SOLUTIONS 11 May 19, 2021

Exercise 1. In each of the following cases, compute tlim P(X; =2 | Xo =1) for the Markov
—00
chain (X;)¢>0 with the given Q-matrix on {1,2,3,4}:

2 1 1 o0 2 1 1 0
0 -1 1 0 0 -1 1 0
@1y o 1 1 ® 1o o 11
1 0 0 -1 0 0 0 0
-1 0 0 2 1 1
1 -1 0 0 0 -2 2 0
@1l o -2 2 @ 1o 1 1 0
0 0 2 -2 0 0 0

Solution. (a) We need to find the corresponding stationary distribution 7 verifying
Q@ =0, m + 7w+ g3+ 7y =1.
So we get
—2m 4+ 7m4 =0, 11— =0, 1y + M — w3 =0, m3 —my = 0.
: : _(1111 . _ 1) — e 1

Solving this, we get ™ = (§, 5, 3, 3)- S0 we have that tli)IgOIP’(Xt =2|Xo=1)=m =5

(b) Since 4 is an absorbing state, we have that tlim P(X; =2| Xo=1) =0 in this case and
—00
ImP(X; =4| Xo=1)=1.
t—o00

(¢) We need to find the stationory distribution 7 corresponding to 1 and 2 using their sub-
matrix
-1 1
o= (3 )
We get easily that 7 = (1,1) and so limP(X, =2 | Xo=1) = 1.
t—o00
(d) First we find the proportion of time spent at 2 by computing 7Q2 = 0 where
-2 2
@ (7 2)
We get m = (71, m2) = (%, %) where 71 corresponds to state 2 in this case. So we get

hmIP’(Xt =2 | XOZ 1) =T X]P(Xt hits 2 | XO = 1) =
t—00

Wl =
DN | =
(@)}

Exercise 2. Customers arrive at a single-server queue in a Poisson stream of rate A. Each
customer has a service requirement distributed as the sum of two independent exponential
random variables of parameter pu. Service requirements are independent of one another and
of the arrival process.



(a)

(b)

Write down the generator matrix @) of a continuous-time Markov chain which models
this, explaining what the states of the chain represent.

Verify that the stationary distribution at state m is of the form m, = ax} + bzy with
specific 1 and x5 and deduce that the chain is positive recurrent if and only if A/u < %

Solution. (a) In this chain, a customer will need 2 times exponential times with rate u as

service time. This can be seen as two customers that need each an exponential time with
rate p as a service time. So we can describe the chain as follows: If we are at state n,
we go to state n 4 2 after an exponential time with rate A and to state n — 1 after an
exponential time of rate p. So:

Qn,n—‘rQ = /\7 Qn,n—l = W, Qn,n =—-\- H, Q’n,j =0 vj 7é n— 17n7n + 2.
Conditioning on the last step before reaching state n, the stationary distribution 7 must
verify

=T Tph—2T Lﬂ'n—&-l-
A+ A+

This gives the following characteristic equation

Tn,

A+ =X+ pa® = (-1 (uz? =Xz —X\) =0
The roots of the second degree polynomial term are

A — VA2 +4p . A+ VA2 +4u)
= 5 2: .

21 21

I

So m, is of the form

azry + bzy + c,
for real numbers a, b, c. Since ), ~m, = 1, we deduce that ¢ = 0. On the other hand,
since x1 < 0, we deduce that b > 0 to ensure that m, > 0. We also need to verify that

x9 < 1 in order to garantee a convergent serie ), < Tp.
This is equivalent to

A+ VA2 +4uA
2u

<1, =2 — X > /A2 HAp = 4p® > 8ud <= > 2.

So a stationary distribution of the system exists if and only if p > 2.

Exercise 3. Let {X(¢) | t € RT} be a Markov process with n states {1,2,---,n} and gen-
erator:

“M A 00 0 0
0 X X 0 0 0
0 0 -X3 Ag 0 0
Q=10 0 0 - 0 0
0 0 0 0 S D W
M 00 0 0 X



(i). Find the stationary distribution of the process
(ii). Give an intuitive explanation of the result.

Solution. Starting in a given state i, we see that we have a cyclic path, we go deterministically
toi+4 1if ¢ #n and in 1 if 4 = n, spending a exponentially distributed time with parameter
A; in each position.
Intuitively, the stationary distribution in ¢ is the mean proportion of time spent in ¢ during a
full cycle, that is

x
n
Jj=1 Ak
We check now that it is really a stationary distribution. Clearly,

n
Z m; = 1.
j=1

T =

Note that 7@ = 0, since
ATty = Nip1Tig1, 811 #n
>\n7Tn = )\17‘(‘1

Note that unicity is obtained by a direct resolution of the system.

Exercise 4. Let {X(¢) | t € RT} be a Markov process with n states {1,2,--- ,n} and gen-
erator:

—A1 A1 0 0 0 0
)\2/,1/2 —)\2 )\2(1 — ,U,Q) 0 0 0
)\3#3 0 *)\3 )\3(1 — /Lg) 0 0
Q — )\4u4 0 0 —)\4 0 0
An—1Hn—1 0 0 0 : —An—1 )\n—l(l - ,Ufn—l)
An 0 0 0 e 0 —An

(i). Guess the expression m = lim;_,o P[X () = 1].
(ii). Find the stationary distribution of the process.

