diagram: Show
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that:
(1) Starting from 0, the probability of hitting 6 is 1

4 .

(2) Starting from 1, the probability of hitting 3 is 1.

(3) Starting from 1, it takes on average three steps to hit 3.
Solution. (1) According to the diagram, the probability starting from 0 to hit 6 is the same

as the probability the we hit 4 (since if we hit 1, we will never hit 6, and if we hit 4, we
are sure to hit 6). So this probability is given by

P(0→ 4) + P(0→ 0→ 4) + P(0→ 0→ 0→ 4) + · · · = 1
5(1 + 1

5 + 1
52 + 1

53 + · · · ) = 1
4 .

(2) Let h(i) = P(hitting 3 | X0 = i) for i = 1, 2, 3. Then we have

h(1) = h(2), h(2) = 1
3h(1) + 2

3 × 1.

So we get that h(1) = h(2) = 1.

(3) Let T be the first time that the chain hits state 3 and we write g(i) = E[T | X0 = i] for
i = 1, 2, 3. We have that g(3) = 0 and so we get

g(1) = 1 + g(2), g(2) = 1 + 1
3g(1) =⇒ g(1) = 3.

Exercise 2. A simple game of “snakes and ladders” is played on a board of nine squares. At
each turn, a player tosses a fair coin and advances one or two places according to whether
the coin lands heads or tails. If you land at the foot of a ladder, you climb to the top, but if
you land at the head of a snake you slide down to the tail.
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(1) How many turns on average does it take to complete the game?

(2) What’s the probability that a player who has reached the middle square will complete
the game without slipping back to square 1?

Solution. (1) Let Xn be our position on the board after n moves and let g(i) = E[T | X0 = i]
where T is the first time that we hit state 9. According to the board and the rules of the
game, we have the following equalities:

g(3) = g(5), g(1) = g(6), g(2) = g(7), g(4) = g(8), g(9) = 0.

Using this, we get the following system of equations:

g(1) = 1 + 1
2g(2) + 1

2g(3),

g(2) = g(7) = 1 + 1
2g(4),

g(3) = g(5) = 1 + 1
2g(1) + 1

2g(2),

g(4) = 1 + 1
2g(3) + 1

2g(1).

From this, we get that g(1) = 7.

(2) Let h(i) = P(hitting 9 before 1 | X0 = i) for i ≤ 9. Then we have h(9) = 1, h(1) = 0,
h(8) = h(4), h(6) = h(1) = 0 and

h(5) = 1
2h(7), h(7) = 1

2h(4) + 1
2 , h(4) = 1

2h(5).

Solving this system of equations, we get that h(5) = 2
7 .

Exercise 3. Let (Xi)i≥0 be a Bernoulli process, which means that the Xi’s are i.i.d. with a
Bernoulli law of parameter p.

(a) Consider the process (Nn)n≥0 of the number of successes: Nn is the number of successes
of the Bernoulli process until time n included.
Show that this process is a Markov chain, compute its transition matrix, draw its corre-
sponding graph and classify the states.

(b) Consider the process (Tn)n≥0 of the moment of successes: Tn is the time when the nth
success happens in the Bernoulli process.
Show that this process is a Markov chain, compute its transition matrix, draw its corre-
sponding graph and classify the states.

Solution. (a) For any integer n, we can write Nn+1 = Nn + X where X ∼ Bernoulli(p) is
independent of N1, · · · , Nn. Thus, knowing Nn = k for some integer k, Nn+1 = k + X
is independent of N1, · · · , Nn−1. This shows that (Nn)n≥0 is a Markov chain. For the
homogeneity, it is easy to verify that, for all n ∈ N,

P(Nn+1 = j | Nn = i) =


p if j = i+ 1,
q if i = j,

0 otherwise.
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The transition matrix corresponding to states {0, 1, 2, ....} is then given by

P =


q p 0 0 0 · · ·
0 q p 0 0 · · ·
0 0 q p 0 · · ·
...

... . . . . . . . . . . . .

 .
The associated graph of this Markov chain is given by
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All states are transient. Indeed, if we go from i to i + 1, we are sure that we are not
returning to i. Thus, the probability, starting from i, to never return to i is strictly
positive.

