
Solutions 11 May 19, 2021

Exercise 1. In each of the following cases, compute lim
t→∞

P(Xt = 2 | X0 = 1) for the Markov
chain (Xt)t≥0 with the given Q-matrix on {1, 2, 3, 4}:

(a)


−2 1 1 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

 (b)


−2 1 1 0
0 −1 1 0
0 0 −1 1
0 0 0 0



(c)


−1 1 0 0
1 −1 0 0
0 0 −2 2
0 0 2 −2

 (d)


−2 1 0 1
0 −2 2 0
0 1 −1 0
0 0 0 0


Solution. (a) We need to find the corresponding stationary distribution π verifying

πQ = 0, π1 + π2 + π3 + π4 = 1.

So we get

−2π1 + π4 = 0, π1 − π2 = 0, π1 + π2 − π3 = 0, π3 − π4 = 0.

Solving this, we get π = (1
6 ,

1
6 ,

1
3 ,

1
3). So we have that lim

t→∞
P(Xt = 2 | X0 = 1) = π2 = 1

6 .

(b) Since 4 is an absorbing state, we have that lim
t→∞

P(Xt = 2 | X0 = 1) = 0 in this case and
lim
t→∞

P(Xt = 4 | X0 = 1) = 1.

(c) We need to find the stationory distribution π corresponding to 1 and 2 using their sub-
matrix

Q1 :=
(
−1 1
1 −1

)
We get easily that π = (1

2 ,
1
2) and so lim

t→∞
P(Xt = 2 | X0 = 1) = 1

2 .

(d) First we find the proportion of time spent at 2 by computing πQ2 = 0 where

Q2 :=
(
−2 2
1 −1

)
.

We get π = (π1, π2) = (1
3 ,

2
3) where π1 corresponds to state 2 in this case. So we get

lim
t→∞

P(Xt = 2 | X0 = 1) = π1 × P(Xt hits 2 | X0 = 1) = 1
3 ×

1
2 = 1

6 .

Exercise 2. Customers arrive at a single-server queue in a Poisson stream of rate λ. Each
customer has a service requirement distributed as the sum of two independent exponential
random variables of parameter µ. Service requirements are independent of one another and
of the arrival process.
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(a) Write down the generator matrix Q of a continuous-time Markov chain which models
this, explaining what the states of the chain represent.

(b) Verify that the stationary distribution at state n is of the form πn = axn1 + bxn2 with
specific x1 and x2 and deduce that the chain is positive recurrent if and only if λ/µ < 1

2 .

Solution. (a) In this chain, a customer will need 2 times exponential times with rate µ as
service time. This can be seen as two customers that need each an exponential time with
rate µ as a service time. So we can describe the chain as follows: If we are at state n,
we go to state n + 2 after an exponential time with rate λ and to state n − 1 after an
exponential time of rate µ. So:

Qn,n+2 = λ, Qn,n−1 = µ, Qn,n = −λ− µ, Qn,j = 0 ∀j 6= n− 1, n, n+ 2.

(b) Conditioning on the last step before reaching state n, the stationary distribution π must
verify

πn = λ

λ+ µ
πn−2 + µ

λ+ µ
πn+1.

This gives the following characteristic equation

(λ+ µ)x2 = λ+ µx3 ⇐⇒ (x− 1)(µx2 − λx− λ) = 0

The roots of the second degree polynomial term are

x1 = λ−
√
λ2 + 4µλ
2µ , x2 = λ+

√
λ2 + 4µλ
2µ .

So πn is of the form
axn1 + bxn2 + c,

for real numbers a, b, c. Since ∑n≥0 πn = 1, we deduce that c = 0. On the other hand,
since x1 < 0, we deduce that b > 0 to ensure that πn > 0. We also need to verify that
x2 < 1 in order to garantee a convergent serie ∑n≥0 πn.
This is equivalent to

λ+
√
λ2 + 4µλ
2µ < 1, ⇐⇒ 2µ− λ >

√
λ2 + 4µλ⇐⇒ 4µ2 > 8µλ⇐⇒ µ > 2λ.

So a stationary distribution of the system exists if and only if µ > 2λ.

