

Exercise 1. Let X and Y be two independent random variables following a Poisson distribution with respective parameters λ and μ .

- (1) Find the law of $X + Y$.
- (2) Find the conditional law of X knowing $X + Y = n$.

Solution. Remark: The symbol $\perp\!\!\!\perp$ means independence.

(1)

$$\begin{aligned}
 \mathbb{P}(X + Y = n) &= \sum_{m=0}^{\infty} \mathbb{P}(X + Y = n, Y = m) \\
 &= \sum_{m=0}^n \mathbb{P}(X = n - m, Y = m) \\
 &= \sum_{m=0}^n \mathbb{P}(X = n - m) \mathbb{P}(Y = m) \quad (X \perp\!\!\!\perp Y) \\
 &= \sum_{m=0}^n e^{-\lambda} \frac{\lambda^{n-m}}{(n-m)!} e^{-\mu} \frac{\mu^m}{m!} \\
 &= e^{-(\lambda+\mu)} \frac{1}{n!} \sum_{m=0}^n \frac{n!}{m! (n-m)!} \lambda^{n-m} \mu^m \\
 &= e^{-(\lambda+\mu)} \frac{(\lambda + \mu)^n}{n!},
 \end{aligned}$$

using the Newton binomial formula. So $X + Y \sim \text{Poisson}(\lambda + \mu)$.

(2)

$$\begin{aligned}
 \mathbb{P}(X = k \mid X + Y = n) &= \frac{\mathbb{P}(\{X = k\} \cap \{X + Y = n\})}{\mathbb{P}(X + Y = n)} \quad (\text{for } k \leq n, 0 \text{ otherwise}) \\
 &= \frac{\mathbb{P}(X + Y = n \mid X = k) \mathbb{P}(X = k)}{\mathbb{P}(X + Y = n)} \\
 &= \frac{\mathbb{P}(Y = n - k) \mathbb{P}(X = k)}{\mathbb{P}(X + Y = n)} \quad (X + Y \sim \text{Poisson}(\lambda + \mu)) \\
 &= \binom{n}{k} \frac{\lambda^k}{(\lambda + \mu)^k} \frac{\mu^{n-k}}{(\lambda + \mu)^{n-k}}.
 \end{aligned}$$

So

$$\mathbb{P}(X = k \mid X + Y = n) = \binom{n}{k} \left(\frac{\lambda}{\lambda + \mu} \right)^k \left(\frac{\mu}{\lambda + \mu} \right)^{n-k} \quad k = 0, 1, 2, \dots, n.$$

Which implies that $X \mid \{X + Y = n\} \sim \text{Bin}(n, p)$ where $p = \frac{\lambda}{\lambda + \mu}$.

Exercise 2. Let X and Y be two independent exponential random variables with respective parameters λ and μ . What is the probability that $Y \leq X$?

Solution. By direct computation we obtain

$$\begin{aligned}
\mathbb{P}(Y \leq X) &= \int_0^\infty \mathbb{P}(Y \leq X \mid X = x) f_X(x) dx \\
&= \int_0^\infty \mathbb{P}(Y \leq x) f_X(x) dx \quad (X \perp\!\!\!\perp Y) \\
&= \int_0^\infty F_Y(x) f_X(x) dx \\
&= \int_0^\infty (1 - e^{-\mu x}) \lambda e^{-\lambda x} dx \\
&= 1 - \int_0^\infty \lambda e^{-(\lambda+\mu)x} dx \\
&= \frac{\mu}{\mu + \lambda}.
\end{aligned}$$

Exercise 3. Let X_1, X_2, \dots, X_n be independent exponential random variables with parameters $\mu_1, \mu_2, \dots, \mu_n$. Show that the random variable $Z = \min\{X_1, X_2, \dots, X_n\}$ is again exponentially distributed and find its parameter.

Solution.

$$\begin{aligned}
\mathbb{P}(Z > x) &= \mathbb{P}(\{X_1 > x\} \cap \{X_2 > x\} \cap \dots \cap \{X_n > x\}) \\
&= \prod_{i=1}^n \mathbb{P}(X_i > x), \quad (X_i \perp\!\!\!\perp X_j \text{ for } i \neq j) \\
&= \prod_{i=1}^n e^{-\mu_i x} \\
&= e^{-\sum_{i=1}^n \mu_i x} \\
\Rightarrow F_Z(x) &= 1 - e^{-\lambda x} \quad \left(\lambda = \sum_i^n \mu_i \right) \\
\Rightarrow Z &\sim \text{Exp}(\lambda).
\end{aligned}$$

Exercise 4. (Memorylessness) A random variable X is called *memorylessness* if $\forall s, t \geq 0$

$$\mathbb{P}\{X \geq t + s \mid X \geq s\} = \mathbb{P}\{X \geq t\}.$$

- (1) Show that an exponential random variable has this property.
- (2) Show that there is no other continuous random variable having this property.

