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Chapter 1

Review of Probability Theory

Remark 1.0.1 In these notes, we adopt the convention N = {0,1,2,...}, i.e. 0 is included
in the set IN.

1.1 Some notions in probability theory

Probability theory is explicitly based on mathematical analysis and measure theory.
Measure theory is general and powerful (measurable functions, integration, ...) and
underpins probability theory.

Let Q be a nonempty set, the so-called sample space, let A be a o-algebra on €, the
so-called event set, and let P : 4 - [0,1] be a probability measure. We call the tuple
(22, A) a measurable space, and we call the triple (2, 4,P) a probability space. Elements
of the event set A are called events. Recall the following definitions.

Definition 1.1.1 A o-algebra on a set 2 is a collection of subsets of ) such that the
following holds.

1. Qe A

2. If Ae A, then we also have A°€ A. Here, A°=Q~ A denotes the complement of A.
Another common notation for the complement of A is A.

3. If (Ai)iew is a countable collection of sets such that A; € A for all i € N, then we
also have U;en A; € A.

1. and 2. imply that any o-algebra A also satisfies @ € A. 3. implies that if A, B € A,
then Au B e A. By de Morgan’s law, 2. and 3. imply that if A, B € A, then An B € A.
Some people use the term o-field instead of o-algebra.

Definition 1.1.2 A probability measure P on a measurable space (€2,A) is a measure on
(22, A) such that P(Q2) = 1. In order for P to be a measure on (£, A), we need



1. P(A) >0 for all Ac A.

2. If (Ay)iew is a countable collection of pairwise disjoint sets in A, then

IP(U A;) = Z P(4;).
1elN 1elN
Property 2. is called o-additivity.

To be able to do interesting things in probability, we next define the notion of “random
variable”, X.

Random variables

Let (€2, A,1P) be a probability space, let £ be a nonempty set and let £ be a o-algebra on
E. A random wvariable is a measurable function

X:Q-E&.

Recall that X is measurable if for all B e ¢, X~1(B) € A, where X'(B) ={weQ: X(w) €
B}. The distribution of X is defined as the push-forward measure of P under the mapping
X. This is a probability measure on (£,¢) and we denote it by Py. That is we have

Py(B)=P(X Y(B))=P(X e¢B), Bek.

Example 1.1.3 Suppose that £ = R and that & is the Borel o-algebra on R, i.e. the
smallest o-algebra on R that contains all open subsets of R. Let X : Q@ - R be a
random variable. Then, for any two real numbers a < b, the probability that X € [a,b]

is PLX"([a,0])] = Px([a, b]).

For the remainder of this chapter, unless otherwise specified, random variables will always
map to R equipped with the Borel o-algebra. The cumulative distribution function (or
c.d.f. in short) of a random variable X is defined as

F(z)=P(X <z)=Px((-00,z]), zeR.

We always have lim,, o, F'(z) = 0 and lim,. F'(z) = 1. Moreover, if X and Y are two
random variables with the same distribution (if X and Y are identically distributed), then
they also have the same c.d.f.

1.2 Conditional probability

Definition 1.2.1 Let (2, A, P) be a probability space and let A and B be two events.
Assume further that P(B) > 0. Then, the conditional probability of A given B is defined
as

P(An B)

P(AIB) = —F 5



If P(B) > 0, the concept of conditional probability lets us define a new probability measure
IPBI
P(en B)

P(B)
Dividing the term P(enB) by P(B) can be interpreted as a “normalization”; i.e. it ensures
that Pg(£2) = 1 and that Pp is thus truly a probability measure.
Conditional probabilities allow many problems to be simplified. A particularly helpful
tool is the law of total probability that we state below.

Psls] = P[s| B] =

Theorem 1.2.2 (Law of total probability) Let (B;) be a finite or countably infinite
partition of Q such that B; € A for all i € I. This means that the sets (B;)ies are pairwise
disjoint and that U;e; B; = ). Then, for any event A € A, we have

P(A) = ZP(A | B)P(B)).

iel
Here, one should interpret P(A | B;)P(B;) as 0 if P(B;) = 0.

The law of total probability follows immediately from o-additivity of P and the definition
of conditional probability.

1.3 Independence

Independence of events

Two events A and B are called independent if P(An B) = P(A)P(B). If P(B) > 0, this
is equivalently to
P(A]B) =P(A),

which has the following interpretation: If P(B) >0, then A and B are independent if and
only if knowing that B occurred has no effect on the likelihood of A occurring. We use
the shorthand A 1L B to indicate that A and B are independent events. A finite collection
of events Ay,..., A, is called mutually independent (or just independent) if

P(Ain...nA,)=P(Ay)-...-P(A,).
Finally, an infinite collection of events is called (mutually) independent if every finite

subcollection is independent.

Independence of random variables

Let X4,..., X, be finitely many random variables. Then X,..., X, are called mutually
independent (or just independent) if for any aq,...,a, € R, we have

IP(XlSal,...,XnSan)ZIP(XlS@l)'...'IP(XnSCLn).
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If the random variables X7, ..., X,, are independent, then for every i € {1,...,n} and for
every ap,...,a, € R such that P(X; <aqy,..., X; 1 < a1, Xiy1 < a1, .., Xy < a,) >0, we
have

P(X;<a;| Xo<ao,...,Xis1 <ai-1, Xiv1 < s, ..., Xn < a,) = P(X; < a5).
An infinite collection of random variables is called (mutually) independent if every finite

subcollection is independent.

Conditional independence

Let A, B,C be three events such that P(C) > 0. We say that A and B are conditionally
independent given C' if
P(AnB|C)=P(A|C)P(B|C).

If P(BnC) >0, this is equivalent to
P(A|BnC)=P(A|C).
Using the definition of conditional probability, we can rewrite P(A | BnC)=P(A|C) as

P(AnBnC) TP(AnC)

P(BnC) — P(C)
Thus,
]P(AmBmC):%P(MC):P(&C)P(MC).

Dividing both sides by P(C') yields
P(AnB|C)=P(B|C)P(A]|C).

Here is another way to state conditional independence: Two events A and B are
conditionally independent given C' if they are independent with respect to the probability
measure Po introduced in Section 1.2. In words, conditional independence given C' means
that A and B are independent if the event C' occurs.

Two random variables X and Y are called conditionally independent given Z if for each
a,b e R and for every ¢ € R such that P(Z < ¢) >0 we have

P(X<a,Y<b|Z<e)=P(X<a|Z<c)P(Y<b|Z<c).

Further Reading

You can find a more extensive review of core concepts from probability theory in Chapter
6 of Norris’s textbook.



Chapter 2

Markov chains

2.1 Stochastic processes

Definition 2.1.1 Let (2, A, P) be a probability space and let T' be an index set (such as
IN or R, often representing time), and let (£,£) be a measurable space. For everyteT,
let Xy :Q — & be a random wvariable. The collection of random wvariables (Xy)wr (or
{X;:teT}) is then called a stochastic process.

Instead of X; we sometimes write X (¢), especially if T is an interval of the real line.
Typical examples for the set T are

o T =NN; then, (X;)sr is a random sequences with values in &;

e T =[0,00) or T = R; a stochastic process with such an index set often represents
the evolution of a system in time: at each moment ¢, the system is represented by
the random variable X;.

A stochastic process represents the evolution (generally in time) of a random variable
(a “system”). If £ = R and if £ is the Borel o-algebra on R, then the distribution of the
stochastic process (X;):er is a probability measure on (R?, B(R")), where B(R") denotes
the Borel o-algebra on R”. The distribution of (X;)r specifies all finite-dimensional

distributions, i.e. the distributions of all random vectors (Xy,,...,X;,,) for any m € N
and any ty,...,%,, € T. Thus, it captures the dependence between the single random
variables.

NOTE: In order to specify the distribution of a stochastic process (X )ser, it is not enough
to just specify the distribution of each individual random variable X; as this doesn’t take
into account the dependence structure.

Example 2.1.2 Consider the stochastic process {X,, : n € N}, where the random variables
X, are i.i.d. (independent and identically distributed), with c.d.f. F. For all n € N and
for all ag,...,a, € R, we have

P(Xo<ag,...,Xn<a,)=P(Xo<ag) ...-P(X, <a,) =F(ag) ...  F(a,).



The hypothesis that the random variables X,, are i.i.d. is usually too simplistic. We will
now define some processes which treat more general settings.

2.2 Markov chains

Definition 2.2.1 Let X = (X,)new be a stochastic process with values in a countable set
E, i.e. X,, maps to E for every n e N. If E is finite, we may assume that E'={1,...,N}
for some positive integer N. If E is countably infinite, we assume E =IN\{0}. We call X
a Markov chain if for each n € N, X,,,1 is conditionally independent of Xo, X1,..., X1,
gwen X,,. This is called the Markov property. The Markov property implies in particular
that for all n € N, for all j € E, and for all ig, i1, ... i, € E such that P(Xy =1g,..., X, =
in) >0,
IP(Xn+1 =j | XU = io, .. ,Xn = Zn) = IP(Xn+1 =j | Xn = Zn)

Markov chains are a first step to relax the assumption of independence, which is too
simplistic to represent reality. In short, the Markov property means that predicting the
state of a system in the future, with the present known, is not made more precise through
knowledge of supplementary information about the past, as this information becomes
unnecessary.

In this lecture we will only consider time-homogeneous Markov chains.