Exercise 3. Let
{
X(t) | t ∈ R+} be a Markov process with n states {1, 2, · · · , n} and gen-

erator:

Q =



−λ1 λ1 0 0 · · · 0 0
0 −λ2 λ2 0 · · · 0 0
0 0 −λ3 λ3 · · · 0 0
0 0 0 −λ4 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · −λn−1 λn−1
λn 0 0 0 · · · 0 −λn


.
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(i). Find the stationary distribution of the process

(ii). Give an intuitive explanation of the result.

Solution. Starting in a given state i, we see that we have a cyclic path, we go deterministically
to i+ 1 if i 6= n and in 1 if i = n, spending a exponentially distributed time with parameter
λi in each position.
Intuitively, the stationary distribution in i is the mean proportion of time spent in i during a
full cycle, that is

πi =
1
λi∑n
j=1

1
λk

.

We check now that it is really a stationary distribution. Clearly,
n∑
j=1

πj = 1.

Note that πQ = 0, since {
λiπi = λi+1πi+1, si i 6= n

λnπn = λ1π1

Note that unicity is obtained by a direct resolution of the system.
Exercise 4. Let

{
X(t) | t ∈ R+} be a Markov process with n states {1, 2, · · · , n} and gen-

erator:

Q =



−λ1 λ1 0 0 · · · 0 0
λ2µ2 −λ2 λ2(1− µ2) 0 · · · 0 0
λ3µ3 0 −λ3 λ3(1− µ3) · · · 0 0
λ4µ4 0 0 −λ4 · · · 0 0

...
...

...
... . . . ...

...
λn−1µn−1 0 0 0 · · · −λn−1 λn−1(1− µn−1)

λn 0 0 0 · · · 0 −λn


.

(i). Guess the expression π1 = limt→∞ P [X(t) = 1].

(ii). Find the stationary distribution of the process.

Solution. At every state i except 1 and n, we jump to the next state with probability 1−µi,
or we return to 1 with probability µi, we deterministically return to 1 in position n and we
jump in 2 when we are in 1. As before, we infer that the stationary distribution in 1 is equal
to the mean time spent in 1, divided by the duration of a return in 1—duration of a cycle.
Let us denote C the duration of a cycle, then

E[C] =
n∑
k=2

E
[
C|the last state visited before 1 is k

]
P
{
the last state visited before 1 is k

}
=

n∑
k=2

( 1
λ1

+ · · ·+ 1
λk

)
× (1− µ2) · · · (1− µk−1)µk,
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and so

π1 =
1
λ1

E[C] .

With the same methodology, we find πi, 2 ≤ i ≤ n. Let τi be the time spent in i during a
cycle, then

E[τi] = E
[
τi|i hit during the cycle

]
P
{
i hit during the cycle

}
= 1

λi
(1− µ2) · · · (1− µi−1),

we used that
E
[
τi|i is not hit during the cycle

]
= 0.

Thus,
πi = E[τi]

E[C] .

Exercise 5. Let
{
X(t) | t ∈ R+} be an irreducible Markov process on a finite space of n

states, with generator Q. Let us take λ so that λ > maxi{−Qii} and define the matrix:

P = I + 1
λ
Q (where I is the identity matrix).

(i). Show that P is a transition matrix, and that its stationary distribution is identical to
the one of Q.

(ii). Let
{
N(t) | t ∈ R+} be a Poisson process with parameter λ and let {Yk | k ∈ N} be a

Markov chain with matrix P , independent from {N(t)}. Let T0 = 0, and T1, T2, · · ·
denote the arrival times in the Poisson process.

We define the process
{
Z(t) | t ∈ R+} as follows:

Z(t) = Yn ∀t ∈ [Tn, Tn+1[.

Show that {Z(t)} is a Markov process with generator Q.

Solution. (i). Let π be the stationary distribution of Q, then

πP = π + 1
λπQ︸ ︷︷ ︸

=0

= π.