Solution. At every state ¢ except 1 and n, we jump to the next state with probability 1 — pu;,
or we return to 1 with probability u;, we deterministically return to 1 in position n and we
jump in 2 when we are in 1. As before, we infer that the stationary distribution in 1 is equal
to the mean time spent in 1, divided by the duration of a return in 1—duration of a cycle.
Let us denote C' the duration of a cycle, then

Z [C|the last state visited before 1 is k|P{the last state visited before 1 is k}
=> (5 k) (1 —p2) (1= pg—1) i,
k=2



and so .
A
E[C]
With the same methodology, we find 7;, 2 < i < n. Let 7; be the time spent in ¢ during a
cycle, then

T =

E[r;] = E [r]@ hit during the cycle|P{i hit during the cycle}
(L= p2) - (1= pica),

7

we used that
E [7;]i is not hit during the cycle] = 0.
Thus,
E[Tl]
T, — .
E[C]

Exercise 5. Let {X(t) | t € R} be an irreducible Markov process on a finite space of n
states, with generator @. Let us take A so that A\ > max;{—Q;;} and define the matrix:

1
P=1I+ XQ (where I is the identity matrix).

(i). Show that P is a transition matrix, and that its stationary distribution is identical to
the one of Q.

(ii). Let {N(t) | t € RT} be a Poisson process with parameter A and let {Y} | k € N} be a
Markov chain with matrix P, independent from {N(¢)}. Let Tp = 0, and 13,75, --
denote the arrival times in the Poisson process.

We define the process {Z(t) | t € RT} as follows:
Z(t) =Y, Vi€ [TnToul.

Show that {Z(¢)} is a Markov process with generator Q).
Solution. (i). Let 7 be the stationary distribution of @, then

TP =m+ %ﬂ'Q =T.
—
=0
As there exists a unique solution (to a multiplicative constant) satisfying xP = x, 7 is the
stationary distribution.
(ii). {Z(t)} is a Markov process, since,

o P{Z(t+s)=j|Z(u),0 <u<s}=P{Z(t+s)=j|Z(s)}, since the Poisson process N is
Markovian, its arrivals between s and s 4t do not depend on the history of the process
before s. Moreover, {Y,,} satisfy the Markov property and thus the future transitions
depend only the the current one s.



e P{Z(t+s)=j|Z(s) =i} = P{Z(t) = j|Z(0) = i}:
P{Z(t+s)=jlZ(s) =i} = ZP{Z t+s) = j|Z(s) =1, k arrivals from N on [s,s +t]}

><IP’{N (t+s)— N(s) = k| Z(s) = i)
—P{N()=H|Z(0)=i}
=Y (PF)P{N(t) = k| Z(0) = i}
k

—P{Z(t) = jZ(0) = i}.

Let us show now that it is a Markov process with generator (. We show that the transition
matrix of {Z(t)} can be expressed as the exponential of @,

Li;(t) ':IP’{Z = jlZ(0) = i}
= ZIP’{Z = j|Z(0) =i, k arrivals of N on [0,¢]}
x IP’{N = k[Z(0) = i}

Z (P*);j exp{— )\t}( )k

So that,
k

L(t) = exp{—\It} i (At =exp {(AP — \)t},
k=0

and AP — A = A(I + 3Q) — A\ = Q, thus

L(t) = exp{Qt}.

Exercise 6. Show that the renewal function R(t) satisfy a renewal equation, and specify the
corresponding function g(t).

Solution. We could get a renewal equation for R(t) by conditioning on the first time S after
So. However, here, since R(t) = >,> FM(t), we directly get that

(RxF)(t) = Z<F<">*F><t>:ZF<”“><t>

n>0 n>0
— Z F(n) Z Fn _ FO) (1),
n>1 n>0

and so
R(t) = FO(t) + (R % F)(¢).

with, g(t) = FO(t) = Lii>0y-

This also shows that ¢ > 0, (R * F)(t) = R(t) — 1, which was used during the lecture in the
proof of the theorem giving the distribution of the duration of life L of a transitive renewal
process.



Exercise 7. Let S, .59, ... be the successive times at which cars cross a certain fixed position
on the highway. We assume that the intervals of time Wy, Wy, ... between each renewal are
ii.d. with cumulative distribution F'(-). Suppose that at time ¢ = 0, a pedestrian arrives at
this fixed position, and wants to cross the road. Assume that he needs 7 units of time to
cross it. Let L be the time that the pedestrian has to wait before starting to cross the road.

(a) Find the distribution of L and its expectation.

(b) Same questions if we assume that the arrivals of cars follow a Poisson process with
parameter A.

Solution. (a). The pedestrian starts to cross the road at L = S, if and only if W; <
Ty, Wy <7 and Wy,41 > 7. So that, L is the duration of life of a renewal {5,,} having its
n'" interval of time given by

Wn:{Wm si Wy <7,

400, otherwise.

Thus, the distribution of W, is given by

_ F(t), ift<r,
F(r), ift>rT.

We deduce that ) ) )
P{L <t} = {1 - F(o0)} RR(t) = {1 — F(7)}R(t),

(b). The mean waiting time of the pedestrian is

1 T
E[Ll] = —— F(r)— F(t)}dt.
L= 1=y ), 1P~ F0)
More precisely, if the arrivals of the cars follow a Poisson process with parameter A, then

E[L] = —(exp{AT} - 1) — .

> =