Definition 2.2.2 A Markov chain X is called (time-)homogeneous if for all n,m € N
and for all i,7,€ E such that P(X, =1),P(X,, =1) >0 we have

]P(XTL+1 :j | Xn = Z) = IP(Xm,+1 =j | Xm, = Z) =t ng

The number p;; is undefined if P(X,, =i) =0 for all n e N. If p;; is defined for all i,j € E,
we call the matriz P = (p;;) of size |E| x|E| (possibly infinite) the transition matrix. The
initial distribution a = («;)scp of X is defined by

OéiZIP(XOZi), 1€ k.

If X is a homogeneous Markov chain with initial distribution o and transition matriz P,
we say that X is Markov(a, P) and write X ~ Markov(a, P).

In Theorem 2.2.4, we shall see that the distribution of a homogeneous Markov chain is
completely determined by the initial distribution a and the transition matrix P. In an
abuse of terminology, we will often identify a Markov chain X with its distribution, i.e.
we will forget about the underlying probability space (€2,.A4,P) and only focus on the
finite-dimensional distributions of X.

Remark 2.2.3 p;; is the probability to go from i to j in one time step. Clearly

(1) Each entry of P is nonnegative because each p;; is a probability;
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(i) If 1= (1,1,...,1)7 for finite E and 1= (1,1,...)7 for countably infinite E, we have
P1=1. This 1s because for every i e F,

Zpij = ZIP(XnH :j|Xn:i)

jekE jeE
= IP(‘Xn+1e U{]}|Xn:2)
jekE
= P(Xp€E| X, =1)
= 1.

A stochastic matrix P = (p;;) s a matriz which satisfies both p;; > 0 for every i,j € E and
P1 =1. In particular, of P s the transition matriz of a Markov chain, then P is also a
stochastic matriz.

Theorem 2.2.4 Let X be Markov(e, P). Then, for all n € N and for all ig,...,i, € E
we have

IP(XO = io, e 7Xn = Zn) = Oéiopioilpillé .. 'p’in—lin'
Proof. We show the statement by induction. In the base case n =0, we have
IP(XO = 10) = Ozl'O‘

In the induction step, suppose there is n € N for which the statement holds. Let
10, - - -, ns1 € F. By induction hypothesis,

P(Xo=10,..., X0 =1n) = QigDigiy - - - Piry_vin - (2.1)
If P(Xo =g, ..., X, =1,) =0, this implies a;,pigi - - - Pi,,_yi, = 0 and hence
P(Xo =10, Xy = i, Xot1 = 0ns1) = 0= QigPigiy -+ - Pigy_yin Pininar
If P(Xo =g, ...,X, =14,) >0, we may condition on this event and obtain

IP(XU = 7;07 s aXn = Z‘na)(n+l = in+1)
“P(Xo =0y s X = in)P(X1 = ima1 | Xo = s s X = i)

The Markov property and homogeneity imply
P (X1 = ins | Xo =0, ., X = 0n) = P(Xni1 = ins1 | Xo = 0n) = Dy -

Together with (2.1), this yields the desired result. O

So far, we have defined Markov chains, but we do not know yet whether they exist,
i.e. whether there are stochastic processes that are homogeneous and satisfy the Markov
property. Theorem 2.2.4 can be used to construct Markov processes explicitly and to thus
show their existence: Fix any probability measure o on F, and fix any stochastic matrix
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P of dimension |E| x |E|. One can show that there is a stochastic process X = (X,,)nen 0n
E with finite-dimensional distributions

P(Xo =io,..., X0 =1n) = QigPigiy - - - Dip_1in

for n € IN and ig,...,7, € E. Once this is established, it is not hard to see that X is
homogeneous and satisfies the Markov property.

Let X ~ Markov(a, P) and let i € E such that «; > 0. Then, we define the probability
measure

]Pz(.) = IP(. | XO = Z)
For 7,5 € F and n € N, we denote the entry in the ith row and jth column of the matrix
Pm=P...P (n times) by

.
Note that pg;) = Dij-
Proposition 2.2.5 For each n € N and for each j e F,
Pi( X, =j)=p.

Proof. We prove the statement by induction. The case n = 0 follows from the convention
that P° is the identity matrix with 1s on the diagonal and Os off the diagonal. In the
induction step, suppose the formula holds for some n € IN. We need to show that P;( X1 =

j) = pz(.;”l). The law of total probability applied to IP; yields

IPi(Xn+1 = j) = Z IPZ(Xn = h)IPz(Xn+1 :j | Xn = h)
IPZ()}}ZE;h)>O
The Markov property and the fact that X is homogeneous let us write
IPi(Xn+1 :j | Xn = h) = IP(XTH—I =j | Xn = h) :phj'
And by induction hypothesis,
P;(X, = h) =p\".
As a result,
Pi(Xoa=5)= 2 p5'png.
heE:
IPZ(Xn=h)>0
For any h € E such that P;(X,, = h) = 0, we also have pg,?) = 0 by induction hypothesis.
Thus, we may sum over the entire set £/ and obtain
(n+1)

IPi(XnH = .]) = Z pgz)phj =Pi;
heE

as desired. a

(n

In light of Proposition 2.2.5, we can interpret p;; ) as the probability of X going from state

1 to state j in n steps.



Remark 2.2.6 Since X is homogeneous, we have the following slight generalization of
Proposition 2.2.5:
For any i,j € E and any m,n € N with P(X,, =) >0, we have

P(Xpsn =7 | X =) = pi™.

v

Corollary 2.2.7 a) Let X ~ Markov(a, P). For any ne€ N and any i € E, we have
P(X, =1)=(aP"),
i.e. P(X,, =1) is the ith component of the row vector aP".

b) |Chapman—Kolmogorov equation| For all m, n € N and for all i, j € E with a; >0,
we have

]Pi(Xm+n = ]) = Z IPi(Xm = h)]P(Xm+n =] | Xm = h)'

heE

Here we interpret Pi(X,, = H)P(Xpin =7 | Xin =h) as 0 if P(X,, =h) =0.

Draw a picture to illustrate the Chapman—Kolmogorov equation.
Proof.

a) By the law of total probability,

P(X, =i)= Y P(Xo=h)Py(X, =1).
heE,
ap>0

By definition P(Xy = h) = ay,, and Proposition 2.2.5 yields P, (X, = i) = pgg) for
every h € E such that o > 0. As p,(;) is also defined if oy, = 0, we obtain

P(X, =)= app' = (aP),.
heE

b) The definition of the matrix product yields

(m+n) _ (m), (n)
Di; = Z Dip "Ppj -
heE

Then, we just apply Proposition 2.2.5 to the terms on both sides:
P = Pi(Xmen = ), P = Pi(X = )
provided that «; > 0, and
Y = P(Xonsn = j | X = )

if P(X,, = h) > 0.



a

Remark 2.2.8  a) To any Markov chain we can associate a transition graph between
states: this is a weighted, directed graph with an edge from i to j if and only if
pij > 0. The weight assigned to the edge from i to j is precisely p;;.

b) We say that state i leads to state j (and write i > j) if
pgl) >0, for somencelN,

In this case, there is a path from i to j in the transition graph. Notice however that
if 7 =1, we always have i1 - j and j — i, even if there is no loop at the vertex i. This
15 because pg)) =1>0.

¢) We say that i communicates with j (and write i < j) if both i - j and j — i.

d) It is easy to check that the relation < is an equivalence relation on the state space E,
i.e. we have i < i; 1 < j if and only if j < i; and i < j and j < k together imply
1 < k. Therefore, the relation < partitions E into so-called equivalence classes.
These are subsets of E of the form

{ieE:i<j}
for j e E. We call these equivalence classes communicating classes.
e) We say that a communicating class C is closed if
1e€C, 1—-j5 wmplies jeC.

The state i is called absorbing if {i} is a closed communicating class. If i is
absorbing, then

f) We call a Markov chain with transition matriz P (and the matriz P itself)
irreducible if the entire set E is a communicating class, i.e. if i < j for alli,j € F.

Example 2.2.9 a) Consider a Markov chain on the state space E = {1,2} with
transition matriz
p= (pn p12) .
P21 P22
Suppose pia,pa1 > 0. Then 1 < 2, so the Markov chain is irreducible. If we have

i addition pi1,pee > 0, then the transition graph of the chain looks as follows.
P21

N0 EBO-="
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b) Consider the transition matriz

110000
001000
p_|t 00t o]
0004 10
000001
0000710

The corresponding transition graph is:

1/2

The communicating classes are {1,2,3}, {4}, and {5,6}. Only {5,6} is a closed
communicating class.

¢) (One-dimensional random walk) A random walk on the set of integers 7. is a Markov
chain on the state space E = 7. of the form X, = Xo+ Y €, n € N. Here X
is an integer-valued random variable and (€;);»1 are integer-valued and i.i.d. If the
distribution of the €;’s is given by P(e; = 1) =p, P(¢; = -1) = 1-p for some pe (0,1),
we call X a simple random walk. A simple random walk starts at some randomly
chosen integer given by Xo. Then, in each successive step, it jumps to its nearest
neighbor on the right with probability p and to its nearest neighbor on the left with
probability 1 — p. The direction of each jump (i.e. left or right) is independent of
previous jumps. The site to which a jump leads does however depend on previous
Jumps as the walker can only jump to a nearest neighbor of its current location. The
corresponding transition matriz is the infinite matrix

d) (Birth and death chain on W) For i € N let p;,r;,q; be real numbers in [0,1] such
that p; +r; + q¢; = 1. Assume further that qo = 0. A birth and death chain on N is a
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Markov chain on the state space E = IN with transition matriz P = (p;;) satisfying

Di, j:i+1a
Dij =T J=1, (2.2)
q;, j=1-1.