As there exists a unique solution (to a multiplicative constant) satisfying xP = x, π is the
stationary distribution.
(ii). {Z(t)} is a Markov process, since,

• P
{
Z(t+s) = j|Z(u), 0 ≤ u ≤ s

}
= P

{
Z(t+s) = j|Z(s)

}
, since the Poisson process N is

Markovian, its arrivals between s and s+ t do not depend on the history of the process
before s. Moreover, {Yn} satisfy the Markov property and thus the future transitions
depend only the the current one s.
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• P
{
Z(t+ s) = j|Z(s) = i

}
= P

{
Z(t) = j|Z(0) = i

}
:

P
{
Z(t+ s) = j|Z(s) = i

}
=
∑
k

P
{
Z(t+ s) = j|Z(s) = i, k arrivals from N on [s, s+ t]

}
× P

{
N(t+ s)−N(s) = k|Z(s) = i

}︸ ︷︷ ︸
=P{N(t)=k|Z(0)=i}

=
∑
k

(P k)ijP
{
N(t) = k|Z(0) = i

}
=P
{
Z(t) = j|Z(0) = i

}
.

Let us show now that it is a Markov process with generator Q. We show that the transition
matrix of {Z(t)} can be expressed as the exponential of Q,

Lij(t) :=P
{
Z(t) = j|Z(0) = i

}
=
∞∑
k=0

P
{
Z(t) = j|Z(0) = i, k arrivals of N on [0, t]

}
× P

{
N(t) = k|Z(0) = i

}
=
∞∑
k=0

(P k)ij exp{−λt}(λt)k
k! .

So that,

L(t) = exp{−λIt}
∞∑
k=0

(λtP )k
k! = exp

{
(λP − λI)t

}
,

and λP − λI = λ(I + 1
λQ)− λI = Q, thus

L(t) = exp{Qt}.

Exercise 6. Show that the renewal function R(t) satisfy a renewal equation, and specify the
corresponding function g(t).

Solution. We could get a renewal equation for R(t) by conditioning on the first time S1 after
S0. However, here, since R(t) = ∑

n≥0 F
(n)(t), we directly get that

(R ∗ F )(t) =
∑
n≥0

(F (n) ∗ F )(t) =
∑
n≥0

F (n+1)(t),

=
∑
n≥1

F (n)(t) =
∑
n≥0

F (n)(t)− F (0)(t),

and so
R(t) = F (0)(t) + (R ∗ F )(t).

with, g(t) = F (0)(t) = 1{t≥0}.
This also shows that t ≥ 0, (R ∗ F )(t) = R(t) − 1, which was used during the lecture in the
proof of the theorem giving the distribution of the duration of life L of a transitive renewal
process.
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Exercise 7. Let S1, S2, . . . be the successive times at which cars cross a certain fixed position
on the highway. We assume that the intervals of time W1,W2, . . . between each renewal are
i.i.d. with cumulative distribution F (·). Suppose that at time t = 0, a pedestrian arrives at
this fixed position, and wants to cross the road. Assume that he needs τ units of time to
cross it. Let L be the time that the pedestrian has to wait before starting to cross the road.

(a) Find the distribution of L and its expectation.

(b) Same questions if we assume that the arrivals of cars follow a Poisson process with
parameter λ.

Solution. (a). The pedestrian starts to cross the road at L = Sn if and only if W1 ≤
τ, . . . ,Wn ≤ τ and Wn+1 > τ . So that, L is the duration of life of a renewal {S̃n} having its
nth interval of time given by

W̃n =
{
Wn, si Wn ≤ τ,
+∞, otherwise.

Thus, the distribution of W̃n is given by

F̃ (t) =
{
F (t), if t ≤ τ,
F (τ), if t > τ.

We deduce that
P
{
L ≤ t

}
= {1− F̃ (∞)}R̃(t) = {1− F (τ)}R̃(t),

where R̃(t) = ∑
n≥0 F̃

(n)(t).
(b). The mean waiting time of the pedestrian is

E[L] = 1
1− F (τ)

∫ τ

0

{
F (τ)− F (t)

}
dt.

More precisely, if the arrivals of the cars follow a Poisson process with parameter λ, then

E[L] = 1
λ

(
exp{λτ} − 1

)
− τ.

6


