
Exercise Set 6 30 March, 2021

Exercise 1. (Markov Chain in a library) In a library with n books, the ith book has
probability pi to be chosen at each request. To make it quicker to find the book the next
time, the librarian moves the book to the left end of the shelf. Define the state of a Markov
chain at any time to be the list of books we see as we examine the shelf from left to right.
Since all the books are distinct, the state space E is the set of all permutations of the set
{1, 2, . . . , n}. Show that

π(i1, · · · in) = pi1 ·
pi2

1− pi1
· · · pin

1− pi1 − · · · pin−1

is a stationary distribution.

Exercise 2. (Random walk on a graph)
An undirected graph G is a countable collection of states (that we call vertices) along with
some edges connecting them. The degree di of a vertex i is the number of edges incident to
i. We suppose the graph to be locally finite (i.e., each edge is incident to a finite number of
edges). We say that a Markov chain on the state space E = G is a random walk on the graph
if the transition probabilities are given by

pi,j =
{

1/di if (i, j) is an edge,
0 otherwise,

for i, j ∈ G.

a) We assume that G is connected (implying that P is irreducible) and that
∑

i di <∞. Find
the stationary distribution of the random walk on G.
Hint: Assume that the random walk is reversible and find a stationary distribution veri-
fying the detailed balance equations. Explain why P is reversible.

b) We assume now that the graph is a chessboard, i.e., the vertices are G = {1, . . . , 8}2 and
the edges are the possible moves of a King. We assume that the King starts its random
walk in one of the four corners of the chessboard c ∈ G. Compute the mean return time
to the initial state Ec(Tc) of the King. Compute the same quantity for a Knight instead
of a King.

Exercise 3. Let P be a transition matrix on a finite state space E.

(a) Prove the following linear algebra result: Given a matrix Q, Q and Qt have the same
eigenvalues.
Use this to prove that P has a stationary distribution π(i.e. a probability measure πP =
π).

(b) Find an example, when E is an infinite state space, for which P doesn’t have any sta-
tionary distribution.

Exercise 4. Let X be a Markov chain on E (not necessarily irreducible). Suppose that state
j ∈ E is positive recurrent and aperiodic. Show that

lim
n→∞

p
(n)
ij = πjP(τj <∞ | X0 = i), τj = inf{n ≥ 0 : Xn = j},

where π is the stationary distribution of the chain restricted to the communicating class of j.
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Exercise 5. Let X be a Markov chain with transition matrix P on E = {1, 2, 3, 4, 5} given
by

P =


1
3 0 0 2

3 0
0 1

4
1
2

1
4 0

0 0 1
2 0 1

2
1
2 0 0 1

2 0
0 0 1

4 0 3
4

 .

(a) Find the communicating classes of P . For the recurrent classes, find the corresponding
stationary distributions.

(b) Supposing that X0 ∼ α for a distribution α on E, find the limiting distribution of Xn

when n→∞.
Hint: Suppose that X starts in a transient state of E and find the limiting distribution
in this case.

Exercise 6. Let (Xn)n≥0 and (Yn)n≥0 be two independent Markov chains, aperiodic and
irreducible, defined on the state spaces E and E′, respectively. Show that (Xn, Yn)n≥0 is an
aperiodic and irreducible Markov chain on E ×E′. Find an example of (Xn)n≥0 and (Yn)n≥0
independent and irreducible, but for which (Xn, Yn)n≥0 is not irreducible.

Exercise 7. (Branching process with immigration) For n ∈ N, let (Nn
k )k≥0 be a sequence

of independent random variables on Z+ with a common generating function φ(t) = E(tNn
k ).

The branching process with immigration is defined as

Xn = Nn
1 + . . .+Nn

Xn−1 + In, n ≥ 0,

where (In)n>0 is a sequence of independent random variables with values in Z+ with a common
generating function ψ(t) = E(tIn). Show that if X0 = 1 then

E(tXn) = φ(n)(t)
n−1∏
k=0

ψ(φ(k)(t)).

In the case where the number of immigrants in each generation is a Poisson random variable
of parameter λ and P (Nn

k = 0) = 1 − p, P (Nn
k = 1) = p, find the proportion of time in the

long run for which the population is 0.

Exercise 8. (Metropolis–Hastings algorithm) Suppose that we have a distribution p
(called target distribution) on a countable space E. Then, for each x ∈ E, let qx be a
distribution on E (called the proposal distribution) with qx(y) > 0 whenever qy(x) > 0, for
all y ∈ E. The Metropolis–Hastings algorithm constructs a Markov chain (Xn)n≥0 as follows:

(i). Let X0 = x0 ∈ E be random fixed state.

(ii). For Xn = x, choose a candidate y according to the proposal distribution qx. In other
words, with probability qx(y), the state y is the candidate state to which we may jump
at time n+ 1. Once we have a candidate state, we will decide if we jump to it or stay
at x in the following way: Let U be a uniform random variable on [0, 1], the variable
Xn+1 is defined as

Xn+1 =

y if U ≤ min
(

p(y)qy(x)
p(x)qx(y) , 1

)
x otherwise.
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Show that if (Xn)n≥0 is irreducible and aperiodic, then it is a reversible chain with respect
to its stationary distribution p.
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