Here, X,, can be interpreted as the size of a population at timen. From one time step
to the next, there is either exactly one birth or exactly one death or the population
size stays constant. The probabilities of birth are given by the p;’s, the probabilities
of death by the q;’s and the probabilities of nothing happening by the r;’s. Why do
we need to impose qo =07

2.2.1 Strong Markov property

For a homogeneous Markov chain, we have the Markov property at each fixed time n:
the random variable X,,,; is conditionally independent of Xj,..., X, given X,,. What
happens if we replace n with a random time 77

Let X be a Markov chain. For n € N, let 0(Xjy,...,X,,) denote the o-algebra generated
by the random variables Xj,...,X,,. By definition, this is the smallest o-algebra on
Q with respect to which each X;, 1 < i < n, is measurable. We have o(X,...,X,) c
o(Xo, ..., Xn, Xns1), s0 as we increase the number of random variables, the o-algebra they
generate becomes larger. Such an increasing sequence of g-algebras is called a filtration.
One can think of o(Xjy,...,X,) as measuring the information about the chain X that is
known at time n. As n increases, more information becomes available.

Definition 2.2.10 1. Let (2,.A) be a measurable space and let (A, )new be a family of
o-algebras on Q such that A, c A,1 ¢ A for every n e N. Then we call (A,)new @
filtration of (£2,.A).

2. A random variable T with values in N U {oo} is called a stopping time with respect
to a filtration (Ap)new if the event {T <n} is an element of A, for everyneIN. It
s called a stopping time with respect to a Markov chain X if it is a stopping time
with respect to the filtration (0(Xo, ..., Xn))nen-

Example 2.2.11 Let (X,,)new be a random walk on Z.

o For jeZ, set
T;=inf{n>1:X, =j}.

The random variable T} indicates the first time the random walk visits the state j.
It is called the first passage time for state j. For any n € N, we have

{1y <n) U{X - j).

12



And for 1 < k < n, the event {Xy = j} lies in o(Xy) c o(Xo,...,X,). As
o(Xo,...,X,) is closed under countable unions, U?_ {Xy = j} € 0(Xo,...,X,). This
shows that T} is a stopping time with respect to X.

o For jeZ, set
L;=sup{neN:X, =j}.

The random variable L; indicates the last time X wvists the state j. For any n € N,

o0

k=n+1
As this event depends on the random wvariables X, .1, Xni2,..., it is typically not
contained in 0(Xo,...,X,), i.e. L; is typically not a stopping time with respect to

X.

Definition 2.2.12 Let T' be a stopping time with respect to a filtration (A, )nen of a
measurable space (2, A). Then, we set

Ar={AeA: An{T <n}eA, YneN}.
One can show that Ar is a o-algebra on €.

Definition 2.2.13 For i€ FE, let §; denote the Dirac measure on E defined by
. 0, Jj#14,
6i({j}) = {1 . _

9

Theorem 2.2.14 Let X = (X,)newy be Markov(a, P). Let T be a stopping time with
respect to X and let i € E such that P(T < oo, Xp = 1) > 0. Then, (Xrin)new 1
Markov(d;, P) with respect to the probability measure P(e | T < oo, X7 =1i). Furthermore,
(XT4n)new s independent of the o-algebra Ar (where A, = 0(Xo, ..., X,)), meaning that
for anyneNN, ig,...,1, € E and B € Ap we have

P(X7 =10, ..., Xrun = in, B | T < 00, X7 =) =P(Xg =i, ..., X7an = in | T < 00, X7 = i)
(2.3)
P(B|T < 00, Xy =1). (2.4)

Remark 2.2.15 Any Markov process in discrete time — even if it has an uncountable
state space — satisfies a version of Theorem 2.2.14. Most Markov processes in continuous
time (e.g. Brownian motion) also satisfy a version of Theorem 2.2.14, but some don't.
If a Markov process satisfies a version of Theorem 2.2.14, we say that it has the strong
Markov property. Theorem 2.2.14 then tells us that any Markov chain on a discrete state
space and in discrete time has the strong Markov property.
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Proof. Let neNN, ig,...,i, € E and B € Ap. If iy #+ i we have 0 on both sides of the
formula in (2.3) and (2.4), so we will assume from now on that iy = i. Then,

IP(XT=i0,...,XT+n=in,B|T<OO7XT=i)
_ IP()(T+1 :ila-"aXT+n:inaBaT<OoaXT:i)
- P(T < oo, X7 = 1) '

As {T' < oo} =uz_{T =m}, we can write the term in the numerator as

ZIP(XT+1:7:17~"7XT+TL:inaBuT:vaT:i) (25)

m=0

IP(Xm+1=i17"'7Xm+n:in7B7T:m7Xm:i)

M3

0

=Y P(Xps1 =01,y Xopin = 1, B, T =m | X, = 1) P(X,, = ).
m=0

g 3

Fix m € IN such that P(X,, = i) > 0. Since X satisfies the Markov property, the

random variables X,,.1,..., X/ are independent of X, ..., X,, under P(e | X,, = 7).
(Technically, the Markov property only said that X,,,; is conditionally independent of
Xo,.-., X1 given X,,, but one can derive this stronger statement without too much

effort.) And since B € A7, we have
Bn{T =m}eo(Xo,...,Xn).
Hence,
P(Xpi1 =01, s Xopsn =00, B, T =m | X, = 1) P(X,,, = 7)
=P(Xps1 =01, s Xopin = U | Xon =) P(B, T =m, X,,, = 7).
Homogeneity implies
P( X1 =01,y Xoan = | Xow =10) = Diiy - Diy_1ins

which doesn’t depend on m. As a result, the term in (2.5) equals
Diiq -+ - Pip_1in Z IP(B,T =m, XT = Z) = Diiq - - pzn_”nIP(B,T < OO,XT = Z)
m=0

For the moment, let B = ). Then, we have shown that
IP(XT = io, R 7XT+n = Zn | T< OO,XT = Z) = 51({20})]?“1 v Dinqiny
i.e. (X74n)nen is indeed Markov(é;, P) under P(e | T < oo, X1 =i). Hence, for arbitrary
Be AT7
IP(XT Zio,...,XT+n :in,B | T< OO,XTZi)
P(B,T < o0, X1 =1)
P(T < 00, X7 =1)
=P(Xr=ip,-- s Xryn=tn | T <00, X0 =i)P(B|T < 00, X7 =1).

:IP(XT:iQ,...,XT+n=in|T<OO,XT:Z')

14



Remark 2.2.16 While the previous proof may look somewhat technical, its main steps
are simple and can serve as a blueprint for dealing with Markov chains and stopping times:
First, condition on the possible values the stopping time T may assume; then, for each
fixed value of T you have a regqular Markov chain that you can manipulate as needed;
finally, remove the conditioning to get back T'.

2.3 Recurrence and transience

Let P be a stochastic matrix. We say that a state i € E is recurrent (with respect to P
or with respect to a Markov chain X with transition matrix P) if

P(X,, =1 for infinitely many n) =1,
where X ~ Markov(6;, P). We call it transient if
P(X,, =1 for infinitely many n) =0

for X ~ Markov(d;, P). Recurrent states are those to which you keep coming back and
transient states are those which you eventually leave forever. Our first important result
will be that every state is either recurrent or transient.

Recall the first passage time

T; =inf{n >1: X, = j},
where we use the convention that inf @ = co. Define inductively
0) _ 1 _mp,

and (r+1) (r)
r+1 . r i .
;" =inf{n>T;"+1: X, =5}, rx1

Then, Tj(r) is the time at which X visits the state j for the rth time. For r > 1, the length
of the rth excursion from 7 is defined as

() (r-1) e n(r)
S(T) _ T‘] - T'j lf T'j < 0
J +00 otherwise.

Draw a picture to illustrate this.

Lemma 2.3.1 Let r = 2,3,..., and suppose that IP(T].(T_l) < o) > 0. Conditional on

Tj(r_l) < 00, S](T) is independent of A -1 and
J
P(S" =n| T < 0) = Py(T) = n).

15



Proof. ~ We apply the strong Markov property for the stopping time 7' = Tj(r*l). By
definition of 7', X7 = j, which spares us conditioning on the event {X; = j}. Under
the probability measure P(e | T' < 00), (X7in)new is independent from Ay and is
Markov(d;, P). Conditional on T' < co, we have

S =inf{n>1: Xr,, = j}.

J

Therefore, under P(e | T' < 00), SJ(T) is the first passage time to j of the Markov chain
(X74n)nen that has the same distribution as the original chain X under P;. It follows

that S;T) is independent of Ap and that

P(S"” =n| TV < 00) = P;(T; = ).

Define the number of visits V; to state i as

Vi=> Tix,-i},
n=0

and note that " - -
EilVi] =B Y Lix,oiy = 3 Pi(X, =) = 3 plf”.
n=0 n=0 n=0
Here, E; stands for expected value with respect to the probability measure P;. With this
notation at hand, we can now say that a state ¢ is recurrent if P;(V; = c0) = 1. It is

transient if P;(V; = o0) = 0. We can compute the distribution of V; under P; in terms of

the return probability
fi = IPZ(E < OO)

Lemma 2.3.2 For any r € N,
P;(V;>r)=fl.

