

Exercise 1. In each of the following cases, compute $\lim_{t \rightarrow \infty} \mathbb{P}(X_t = 2 \mid X_0 = 1)$ for the Markov chain $(X_t)_{t \geq 0}$ with the given Q -matrix on $\{1, 2, 3, 4\}$:

$$(a) \begin{pmatrix} -2 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix} \quad (b) \begin{pmatrix} -2 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(c) \begin{pmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -2 & 2 \\ 0 & 0 & 2 & -2 \end{pmatrix} \quad (d) \begin{pmatrix} -2 & 1 & 0 & 1 \\ 0 & -2 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Exercise 2. Customers arrive at a single-server queue in a Poisson stream of rate λ . Each customer has a service requirement distributed as the sum of two independent exponential random variables of parameter μ . Service requirements are independent of one another and of the arrival process.

- (a) Write down the generator matrix Q of a continuous-time Markov chain which models this, explaining what the states of the chain represent.
- (b) Verify that the stationary distribution at state n is of the form $\pi_n = ax_1^n + bx_2^n$ with specific x_1 and x_2 and deduce that the chain is positive recurrent if and only if $\lambda/\mu < \frac{1}{2}$.

Exercise 3. Let $\{X(t) \mid t \in \mathbb{R}^+\}$ be a Markov process with n states $\{1, 2, \dots, n\}$ and generator:

$$Q = \begin{pmatrix} -\lambda_1 & \lambda_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & -\lambda_2 & \lambda_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & -\lambda_3 & \lambda_3 & \cdots & 0 & 0 \\ 0 & 0 & 0 & -\lambda_4 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -\lambda_{n-1} & \lambda_{n-1} \\ \lambda_n & 0 & 0 & 0 & \cdots & 0 & -\lambda_n \end{pmatrix}.$$

- (i). Find the stationary distribution of the process
- (ii). Give an intuitive explanation of the result.

Exercise 4. Let $\{X(t) \mid t \in \mathbb{R}^+\}$ be a Markov process with n states $\{1, 2, \dots, n\}$ and generator:

$$Q = \begin{pmatrix} -\lambda_1 & \lambda_1 & 0 & 0 & \dots & 0 & 0 \\ \lambda_2\mu_2 & -\lambda_2 & \lambda_2(1-\mu_2) & 0 & \dots & 0 & 0 \\ \lambda_3\mu_3 & 0 & -\lambda_3 & \lambda_3(1-\mu_3) & \dots & 0 & 0 \\ \lambda_4\mu_4 & 0 & 0 & -\lambda_4 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \lambda_{n-1}\mu_{n-1} & 0 & 0 & 0 & \dots & -\lambda_{n-1} & \lambda_{n-1}(1-\mu_{n-1}) \\ \lambda_n & 0 & 0 & 0 & \dots & 0 & -\lambda_n \end{pmatrix}.$$

(i). Guess the expression $\pi_1 = \lim_{t \rightarrow \infty} \mathbb{P}(X(t) = 1)$.

(ii). Find the stationary distribution of the process.

Exercise 5. Let $\{X(t) \mid t \in \mathbb{R}^+\}$ be an irreducible Markov process on a finite space of n states, with generator Q . Let us take λ so that $\lambda > \max_i \{-Q_{ii}\}$ and define the matrix:

$$P = I + \frac{1}{\lambda} Q \quad (\text{where } I \text{ is the identity matrix}).$$

(i). Show that P is a transition matrix, and that its stationary distribution is identical to the one of Q .

(ii). Let $\{N(t) \mid t \in \mathbb{R}^+\}$ be a Poisson process with parameter λ and let $\{Y_k \mid k \in \mathbb{N}\}$ be a Markov chain with matrix P , independent from $\{N(t)\}$. Let $T_0 = 0$, and T_1, T_2, \dots denote the arrival times in the Poisson process.

We define the process $\{Z(t) \mid t \in \mathbb{R}^+\}$ as follows:

$$Z(t) = Y_n \quad \forall t \in [T_n, T_{n+1}[.$$

Show that $\{Z(t)\}$ is a Markov process with generator Q .

Exercise 6. Show that the renewal function $R(t)$ satisfy a renewal equation, and specify the corresponding function $g(t)$.

Exercise 7. Let S_1, S_2, \dots be the successive times at which cars cross a certain fixed position on the highway. We assume that the intervals of time W_1, W_2, \dots between each renewal are i.i.d. with cumulative distribution $F(\cdot)$. Suppose that at time $t = 0$, a pedestrian arrives at this fixed position, and wants to cross the road. Assume that he needs τ units of time to cross it. Let L be the time that the pedestrian has to wait before starting to cross the road.

(a) Find the distribution of L and its expectation.

(b) Same questions if we assume that the arrivals of cars follow a Poisson process with parameter λ .