Solution. (1) If $X \sim \text{Exp}(\lambda)$:

$$\begin{aligned}
\mathbb{P}(X \geq t + s \mid X \geq s) &= \frac{\mathbb{P}(\{X \geq t + s\} \cap \{X \geq s\})}{\mathbb{P}(X \geq s)} \\
&= \frac{\mathbb{P}(X \geq t + s)}{\mathbb{P}(X \geq s)} \quad (s, t \geq 0) \\
&= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} \\
&= e^{-\lambda t} \\
&= \mathbb{P}(X \geq t).
\end{aligned}$$

(2) In order to show that exponential random variables are the only memoryless continuous random variables, we have to show that $\bar{F}(x) = \mathbb{P}(X \geq x)$ uniquely verifies the relation $\bar{F}(x+y) = \bar{F}(x)\bar{F}(y)$. Indeed

$$\mathbb{P}(X \geq x+y) = \mathbb{P}(X \geq x+y \mid X \geq x)\mathbb{P}(X \geq x) = \mathbb{P}(X \geq y)\mathbb{P}(X \geq x)$$

which implies

$$\begin{aligned} \bar{F}(0) &= \bar{F}(0+0) = \bar{F}(0)^2 \Rightarrow \bar{F}(0) = 0 \text{ or } 1, \\ \text{if } \bar{F}(0) &= 0 : \bar{F}(x) = 0 \ \forall x > 0 \text{ since } \bar{F}(x) = \bar{F}(x+0) = \bar{F}(x)\bar{F}(0) = 0, \\ &\Rightarrow \bar{F}(0) = 1, \\ \bar{F}(1) &= \bar{F}(1/2+1/2) = \bar{F}(1/2)^2 \geq 0 \Rightarrow \bar{F}(1) = \alpha \geq 0, \\ \bar{F}(n) &= \bar{F}(1+1+\dots+1) = \bar{F}(1)^n = \alpha^n, \quad (n \in \mathbb{N}), \\ \bar{F}(1) &= \bar{F}(1/n+\dots+1/n) = \bar{F}(1/n)^n \Rightarrow \bar{F}(1/n) = \alpha^{1/n}, \quad (n \in \mathbb{N}^*), \\ &\Rightarrow \bar{F}(m/n) = \alpha^{m/n}. \end{aligned}$$

Then by the continuity of the random variable and the density of rationals in the reals we have $\bar{F}(x) = \alpha^x \ \forall x \geq 0$. As $\bar{F}(x)$ is a probability, we find that $f(x) = e^{-\lambda x}$ for $\lambda > 0$. Note that we have to remove the case where $\alpha = 0$, because otherwise the density would be a Dirac point mass in zero ($\mathbb{P}(X = 0) = 1$), which is obviously not continuous. Moreover, note that we could also have studied $\log \bar{F}(x)$ to deduce the result.

Exercise 5. Let the distance driven until failure of a new car battery be modeled by an exponential distribution with mean value 20000 kilometers. Somebody wants to go on a 10000 kilometers trip. We know that the car was used during k kilometers before (distance driven without failure since the last battery change).

- (1) What is the probability that it will arrive at destination without battery failure?
- (2) How does this probability change if we do not assume an exponential distribution?

Solution. (1) X denotes the life of the battery which is $\sim \text{Exp}\left(\frac{1}{20000}\right)$. We compute

$$\begin{aligned} &\mathbb{P}(X \geq 10000 + k \mid X \geq k) \\ &= \mathbb{P}(X \geq 10000) \quad (\text{memorylessness}) \\ &= 1 - F_X(10000) \\ &= e^{-\frac{10000}{20000}} \\ &= \frac{1}{\sqrt{e}}. \end{aligned}$$

(2) In this case we need to compute

$$\begin{aligned}
& \mathbb{P}(X \geq 10000 + k \mid X \geq k) \\
&= \frac{\mathbb{P}(\{X \geq 10000 + k\} \cap \{X \geq k\})}{\mathbb{P}(X \geq k)} \\
&= \frac{\mathbb{P}(X \geq 10000 + k)}{\mathbb{P}(X \geq k)} \\
&= \frac{1 - F_X(10000 + k)}{1 - F_X(k)}.
\end{aligned}$$

where F_X is the cumulative distribution function of X .

Remark: In point (1), we did not need to know k to compute this probability (thanks to the memorylessness). Here, the number k should be known to finalize the computations.

Exercise 6. Let X be a discrete random variable such that

$$\mathbb{P}\{X = n\} = \frac{2}{3^n} \quad \forall n \in \mathbb{N} \setminus \{0\}.$$

We define the random variable Y as follow: knowing $X = n$, Y takes values n or $n + 1$ with equal probability.