Proof. We prove the statement by induction. To deal with the base case r = 0, observe
that P;(V; > 0) = 1. This is because V; already counts the Oth visit to state ¢ (i.e. the start
of the chain at i) as one visit. By convention, f? = 1, so the base case has been verified.
In the induction step, we will use the general observation that

(Visr}={T" <00}, rel. (2.6)
Suppose the statement holds for some r € IN. Then,

]Pi(;‘z—wi(r+l) < OO)
IPi(Ti(T) < oo,Si(T“) < 00)
P;(S"™ < o0 | T < 00)P(T" < o).

P;(Vi>r+1)

16



With (2.6) and the induction hypothesis, we obtain
Py(T" < 00) =P (V; >7) = f1.

Thus, if P;(T" < 00) = 0, we also have f; =0 and the desired formula holds. If Py(T\" <
00) > 0, Lemma 2.3.1 yields

IPi(SZ-(T+1) < 00 ’771(7‘) < OO) _ Z IPi(Si(T+1) =n ‘ T;(r) < OO) - Z IPZ(ﬂ = n) = IPZ(E < oo) = fz
n=1 n=1

To summarize:
Pi(S7 < oo | T < 00)P(T(") < 00) = fiff = fI*L.

a

Recall the basic formula for the expectation of a non-negative random variable V' with
values in IN:

- i]P(V>r).

(To derive it, write E[V] as 322, Y723 P(V = n) and change the order of summation.)
The next theorem gives two useful criteria to establish recurrence or transience of a given
state.

Theorem 2.3.3 (i) If f; =1, then i is recurrent and Y Opl(ln) 00;

(i1) If f; <1, then i is transient and Y . Opl(ln) < 00,
In particular, every state is either transient or recurrent.

Proof. Tf f; =1, then

P;(V;=00) = lim P;(V; >r) = lim f/ =1.
The first equality follows from {V; = oo} = N2 {V; > r} and the fact that probability
measures are continuous from above, meaning that if P is a probability measure and

if (Ap)new is a family of events such that A; o Ay o A3 5 ..., then lim,_ . P(A4,) =
P(npewAy). The second equality follows from Lemma 2.3.2. Thus, ¢ is recurrent and

prf) ] = oo.

If f; <1, we have

Zp(n) 2 (Vi>r)= Zf— 1f1 00.
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The key point here is the convergence of the geometric series. If the event {V; = oo} had
a positive P;-probability, then E;[V;] would be infinite. Hence, P;(V; = 00) = 0 and i is
transient. ]
This result allows us to provide simple criteria for recurrence/ transience. The criteria
we are about to develop hold for an arbitrary countable state space FE, but they are
particularly helpful if the Markov chain evolves on a finite state space. First, we show
that recurrence/ transience is a property shared by all members of a communicating class.

Theorem 2.3.4 Let C' be a communicating class. Then either all states in C are transient
or recurrent.

Proof. Take i,7 € C' and suppose that ¢ is transient. In order to prove the theorem, it
is enough to show that j is transient because every state is either transient or recurrent.
Since i <> j, there are n,m € IN such that pl(.;) > 0 and pj.;”) > 0. As a corollary of the
Chapman—Kolmogorov equation, we have the estimate

pz(zn+7+m) > pz(jn)pg';)pj(;m)’ relN.
This should also be clear on a more probabilistic level: On the left, we have the probability
of going from ¢ to ¢ in (n+ 7+ m) steps. On the right, we have the probability of going
from 7 to i in (n+r+m) steps AND of being at j after n steps AND of being again at j
after another r steps. The inequality above yields the estimate

(r) - (n+r+m)
Z pjj < n) (m ’
i p( ) (m) 2

) ]l

Since state i is transient, part (ii) of Theorem 2.3.3 implies that the series on the right
converges. Hence, the series on the left converges as well and j is also transient, again by
Theorem 2.3.3. a

We can therefore speak of a recurrent or transient communicating class (or Markov chain/
transition matrix if it is irreducible).

Theorem 2.3.5 FEvery recurrent communicating class is closed.

Proof. ~ We show the contraposition: Every communicating class that isn’t closed is
transient. Let C' be a communicating class which is not closed. Then, there exist i € C'
and j ¢ C such that 7 - j. In particular, there is m > 1 such that pg”) > 0. Since j is
not in the same communicating class as ¢ and since ¢ — j, we necessarily have j + ¢. This
implies

P;({X,, = j} n{X, =i for infinitely many n}) =0

which, in light of p{" > 0, can only hold if

P,({ X, =i for infinitely many n}) < 1.

18



As a result, 7 is transient. 0

Theorem 2.3.5 states that any recurrent communicating class is closed. How about
the converse statement? Is it always true that any closed communicating class is
recurrent? When we discuss recurrence and transience for the simple random walk on
7. in the following section, we shall see that this is not the case. However, we can
turn Theorem 2.3.5 into an "if and only if"-statement if we restrict ourselves to finite
communicating classes.

Theorem 2.3.6 Fvery finite closed communicating class is recurrent. In particular, a
finite communicating class is recurrent if and only if it is closed.

Proof. Let C be a closed and finite communicating class of a Markov chain X whose
initial distribution o satisfies «o; = 0 if ¢ ¢ C. Let us first show that there exists a state
1 € C such that

P(X,, =1 for infinitely many n) > 0.

If this wasn’t the case, we would have

0= ZC:YIP(X" =1 for infinitely many n) = IP(L%{X” = i for infinitely many n}).

But since X starts in C' and since C' is closed, each random variable X, takes on values
only in C. And since C is finite,

P(|J{X, =1 for infinitely many n}) =1,
ieC

a contradiction. Let ¢ € C such that
P(X,, =i for infinitely many n) > 0.

Since {X,, =i for infinitely many n} = {X,, =i for infinitely many n > T;}, we can write
the probability on the left as

P(X7,+pn =4 for infinitely many n | T; < 00)IP(T; < 00).
By the strong Markov property,
P(X71,+n =1 for infinitely many n | T; < 00) = P;(X,, = ¢ for infinitely many n).

Thus, the probability on the right is positive and ¢ is recurrent. O
It is relatively easy to spot closed communicating classes, so determining whether a finite
communicating class is transient or recurrent is usually not hard.

Corollary 2.3.7 If E is the finite state space of a Markov chain, it can be uniquely
partitioned as
EZIUElLJEQU---UEm,

where I is the set of all transient states and E1, Es, ..., E,, are the closed communicating
classes.
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The following theorem is often useful.

Theorem 2.3.8 Suppose P is irreducible and recurrent. Then, for all j € E, we have
P(T; < ) = 1.

Notice that we are not making any assumptions on the initial distribution.
Proof. By the law of total probability,

IP(Y} < OO) = ZO[ZIPZ(YB < OO)
el
Thus, we only need to show P;(7}; < o0) =1 for all i € E' with «; > 0. Fix such ¢ € E. Since
P is irreducible, there is m € IN such that pg") > (0. As j is recurrent,

1=P,(X, = for infinitely many n)
=P;(X,, =j for some n>m+1)

= Y P;(X, =7 for some n>m+1| X, = k)P;(X,, = k).
keE

Let k € £ such that PP,;(X,, = k) > 0. By the Markov property and homogeneity, (X, m )nen
is Markov(dy, P) under P;(e | X, = k). Hence,

P;(X,=jforsomen>m+1|X,,=k)=DP(T; <o0).

This gives
1= Pp(T} < oo)pg.zl).
keE
As ZkeEpg.’:) =1, we have Py(7; < 00) =1 for all k € F with pﬂ") > 0. In particular,
IPz(Ty < OO) =1. g

Example 2.3.9 Recall Example 2.2.9(b):
1/2

with communicating classes {1,2,3}, {4}, and {5,6}. Since only {5,6} is closed, this is
the only recurrent communicating class. The communicating classes {1,2,3} and {4} are
transient.

The only interesting case left is then the case of communicating classes that are infinite
and closed. A priori, such communicating classes could be recurrent or transient, and we
will see in the next section that both of these situations occur.
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2.3.1 Recurrence and transience for classical chains
Simple random walk on Z

Recall that a simple random walk on 7 is a Markov chain with transition probabilities

D y=z+1
P(Xn+1:y|Xn:$): l-p y=2-1,
0 otherwise

where p € (0,1). As we assume p € (0,1), this Markov chain is irreducible. Suppose
we start at 0, then p(2”+1) = (0 for all n. The fact that simple random walk starting
at 0 never returns to 0 at odd times is often a source of minor and at times of major
technical difficulties when dealing with it. Any given sequence of 2n steps from 0 to 0
has probability p*(1 - p)™, provided of course that we always step to a nearest neighbor.
The total number of such sequences is the number of ways to choose n steps (say the ones

taken to the right) out of 2n. Thus,

Py = (2:)p”(1—p)”=i2,))2(p(1 )"

We will use Stirling’s approximation to n!, which states that

) nlen
lim — =1.
n—=>o |\ /omrn nh

With this we obtain om)
_Poo v
im —————— =
n=ee (dp(1 - p))”

In particular, there are constants 0 < ¢ < C' such that
dp(1-p))" n dp(1-p))"
4p(1-p)) gpgﬁ)sc( p(1-p)) ’

vn vn

In the symmetric case p =1/2, 4p(1-p) =1, so

n € IN.

n - 1
Zp@) = oo,

=N

showing with Theorem 2.3.3 that the one-dimensional simple symmetric random walk is
recurrent.
If p # 5, then 4p(1 - p) =r <1 and thus

Thus the asymmetric simple random walk is transient.
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Birth and death chain on N

On IN, consider a simplified version of the birth and death chain with transition
probabilities

p; 121, j=i+1,
pij=1l-p, ix1, j=i-1, (2.7)
1, i=0, j=1,

where p € (0,1). We can think of this Markov chain as a simple random walk on IN that
is reflected at 0. Just like the simple random walk on Z, it is irreducible. For k£ € IN, let
u(k) =Pp(X,, #0 Vn e IN). The chain is recurrent if and only if u(k) = 0 for all k € IN:
If the chain is recurrent, we have

Pu(Tp<o0)=1, ke,
by Theorem 2.3.8. Therefore,
u(k) =Pg(To=00,Xg#0) <Pp(Tp=00) =1-Pp(Ty < o0) =0.
Conversely, if u(k) =0 for all £ € IN, we have in particular u(1) =0, so
0=P(Tp = 00, X # 0) = P, (Tp = 00) = 1 - Py (T} < o0).