(b) Since the Xi’s are i.i.d, we have for all integers n

Tn+1 = Tn + S,

where S is the first time of a sucess of the Bernoulli process (S is independent of all the
Ti, i ≤ n). Hence, conditioning on Tn, Tn+1 is independent of the Ti’s for i ≤ n − 1. It
is easy to verify the homogeneity of the Markov chain:

P(Tn+1 = j | Tn = i) =
{

0 if j ≤ i
qj−i−1p otherwise.

The associated transition matrix is then given by

Q =


0 p qp q2p q3p · · ·
0 0 p qp q2p · · ·
0 0 0 p qp · · ·
0 0 0 0 p · · ·
...

...
...

...
... . . .



1 2 3 4 · · ·p

qp

q2p

p

qp

p

Similarly to the argument of the first part, it’s easy to see that all states are transient.

Exercise 4. Let (Xn)n≥0 be a Markov chain determined by the following diagram:
Compute for all i = 1, 2, 3, 4 the absorption probability

hi = Pi{∃n ≥ 0 : Xn = 4},

i.e. the probability that the chain is absorbed in state 4 knowing that the chain starts at
X0 = i. Then compute the mean absorption time knowing that the chain starts in state i

ki = Ei[inf(n ≥ 0 : Xn ∈ {1, 4})].
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Proof. Note that the states 1 and 4 are absorbing. Clearly h4 = 1, moreover as 1 is absorbing,
we get h1 = 0. Suppose that the chain is starting at 2 and consider the chain after a transition.
The process jumps to 1 with probability 1/2 and to 3 with probability 1/2, then

h2 = 1
2h1 + 1

2h3.

By a similar argument, we obtain starting from 3

h3 = 1
2h2 + 1

2h4.

The problem is equivalent to solving the following system of equations
h1 = 0,
h2 = 0.5h1 + 0.5h3,

h3 = 0.5h2 + 0.5h4,

h4 = 1.

implying h2 = 1/3 and h3 = 2/3.
Let us compute now the mean times spent before absorption. Clearly, k1 = 0 et k4 = 0. By
a similar argument as before, we have the equations

k2 = 1 + 1
2k1 + 1

2k3, k3 = 1 + 1
2k2 + 1

2k4,

where the term 1 is here since we count the first jump. We finally get k2 = 2 and k3 = 2.

Exercise 5. Let X0 be a random variable having values in a countable set I. Let Y1, Y2, . . . be
a sequence of independent variables, uniformly distributed on [0, 1]. Considering any function

G : I × [0, 1]→ I,

we define inductively

Xn+1 = G(Xn, Yn+1).

(1) Show that (Xn)n>0 is a Markov chain and write its transition matrix P as a function of
G.

(2) Can all Markov chains be defined this way?

(3) How do you simulate a Markov chain on a computer?
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Solution. (1) Writing X = (X0, . . . , Xn), we have

P
(
Xn+1 = j|Xn = i,X

)
=

= P
(
(Xn, Yn+1) ∈ G−1 ({j}) |Xn = i,X

)
=

= P
(
(i, Yn+1) ∈ {i} × [0, 1] ∩G−1 ({j}) |Xn, X

)
=

= P
(
Yn+1 ∈ π

(
{i} × [0, 1] ∩G−1 ({j})

))
,

by the independence, where π is the projection operator defined by π (x, y) = y from
I × [0, 1] to [0, 1].

(2) Yes. Given (pi,j)i,j∈I , we choose an order (random) j1, j2, . . . of the elements of I (makes
sense, since I is countable) and we define:

G(i, t) =



j1, if 0 6 t 6 pi,j1 ,

j2, if pi,j1 6 t 6 pi,j1 + pi,j2 ,

· · ·
jr, if

∑r−1
n=1 pi,jn 6 t 6

∑r
n=1 pi,jn ,

· · ·

Hence

P (Xn+1 = jr|Xn = i) =
r∑

n=1
pi,jn −

r−1∑
n=1

pi,jn = pi,jr ,

since Y1, Y2, · · · are uniform.

(3) To generate a Markov chain (λ, P ), λ being a law on I, we take a sequence Y1, Y2, . . .
of uniform random variables on [0, 1]. We define:

X0 = jr if
r−1∑
n=1

λ(jn) 6 Y1 6
r∑

n=1
λ(jn),

then,
Xn+1 = G (Xn, Yn+1) n = 0, 1, . . . .
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