

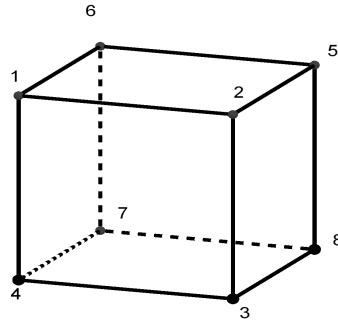
Exercise 1. Consider the following transition matrix:

$$P = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}.$$

Determine which states are recurrent and which are transient.

Exercise 2. A particle moves on the eight vertices of a cube in the following way: at each step the particle is equally likely to move to each of the three adjacent vertices, independently of its past motion. Let the vertex 1 be the initial vertex occupied by the particle. Calculate each of the following quantities:

- (a) the expected number of steps until the particle returns to 1,
- (b) the expected number of visits to 8 until the first return to 1,
- (c) the expected number of steps until the first visit to 8.



Exercise 3. (a) A transition matrix P defined on a state space E and a distribution λ have the *detailed balance property* if

$$\lambda_j P_{ji} = \lambda_i P_{ij}, \quad \forall i, j \in E.$$

Show that in this case, λ is a stationary distribution for P .

(b) Consider two urns each of which contains m balls; b of these $2m$ balls are black, and the remaining $2m - b$ are white. We say that the system is at state i if the first urn contains i black balls and $m - i$ white balls while the second contains $b - i$ black balls and $m - b + i$ white balls. Each trial consists of choosing a ball at random from each urn and exchanging the two. Let X_n be the state of the system after n exchanges have been made. X_n is a Markov chain.

- (1) Compute its transition probability.
- (2) Verify (using (a)) that the stationary distribution is given by

$$\pi(i) = \frac{\binom{b}{i} \binom{2m-b}{m-i}}{\binom{2m}{m}}.$$

- (3) Can you give a simple intuitive explanation why the formula in (2) gives the right answer?

Exercise 4. Consider a Markov chain with state space $S = \{1, 2\}$ and transition matrix

$$\begin{pmatrix} 1-a & a \\ b & 1-b \end{pmatrix},$$

$0 < a, b < 1$. Use the Markov property to show that

$$\mathbb{P}(X_{n+1} = 1) - \frac{b}{a+b} = (1-a-b)\{\mathbb{P}(X_n = 1) - \frac{b}{a+b}\},$$

and conclude that

$$\mathbb{P}(X_n = 1) = \frac{b}{a+b} + (1-a-b)^n \left\{ \mathbb{P}(X_0 = 1) - \frac{b}{a+b} \right\}.$$

Further show that $\mathbb{P}(X_n = 1)$ converges exponentially fast to its limit distribution $b/(a+b)$.

Exercise 5. (Reversible Processes)

- a) Let P be an irreducible matrix with stationary distribution π . We assume that $(X_n)_{0 \leq n \leq N}$ is $\text{Markov}(\pi, P)$. The process $Y_n = X_{N-n}$, $0 \leq n \leq N$ is called the *reverse process* of $(X_n)_{0 \leq n \leq N}$. Show that $(Y_n)_{0 \leq n \leq N}$ is $\text{Markov}(\pi, \hat{P})$, where $\hat{P} = (\hat{p}_{ij})$ is given by

$$\pi_j \hat{p}_{ji} = \pi_i p_{ij}, \quad \forall i, j,$$

and \hat{P} is also irreducible with stationary distribution π .

- b) A transition matrix P is said to be *doubly stochastic* if its columns sum also to 1, that is $\sum_i p_{ij} = 1$ for all j .

Show that the stationary distribution of an irreducible Markov chain on N states is the uniform distribution ($\pi(i) = \frac{1}{N}$, $1 \leq i \leq N$) if and only if its transition matrix is doubly stochastic.

- c) We say that an irreducible Markov chain $X \sim \text{Markov}(\lambda, P)$ is *reversible* if $\hat{P} = P$ (in that case λ should be stationary). Find an irreducible chain on $E = \{1, 2, 3\}$ with a stationary distribution but not reversible.

Exercise 6. Consider two boxes filled with gas molecules and joined by a small gap allowing them to pass from one box to the other. Assume that in total N molecules are in this configuration. We model the system so that at each time only one (randomly chosen) molecule is able to move from one box to the other.

- (1) Show that the number of molecules in a box evolves according to a Markov process.
- (2) Give the transition probabilities.
- (3) What is the stationary distribution (detailed balance equations)?

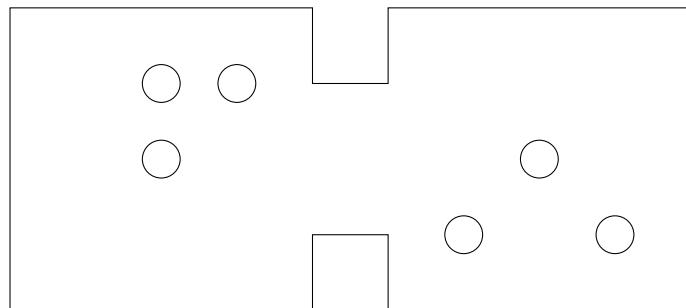


Figure 1: Configuration of the problem.

Exercise 7. Consider the aging chain on $\{0, 1, 2, \dots\}$ in which for any $n \geq 0$ the individual gets one day older from n to $n + 1$ with probability p_n but dies and returns to age 0 with probability $1 - p_n$. Find conditions that guarantee that

- (a) 0 is recurrent,
- (b) 0 is positive recurrent.
- (c) Find the stationary distribution of the chain.