With pg; = 1, we obtain
IP()(TO < OO) = IPl(TO < OO) =1

and recurrence follows with Theorem 2.3.3. Clearly u(0) = 0, and moreover

U(k) :pkk,llPk(Xn;tO VTLEIN|X1 :]{]—1)+pkk+1IPk(Xn:/:O VnEIN‘Xl :]{I-’rl)
=(1-plu(k-1)+pu(k+1), k>1.

After rearranging terms, this gives

ke ) =00 = L) -tk - 1) = (L) - o) = (L) i,

p D

Using telescopic summation,
k 1 -p 7
(k1) = (u(k+ 1) —u(k)) + (u(k) —ulk-1)) +-+ (u(D) ~u(0)) = u(1) (T) L (28)
3=0
Suppose now that p < % In this case, the series
(50
j=o\ D
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diverges. Thus, if u(1) was strictly positive, the sequence u(1) ¥ ;. 0(1 =£)J on the right
side of (2.8) would diverge to oo as k — co. However, the sequence u(k: +1) on the left
side of (2.8) is bounded by 1 because every u(k) is the probability of some event. This
implies u(1) = 0, and on account of (2.8) then even u(k) =0 for all k € N. As a result,
the chain is recurrent if p < %

In tutorial, you were also asked to show that the chain is transient if p > % One way of
doing this is by comparison to the simple random walk on Z.

Simple symmetric random walk on Z¢

For d > 1, we consider the simple symmetric random walk (SSRW) on Z<, the Markov
chain X on Z¢ with transition probabilities

s ly-zfi=1
P(X,1 =yl X, =2) ={2¥
(K1 =yl ) {O, otherwise

Here, |- |1 is the 1-norm on RY defined by |v|1 = |v1| + ... + |vg|. In words, if X is at a
point x € Z<¢ at time n, it jumps to one of the 2d nearest neighbors of z on the lattice Z
at time (n + 1). The Markov chain X is irreducible, and ¥ 7, pz(z” ) = Yo poo ) for every
i€ 74

We have already shown that X is recurrent if d = 1. Next, we consider the case d =2. As
in the one-dimensional case, it is impossible for the SSRW in two dimensions (and in fact
in any dimension) to move from 0 to 0 in an odd number of steps. In order for it to move
from 0 to 0 in exactly 2n steps, the number of steps to the left must equal the number of
steps to the right, and the number of steps up must equal the number of steps down. For
0 <1 < n, suppose there were i steps taken to the left and right, and n — ¢ steps up and
down. The number of admissible paths of length 2n from 0 to 0 is thus given by the sum
of multinomial coefficients

gzo(i,i,n " 1, n—z) zn: Zilil(n Eigll)(‘n_z)u

1=

As each path has the same likelihood 472" (where 4 comes from 4 = 2d), we have

=S e -GS0 () = e

n/)ig\i n

for some ¢ > 0. In the last step, we used Stirling’s formula. The second to last step is
easiest to understand if we interpret the binomial coefficients combinatorially: The term

()

n

gives the number of ways of choosing n balls from an urn with n red and n blue balls.
For every choice we make, there is some i € {0,1,...,n} such that i of the chosen balls are
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red and n —i of the chosen balls are blue. The estimate in (2.9) implies Y, pg") = 00, SO

SSRW in dimension 2 is recurrent as well.
For d = 3, we have

2
(2n) —2n (2n)' —2n(2n) -2n ( " )
CON _en) L, 3 -
00 Z (ilg'k!)? n i,j,kem;rﬁk:n 07,k

i,j,keN,i+j+k=n
2n n n
:2‘2”( 37 max N K > B
n ’L,j,kJEIN,Z+]+kJ=n Z,j, k i,j,ke]N,iJerrk:n Z,j, k

Next, observe that
n

S (i)
i, kelN i+j+k=n i, 7,k

because both terms give the number of ways of placing n balls in three boxes. For the

case where n = 3m, we have
. . = S 9
i,5,k) ikl T \m,m,m

SO 5 o
i sz, e
n m,m,m n2

by Stirling’s formula. Hence Y ,°_, p(()gm) < o0, by the comparison test. On the other hand,

p(()gm_Q) < 62p(()gm) and p(()gm_4) < 64p(()gm), so we must have

Z p(()g) < 0.
n=0
This shows that SSRW in three dimensions is transient.

Remark 2.3.10 For the d-dimensional SSRW, the probability p(()%)n) is of order ns. As
the series Yoo, n~s converges for all d > 3, SSRW is transient in any dimension d > 3.

2.4 Stationarity

Definition 2.4.1 Let w be a probability measure on E. Since E s countable, such a
probability measure can be identified with a vector of |E| components that are nonnegative
and sum up to 1. We call m invariant measure or stationary distribution of a Markov
chain with transition matrix P if

T = Zﬂ'jpji, 1e b

JjeE

This means that m =P, i.e. 7, viewed as a row vector, is a left eigenvector of the matrix
P to the eigenvalue 1.
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Remark 2.4.2 If 7 is an invariant measure, the following holds.
1. m=7nP"™ for any n,

2. If Xo has distribution w, then X, has distribution © for any n € N. This is the
reason we call m invariant. To see this fact, observe that

Po(X1=i)=> mP(Xi=i|Xo=j)=) mpji=m.

jeE jeE

Here, P, is the law of a Markov chain in Markov(rw, P).

2.4.1 Long-run proportion of number of visits

Recall the total number of visits to state j € E, V; = Y72, 11x,-j;, and define the number
of visits up to time n—1 (n >1) by

n—1
VI =3 1.
k=0

The next theorem gives the long-run proportion of time spent by a Markov chain in each
state.

Theorem 2.4.3 Let X be an wrreducible Markov chain. P—almost surely, we have

Remark 2.4.4 In the theorem above, T; denotes the first passage time of state j. (Recall
that T; =inf{n > 1: X,, = j}). The term 1/E;T; should be interpreted as 0 if E;T; = oco.

Proof. If the Markov chain is transient, then V; is P-almost surely finite and thus

V'(”) i
2 < E - 0= L , P-a.s.
n n ;T

Let us now consider the recurrent case and define the rth passage time Tj(r) and the length
of the rth excursion S ](.T) as before. Since the Markov chain is irreducible and recurrent,
a stronger version of Theorem 2.3.8 states that P-almost surely, Tj(r) < oo for every r € IN.
By Lemma 2.3.1, the random variables (Sj(.r))rzl are thus independent and have the same
distribution under P as 7; under P;. For k£ € IN, we have Tj(k) = Zle SJ(T). By the strong

law of large numbers, P-almost surely,

"

k—o00
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7
Fix w € Q such that limy_ . # = [E;T;. To finish the proof of Theorem 2.4.3, it is

enough to show that

li V) = (2.11)
1111 Su < .
and -
V" (w 1
lim inf 2 ( ) (2.12)

n—00 n E T

T
Let M € (0,E;T;). Then, there is n(1) € N such that ~—— ( ) > M for all n » n(1). This

implies T( )(w) >[Mn], n>n(1). Here, [z]| denotes the smallest 1nteger greater than or
equal to x. Notice that V( ™ <k if and only if T( ) > n. Therefore, V (w) <n for all
n>n(1). Hence,
V'[Mn]
G < si, n>n(l).

Now, let & > [Mn(1)]. Then, there are n > n(1) and [ € {0,...,[M]} such that k =
[Mn]+1. With this representation,

J

O M@t Vi)

+ :
k= [Mn]+l = [Mn] [Mn]
As lim,,_, oo [[]\]‘4{11 =0, we have
A
im su —
n—>oop n M
As & > 1= can be chosen arbitrarily close to = T T , we deduce (2.11). The proof of (2.12)
is s1m11ar. We leave it to you as an exercise. ]

Corollary 2.4.5 If X is an irreducible Markov chain, we have

lim — Zp(k) —, jekFE.

Proof. Since ]V](n)/n| < 1 and Eilx,-; = pfj), this follows from the dominated
convergence theorem. O

Definition 2.4.6 We call a state j € E positive recurrent if (i) it is recurrent and (i) it
has finite expected return time, i.e.

]EjTj < 090.

We call j null recurrent if it is recurrent, but not positive recurrent.
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Example 2.4.7 On the state space E = IN, consider the Markov chain (X, )ney with
transition probabilities
L 1>0, j=1-1,
Pi=p,  i=0, j>o0.
Here, (p;)js1 are given real numbers in [0,1]. We would like to identify conditions on
(pj)j=1 under which the Markov chain is (i) irreducible, (ii) recurrent and (iii) positive
recurrent.