- (1) Compute $\mathbb{E}(X)$.
- (2) Compute $\mathbb{E}(Y|X = n)$ and deduce $\mathbb{E}(Y|X)$, then $\mathbb{E}(Y)$.
- (3) Compute the joint law of (X, Y) .
- (4) Compute the marginal law of Y .
- (5) Compute $\mathbb{E}(X|Y = i)$ ($\forall i \in \mathbb{N} \setminus \{0\}$) and deduce $\mathbb{E}(X|Y)$.
- (6) Compute the Covariance of X and Y .

Solution. (1) Using the derivative of the geometrical series we get

$$\mathbb{E}(X) = \sum_{n=1}^{\infty} n \cdot \frac{2}{3^n} = \frac{2}{3} \sum_{n=1}^{\infty} n \left(\frac{1}{3}\right)^{n-1} = \frac{3}{2}.$$

$$\begin{aligned}
(2) \quad & \mathbb{E}(Y \mid X = n) = n/2 + (n + 1)/2 = n + 1/2,
\end{aligned}$$

so

$$\mathbb{E}(Y \mid X) = X + 1/2,$$

implying

$$\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y \mid X)) = 3/2 + 1/2 = 2.$$

- (3)
 - $\mathbb{P}(X = n, Y = m) = 0$ if $m \neq n$ and $m \neq n + 1$.
 - $\mathbb{P}(X = n, Y = n) = \mathbb{P}(Y = n \mid X = n) \mathbb{P}(X = n) = \frac{1}{2} \cdot \frac{2}{3^n} = \frac{1}{3^n}$.
 - $\mathbb{P}(X = n, Y = n + 1) = \mathbb{P}(Y = n + 1 \mid X = n) \mathbb{P}(X = n) = \frac{1}{3^n}$.

(4) Let us treat the two cases

$(n = 1)$: $\mathbb{P}(Y = 1) = \mathbb{P}(Y = 1, X = 1) = 1/3$.

$(n \geq 2)$:

$$\begin{aligned}\mathbb{P}(Y = n) &= \sum_{m=0}^{\infty} \mathbb{P}(X = m, Y = n) \\ &= \mathbb{P}(X = n, Y = n) + \mathbb{P}(X = n - 1, Y = n) \\ &= \frac{1}{3^n} + \frac{1}{3^{n-1}} = \frac{4}{3^n}.\end{aligned}$$

(5) Again we treat two cases

$(i = 1)$: $\mathbb{E}(X | Y = 1) = 1$. since $\mathbb{P}(X = 1 | Y = 1) = 1$.

$(i > 1)$: We have

$$\begin{aligned}\mathbb{P}(X = i | Y = i) &= \frac{\mathbb{P}(X = i, Y = i)}{\mathbb{P}(Y = i)} = \frac{1/3^i}{4/3^i} = \frac{1}{4}, \\ \mathbb{P}(X = i - 1 | Y = i) &= \frac{\mathbb{P}(X = i - 1, Y = i)}{\mathbb{P}(Y = i)} = \frac{1/3^{i-1}}{4/3^i} = \frac{3}{4}.\end{aligned}$$

Hence,

$$\begin{aligned}\mathbb{E}(X | Y = i) &= \sum_{k=1}^{\infty} k \mathbb{P}(X = k | Y = i) \\ &= i \mathbb{P}(X = i | Y = i) + (i - 1) \mathbb{P}(X = i - 1 | Y = i) \\ &= \frac{4i - 3}{4}.\end{aligned}$$

So that $\mathbb{E}(X | Y) = \frac{4Y-3}{4} \mathbb{1}_{\{Y>1\}} + \mathbb{1}_{\{Y=1\}}$.

(6) $\text{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = \mathbb{E}(XY) - 3$ and

$$\begin{aligned}\mathbb{E}(XY) &= \mathbb{E}(\mathbb{E}(XY | X)) = \mathbb{E}(X \mathbb{E}(Y | X)) \\ &= \mathbb{E}(X(X + 1/2)) = \mathbb{E}(X^2) + 1/2 \mathbb{E}(X).\end{aligned}$$

We need to compute $\mathbb{E}(X^2)$

$$\begin{aligned}\mathbb{E}(X^2) &= \sum_{n=1}^{\infty} n^2 \frac{2}{3^n} = \sum_{n=1}^{\infty} 2(n(n-1) + n) \left(\frac{1}{3}\right)^n \\ &= \frac{3}{2} + \frac{2}{9} \sum_{n=2}^{\infty} n(n-1) \left(\frac{1}{3}\right)^{n-2} = \frac{3}{2} + \frac{3}{2} = 3,\end{aligned}$$

which implies $\text{Cov}(X, Y) = \frac{3}{4}$.