First, observe that the Markov chain is irreducible if and only if the set {j >1:p; >0} is
unbounded. If X 1is wrreducible, then it is recurrent because

IPO(TO < OO) = Zp]IP](TO < OO) = Zp] =1.
j=1 J=1

If X is not irreducible, the chain has transient states as well. As X cannot stay at 0, we
have Py(To =1) =0 and thus

EoTo =) jPo(To=7) =Y jpjis1=>.(G+)p; =1+ jp;.
7j=2 7j=2 =1 =1

If X321 jpj < oo (e.g. pj=372), 0 (and thus X, as we’ll see later) is positive recurrent, and
if Y521 Jpj =00 (e.g. pj=j2), 0 is null recurrent.

Our immediate goal is to relate the concepts of positive recurrence and null recurrence to
the question whether a given Markov chain has a unique invariant measure.

Theorem 2.4.8 Let X be irreducible and let ™ be an invariant measure of X. Then, X
s recurrent and
jekE.

71']':

E;T;
In particular, there exists a state that is positive recurrent.

Proof. For any n>1,
1 n—1

o 2 (TP = 2 mie Z Py’

el
by invariance of 7. For i € F| Corollary 2.4.5 y1elds

lim — L nz:lp(k)
n—o00 n ]
Thus,
1 T 1
lim — ) (7P%); = — )
oo kz:;) ’ IEZE E;T; BT

Since 7; does not depend on n, m; = ﬁ Any state j € EZ such that 7; > 0 is therefore
77

positive recurrent and in particular recurrent. Irreducibility of X then implies recurrence

of the entire Markov chain. O
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Remark 2.4.9 We have just shown that if an irreducible Markov chain has an invariant
measure, then the invariant measure is unique, i.e. there is not more than one invariant
measure. It could happen, though, that an irreducible Markov chain has no invariant
measure at all.

Lemma 2.4.10 If an irreducible Markov chain X 1is recurrent and if i € E is positive
recurrent, then, IP—almost surely,

I; i _ Hil&k=0 H{Xk=j) e E.

Proof. Since X is irreducible and recurrent, we have lim,, Vi(") = oo, IP—almost surely.
For any realization of the Markov chain with lim,, V;(") = oo, there is N € IN such that

Vi(") > 1 for all n > N. For such n, we have

T;-1
2 Tones (2.13)

V.(n) . Vi(”)—lTi(”l)—l

> 2 Lixep (2.14)

" Vi(n) =L g ®

n-1

1
SR S e
W)
k=T. *

V(")

(n)
where we also used that Ti(vi Yen-1 by definition. Since Zgigl L;x,-j; does not depend
on n, the term on the right side of (2.13) tends to 0 as n - oco. By Theorem 2.4.3 and
our assumption that X is irreducible, we have P—almost surely

(2.16)

Recurrence and irreducibility of X also imply that the random variables

Ti(l+1)_1

Z@ Lix=1, 0> 1,
k:Ti

are independent and identically distributed by virtue of Theorem 2.3.8 and the strong
Markov property. By the strong law of large numbers,

el T(l+1) 1

T-1
lim — Z Z Lixy=50 = z[];) H{Xk:j}], P-a.s.

TENEL O
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As lim,,_, o V;(") = 0o, P—almost surely, we also have

ARy

1 Ti—l
E&VW IS ﬂmﬁnf&[;ﬂmwﬂy P-a.s.
=0

Fl g®

So far, we haven’t used the assumption that ¢ is positive recurrent. This is needed now:

As i is positive recurrent, ET T >0 and

T;-1
E[ZHWHJSEE<W
k=0
Hence, as n — oo, the term in (2.14) converges P-almost surely to

Ei[ Y5 1ix,-}]
I, T; '

By definition,

(vi(")u)_

1 n-1 V(”) 1 T;
" 2. hmw<7lvm 2. Lixiss)
™) ' ™)
k=T, =T, *
v vm vim o
L B T e g L o)
Vil = g =1 g=r®

Thus, the strong law of large numbers implies

V(”) Tz’(l+1) 1 V(") 1T(l+1) 1
Y R R TR S )b W
Vil =L g Vi =1 e ®

-1 -1
:Ezlz H{Xk:j}] —Ellz H{szj}] =0, P-a.s.
k=0 k=0

Together with (2.16), this implies that the term in (2.15) converges to 0 P—almost surely
as n — oo. This finishes the proof. O

Theorem 2.4.11 If a Markov chain is irreducible and has a positive recurrent state, then
every state is positive recurrent and

1

B@ Y =10

’/Tj =
is the unique invariant measure of the chain.
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Proof. Since the Markov chain is irreducible, Theorem 2.4.8 implies that if there is an
invariant measure, it is unique and has the form of (2.17). We still need to show that
positive recurrence of one state of an irreducible Markov chain implies positive recurrence
of all states, and that (2.17) defines in fact an invariant measure. Let ¢ be positive
recurrent and j € B\ {i}. Irreducibility gives s,7 € IN such that pgf)pf;) > 0. As we saw in
the proof of Theorem 2.3.4,

]' T S T S
LS L

Letting n — oo, we have
1 pﬁf)pff )

E,T; - E/;

by virtue of Theorem 2.4.3. (For the term on the left, we used
1 r+s—1 1 r+s+n-1

_Z (r+k+s) _ Z p(k) Zp(k) Z pr)7

T =0 k=n

>0

where the first and third term on the right tend to 0 as n - c0.) Since E;T; < oo, the
state j is positive recurrent.
The only points left to check are that 7 as defined in (2.17) is a probability measure (i.e.
that its components sum up to 1) and that 7 is invariant under the transition matrix
P. Fix any state ¢ € E. Since the Markov chain is positive recurrent, Theorem 2.4.3,
Lemma 2.4.10 and uniqueness of the limit imply

L B3 L]

= e E.
ET , Je

Hence,
e BN Y] BilERS Sies Lixss)]

= = =1.
jEZE " E.T, BT,

To prove invariance of 7, fix j € £ and choose any i € E \ {j}. Then,
T-1 o0 T,-1
B[ Ti]m; =1 LZ H{XH}] = B [Z Litizn) Z ﬂ{Xk:j}]
-0 = —
oo n—1 =) oo
[ 55t | B[ 5§ dinon] - E R =gk <)
k=0

k=0n=k+1
(2.18)

If k=0 we have P;(X), =j,k <T;) =0, and if k =1 we have P;(Xy = j,k <T;) = p;;. Now,
suppose k> 2. As i # j, we have P;(Xy =4, T; = k) =0. Thus,

Pi( Xy =4, k<T)=Pi(Xp=j,k-1<T}) = > Pi(Xp=4j,Xee1=Lk-1<T)).
leE\{z}

30



All this shows that the term at the very right of (2.18) equals

pz]"'z Z Xk—j,Xk1=l]€ 1<T)
k=2leE~{i}

:pz'j"'z Z Pi( X1 =lk-1<T)Py(Xy=j | Xp1 =1,k - 1<Tj). (2.19)

k=2leEx{i}
For 2< k< oo and [ € E'\ {i}, we have
IPi(Xij‘Xk_l Zl,k—1<T'i) ZIPi(Xk:j’Xk_l :l,Xk_Q ii,...,Xl :/:Z) = Pij

by the Markov property. As a result, the term on the right side of (2.19) can be written
as

Z Xkl—lk? 1<T)plj
leE\{z} =2

:Ez[ﬂ]ﬂ-zng + Z Z IPI()(]C = l, k < E)plj
leEx{i} k=0

:E 7sz7,j Z E 71-lpl]
leE~{i}

=[] ) mp;-

leE

Dividing by E,;T; shows that 7 is invariant. O

We now summarize several previous results for irreducible chains.
(1) There exists an invariant measure if and only if there exists a positive recurrent state.

(2) In this case, every state is positive recurrent, and the invariant measure is 7; = (I£;7;)*,
1eF.

Remark 2.4.12 Let X be an irreducible Markov chain on a finite state space. As an
exercise, show that X 1is positive recurrent. Hence, any irreducible Markov chain on a
finite state space has a unique invariant measure.

Remark 2.4.13 710 find invariant measures © of a transition matriz P, one can:

1. Solve the eigenvector equation mP = for a vector m with nonnegative entries that
satisfies Y, cpmi = 1.

2. Try “detailed balance”: see if there erists m = (7;);ep with nonnegative entries and
Yice ™ = 1 such that mp;; = mjp; for any 1,5 € E. This is often easier to solve
than 7 = Ycp mipij, 7 € B, and it is a sufficient condition for m being an invariant
measure. However, not every invariant measure satisfies detailed balance (see Ez. 2
on Série 5).
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3. Intuition.

Example 2.4.14 (Birth and death chain on N) Recall the transition probabilities of
a general birth and death chain on IN:

D, j:i+1
P (X1 = j|Xn =) =47, Jj=i q =0, pit+qi+r;=1 (2.20)
qi, j=2.—1

To simplify the ensuing analysis, we will also assume that q, >0 for allmn >1 and p, >0
for all n e N. This guarantees that the chain is irreducible. If m is an invariant measure,
then it must satisfy

Tn = Tp+1Gn+1 + Tp-1Pn-1 + 7Tn(]- —Pn— Qn)a n2z 17
SO
Tn+19n+1 — TpPn = Tpln — Tp-1Pn-1 = *** = T1q1 — ToPo-

But mg = morg + m1q1, i-e. mo(1—ro) = mq1 and mopo = m1q1. Combining this, we obtain
Tndn — Tp-1Pn-1 = 0 Vn>1

Hence,
Wn:ﬂn_lpn_l =... ZWOM, n>1. (2.21)
dn qi---Q4n
According to what we have discovered before, the chain is positive recurrent if and only
if it admits an invariant measure. In light of (2.21), this is in turn equivalent to the

existence of my >0 such that

N N
To+mg ) ——— =1

The series on the right converges if and only if p < % In this case, the entire term on the
right equals

2-2p
ToT 5
1-2p
which is 1 for my = %. The invariant measure of the birth and death chain in case p < %
s thus -
nT) 1-2 "
ks (&) . nxl

Ifp> %, there is no invariant measure. By our existence result for the invariant measure
of an irreducible Markov chain, the birth and death chain is positive recurrent if and only
ifp< % If p= %7 the chain is null recurrent.
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2.4.2 Periodicity

In order to discuss under which conditions a Markov chain converges in law to its invariant
measure, we need the notion of periodicity that we introduce in this subsection.

Definition 2.4.15 The period d; of a state i € E is the greatest common divisor of

{r>0 ) > 0}. If d; = 1, we say that the state i is aperiodic.

0

Example 2.4.16 Consider the two-state Markov chain with transition matrix

0 1
p- (1 0).
For any n € N, P?" is the identity matriz, and P?>"*1 = P. Thus, forie {1,2}, pg) >0 if

and only if r is even. It follows that {r >0 : p(?")

i > 0} is the set of even positive integers
and that d; = 2. In particular, neither of the two states is aperiodic. Also notice that
the sequence of matrices (P™)qn does not converge as n — oo. If a Markov chain is not
aperiodic, the initial distribution still has a noticeable effect on the distribution of X,, for

large n. In other words, we never forget where we started from.

Theorem 2.4.17 Ifi <> j, then d; = d;. In particular, if the Markov chain is irreducible,
then there exists d > 1 such that d; = d for all 1 € E. The integer d is called the period of
the Markov chain. If d =1, then the Markov chain is called aperiodic.

Proof. Ifi=j, the statement clearly holds, so we may assume that ¢ # 5. Sincei — 7, j > ¢
and ¢ # j, there exist m,n > 1 such that pg»n) >0 and p§?) > (0. By Chapman-Kolmogorov,
it = 2 e 2 e > 0.

keE

Since d; is a divisor for every r > 0 such that pl(»;) > 0, it follows that d;|(m +n). Now, let
r > 0 such that pgg) > 0. Then,

This implies d;|(m + r + n), and hence d;Jr. We have thus shown that d; is a common
divisor of {r > 0 :p§.§) > 0}. As d; is the greatest common divisor of this set, we have
d; < d;. Reversing the roles of 7 and j gives the desired equality. O

Lemma 2.4.18 Let t be a positive integer and let n € IN. If pgft) >0 and p(ml)t

pgft) >0 for every integer v >n(n-1).

>0 then
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Proof. Let us first discuss the case n = 0. In this case, p;;” >0, so

P> ()" > 0.
Now, suppose n > 0. Then, any v > n(n-1) can be written as kn+w, where 0 < w <n-1< k.
Adding and subtracting wn, we obtain

v=(k-w)n+w(n+1).

Thus,
pl(lvt) > p;’(k—w)nt)pz(n+l)t > (pl(lnt))k;_w (pgwl)t)w S 0.

a

Remark 2.4.19 Lemma 2.4.18 implies in particular that if there is t > 1 such that pl(-f) >
0, then pgivt) >0 for every v e N.

Theorem 2.4.20 The state i is aperiodic if and only if there is ro > 0 such that pg) >0
for all r > rg.

Proof. A set of integers that contains all but finitely many integers only has 1 as common
divisor, so it is clear that a state ¢ with pg) > 0 for every r > rg is aperiodic. For the

converse implication, we will show that there is n > 0 such that pz(zn ) and pl(ln *1'5 0. This
fact, together with Lemma 2.4.18 with ¢ = 1, yields the desired result. Let us suppose

there is no n such that pgb),pgfﬂ) > 0, and derive a contradiction. Under this assumption,

c:=inf{r—s:r>s,pg) >0,pt? >0} > 1.

0

Then, we can show that there is some large ng such that pgfc) > 0 for all n > ng: By

definition of ¢, there is n € IN such that p;"),pgf“) > 0. Thus, p;.“) > (jogl))C > 0 and
pgf(nﬂ)) = pz(»i(c*l)mmc)) > (pz(?))cflpg?w) > 0. This lets us apply Lemma 2.4.18 with ¢ = c.
(mc+v)

Next, we show that there are m > ng and v € {1,...,¢— 1} such that p,

i

> (0. Since
¢ > 1 and since d; = 1, there is r > 0 such that pg) > 0 and such that ¢ does not divide

r. (Otherwise ¢ would be a common divisor of {r > 0: pg) > 0} that is greater than the
greatest common divisor.) Let N € IN be so large that Nr > ngc, and assume further that c
does not divide Nr. (As ¢ does not divide r, such N always exists, for otherwise we would
have for large N both ¢| Nr and ¢| (N + 1)r, which gives ¢ | (N + 1)r = Nr =r.) Then,

we can represent Nr as mc+v for m >ng and v e {1,...,c-1}. And by Remark 2.4.19,

(NT) (me) (mc+v)

p;; > 0. As aresult, p;; ", p;; >0 and (mc+v)—-mec = v < ¢, which is in contradiction

with the definition of c. 0
A careful inspection of the proof shows that we have actually verified the following number-
theoretic result: If S c IN\ {0} has greatest common divisor 1 and is closed under both

addition and multiplication by numbers ¢ € N\ {0}, then S contains all but finitely many
elements of IN \ {0}.

34



Remark 2.4.21 Ifie E such that p; >0, then the state v is aperiodic. If an irreducible
Markov chain has a state ig € E such that p;,;, > 0, then the entire Markov chain is
aperiodic. However, the converse is wrong: there are aperiodic irreducible Markov chains
that satisfy p; =0 for all i, for example the chain with transition matrix

0 1/2 1/2
p=1/2 0 1/2
1/2 1/2 0

2.4.3 Convergence to the invariant measure

Theorem 2.4.22 Let (X,)new be a Markov chain that is irreducible, positive recurrent
and aperiodic, with some initial distribution a. Then, for any 1 € E, we have

lim P(X,, =i)=m >0,
n—oo
where T s the unique invariant measure of X.

Remark 2.4.23 If P is irreducible, aperiodic and not positive recurrent (i.e., transient
or null recurrent), then
lim P(X,=i)=0, ick.

In the transient case, this is an easy exercise. For the null recurrent case, see Theorem
1.8.5 in Norris’s textbook. If P fails to be aperiodic, the sequence P(X, = i) may not
converge as n — oo (see Example 2.4.16).

The proof of Theorem 2.4.22 relies on a technique called coupling. It was invented by the
French mathematician Vincent Doeblin, son of the famous German writer Alfred Déblin.
His Jewish family had escaped from Nazi Gerrmany to France in the 1930’s. To evade
capture by German troops in World War II, Doeblin committed suicide at the age of 25.

Remark 2.4.24 (See also Ex. 6 on Série 3)

Let o be a probability measure and let P be a stochastic matriz with respect to a countable
state space E. We can assume without loss of generality that E = . (This should
be clear if E is infinite. If E is finite, define a new probability measure & on IN by
assigning probability 0 to every state that is not already in E; similarly, define an infinite-
dimensional stochastic matriz P as the block-diagonal matriz with block P in the upper
left corner and an infinite-dimensional identity matriz in the lower right corner.) We can
construct a Markov chain X ~ Markov(a, P) on E as follows:

1. Choose a random variable Xy with law o;

2. Let (Up)ns1 be an i.i.d. sequence of random variables that are uniformly distributed
on the interval [0,1] and live on the same probability space (2, A, P) as Xo. We then
construct the random variables (X, )ns1 inductively: Suppose the random variable
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X, is given, and we want to construct X, 1. Fiz w e Q, and set x = X,,(w). We set

Xn+1(w) =14 Un+1(w) € [07pac,1)7 Xn+1(w) =2 if Un+1(w) € [pac,lapx,l +px,2): and so
on.

Proof.  (of Theorem 2.4.22) The main idea of coupling is to construct two copies of the
Markov chain that have a very particular joint distribution. Let (U, )ns1 and (U/)u»1 be
two i.i.d. sequences of random variables that are uniformly distributed on [0,1] and live
on the same probability space (€2, 4,P). Assume in addition that the sequences (U, )n»1
and (U] )1, viewed as stochastic processes, are independent of each other. Let X be a
random variable with law «, and let X = (X,,),en be Markov(a, P), generated from the
random variables (U, ),»1 as outlined in the previous remark. Then, let Y be a random
variable with law 7 (the unique invariant measure of P), independent of Xy, and let
Y = (Y)new ~ Markov(w, P) be generated from (U),»1.

First, observe that X and Y are independent because Xy and Yj as well as (U, ),»1 and
(U!)ns1 are independent. Next, note that Y, has law 7 for every n € IN because w is
invariant. In Série 6, we show that (X,Y) = (X, Yy)new is an irreducible and aperiodic
Markov chain on E x E. It is also positive recurrent since 7; ;) = m;m; is an invariant
measure. (Here, we use independence of X and Y.) Let x be any state in E, and let T{, ;)
denote the first passage time of state (z,z) with respect to the Markov chain (X,Y"). As
(X,Y) is recurrent, P(7{, ) < c0) =1, so in particular

T=inf{neN:X,=Y,} <T(p,) <o P-as.

In words, the two Markov chains X and Y meet in finite time with probability 1. Now,
we define a new Markov chain X’ = (X! ),y that corresponds to X up to the random
time T' of the first meeting of X and Y, and corresponds to Y after time 7. In a sense,
we force X and Y to stay together once they meet. Set X/ = Xy. For fixed w € €2, we
set X! (w) = X,,(w) if T(w) >n, and X/ (w) = Y, (w) if T(w) < n. It is then not hard to
see that X' is also Markov(a, P), just like X. The Markov chains X and X’ are the two
copies referred to in the first sentence of this proof. Because of how we defined X and
X', we have already fixed their joint distribution. For any n € IN,

P(X,=1)=P(X,=i)=P(X,=i,n>T)+P(X] =i,n<T)
=P(Y,=i,n>T)+P(X,=i,n<T)
=P(Y,=i,n>T)+P(Y,=i,n<T)+P(X,=i,n<T)-P(Y,=i,n<T)
=P(Y,=i)+P(X,=i,n<T)-P(Y,=i,n<T)
=m+P(X,=i,n<T)-P(Y,=4,n<T).

Since lim,, ., P(n <T) =0, it follows that lim,,_. P(X, =) = m;. O
Remark 2.4.25 What happens if P is not irreducible? If j is not positive recurrent, then
lim,, o P;(X,,=7) =0, i€ E. If j is posilive recurrent and aperiodic, then

lim IPZ(Xn :]) = WJIPZ(YB < ()O)7
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where T; s the first passage time for j and where m is the unique invariant measure
supported on the communicating class of j.

2.5 Applications in statistics

2.5.1 Metropolis—Hastings algorithm

Markov chains are the basis for many important methods in statistics. We will first
consider a way of generating random samples from a distribution.

Given a countable state space FE and some probability measure p on E with p; > 0 for all
1 € E/, the main idea for sampling from p is to construct an irreducible, aperiodic Markov
chain (X,,),s0 with invariant measure p. Once this has been accomplished, we can simply
start the chain at some arbitrary state j € E, and simulate transitions of the chain until
the distribution of X, is very close to p. More precisely, we use the result from Theorem
2.4.22 that

lim P(X, =1) = p;.

n—00

Therefore, for n large enough, the distribution of X,, should be close to p.
How to construct a Markov chain with invariant measure p?

Lemma 2.5.1 (Metropolis—Hastings) For any i€ E, let ¢'(-) be a probability measure
on E (called the proposal distribution) with ¢*(j) >0 if and only if ¢?(i) >0, i,j € E. The
Metropolis—Hastings algorithm constructs a Markov chain (X,)nen as follows:

1. Let Xy =19€ E be an arbitrary deterministic starting value.

2. Suppose that X, = i. Generate j from the proposal distribution ¢*, and let U be
uniformly distributed on [0,1]. Then we define X,,1 by

. if U <min {22@ 4
Xn+1 — ]7 f {piq (3)7 }7 (222)
1, otherwise.

If the Markov chain (X, )new is irreducible (e.g., if ¢'(j) >0 for all i,j € E), then it has
mvartant measure p.

You will be asked to prove this lemma in tutorial. The proposal distribution ¢* should
e be easy to simulate from;

e allow the Markov chain to efficiently cover the state space.
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Remark 2.5.2 e [t is important to note that in the Metropolis—Hastings algorithm,
the Markov chain (X, )new only depends on the ratio p;/p;, that is, the probability
measure p only has to be known up to a constant. Often, p; has the form h;|Z,
where (h;)iep are known and Z =Y;.p h; is a normalizing constant. If E is large, it
may be difficult to calculate Z explicitly even though we know the h;’s. Fortunately,
calculating Z is not needed because the chain in (2.22) only depends on h;/h;.

e The time period {0,1,... ,ny} until P(X, € -) is sufficiently close to p is called
burn-in time. The corresponding values Xy, ..., X,, have to be discarded since their
distributions differ too much from p. A suitable number ny is often determined by
wisual inspection of the chain.

o After the burn-in time, each X,, n > ny, has distribution close to p. Note that the
samples are however correlated, i.e. not independent. If independent samples of p
are required, then only every mth value of the chain should be taken, where m again
depends on the specific Markov chain (e.g., on the the proposal distribution in the
Metropolis—Hastings algorithm,).

e In this course we only consider Markov chains and Markov processes on countable
state spaces E. The theory of Markov chains and stationarity can be extended to
uncountable state spaces (which are usually assumed to be complete, separable metric
spaces), and the Metropolis—Hastings algorithm works in this setting as well (p and
the q'’s will then be densities).

2.5.2 Bayesian statistics

Let (pg)geo be a parametric family of probability density functions (in the continuous
case) or probability mass functions (in the discrete case) on R¢, with countable parameter
space ©. We further suppose that we have independent observations zq,..., 2, from the
distribution associated with py. In classical frequentist statistics, it is assumed that there
is a true, deterministic value 6, that generated the data, and there are numerous methods
to estimate this parameter, e.g. maximum likelihood.

In Bayesian statistics, one models the uncertainty about the underlying parameter as a
random variable on ©. In order to do so, one defines a prior distribution 7= on ©, which
incorporates the prior belief of the modeler about the parameter, without taking into
account any data (the prior can include also beliefs about the shape/structure of the
parameter). If now independent data z,...,z, from the parametric model {py: 0 € O}
becomes available, one updates this prior belief with the new information. The result
is the so-called posterior distribution on the parameter space ©, which is given as p(@ |
21,...,2n). By Bayes’ theorem,

_ T(Np(z1,...,2,]60) _ m(0) 1%, pe(zi)
p(21,..., %) p(z1,...,20)

p(0|z1,. .., 20)

)
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where p(z1,...,2,) = Ypeo P(21, - - -, 2n | )7 (6) does not depend on 6.

Generating samples from the posterior distribution is generally not possible in a direct
way. Instead, one simulates a Markov chain on the state space £ = © with invariant
measure p(f | z1,...,2,). Since the posterior is usually only known up to a constant, the
Metropolis—Hastings algorithm is one of the most popular methods to this end. Another
widely used method is the so-called Gibbs sampler. If one is interested in a point estimator
of the parameter, one can take for instance the mean of the posterior distribution.

2.6 Ergodic theorem

The ergodic theorem for Markov chains relates the time average of the Markov chain to
the space average with respect to the invariant measure.

Theorem 2.6.1 (Ergodic theorem) Let X be an irreducible, positive recurrent Markov
chain with invariant measure 7w, and let f: E - R be a bounded function. Then, P—almost
surely,

m L5 F(X0) = Bof = 3 £y

M k2o icE

Remark 2.6.2 For a Markov chain with i.i.d. random variables (X, )new, the ergodic
theorem (slightly generalized to unbounded functions) recovers the strong law of large
numbers: In the i.i.d. case, the invariant measure of the Markov chain clearly equals
the distribution of X;.

Proof. As f is bounded, there is ¢ > 0 such that |f(i)| < c for all i € E. Recall that
n-1
Vi =3 Lx, i€E,
k=0

and observe that

1 n—1 1 n—1 - V(n)
=Y F(Xp) == >3 Ly f(Xn) = D0 f(6) =
n 2o N 120 icE icE n
Hence,
1 n—1 V(") (n)
— Y f(X) -Ef| =D | =—-m | fG)| <> |——-ml.
n k2o e\ T ieE| M

For pedagogical reasons, let us first consider the simpler case that E is finite. By
Theorem 2.4.3 and Theorem 2.4.11, the set of w € €2 such that

V»(n)
lim ’—(w)zm, 1€l

n—oo n
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has probability measure 1 under IP. As F is finite, this implies for any such w

v<”>(w)

TL—>OO .

J-o

and the statement is proved. Now, suppose FE is infinite. Since 7 is a probability measure,
the infinite series Y, pm; converges to 1. Thus, for any € > 0 there is a finite subset J of
E such that

Z m>1—e.

ieJ
We have
AR V(n) (n) (n) (n)
Y- —m=z—-m+z <Z——m+z . (2.23)
iee| T e | T igJ ieJ igJ
Since ( ) ( ) (n)
—Zﬂ'l Z SZ : — T +Z7T’La
igJ T ik ieJ ieJ igJ
the term on the right side of (2.23) is less than or equal to
( ) ( )
22 +227r,<22 |+ 2e.
i€J i¢J 1€J
As J is finite,
v
lim Z ——m =0, P-a.s.
Thus,
(n)
lim sup Z <2, P-a.s.
n—=00 e
Since P is continuous from above, letting € | 0 yields the desired convergence. O
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Chapter 3

Markov processes

3.1 Continuous time Markov chains

Definition 3.1.1 A Markov process (or continuous time Markov chain) is a collection
(X (t))eer, of random wvariables with values in a countable set E. The index t often
represents time. Unlike Markov chains, here we have continuous time processes.

As for Markov chains, we will impose two conditions:

1. Markov property:
P(X(t+s)=7]X(u),0<u<t)=P(X(t+s)=7|X(t)), s,t>0,i,j€kFE.

2. Homogeneity:
P(X(t+s)=7]X(t)=1)=P(X(s)=7|X(0)=1)=P;(s), s,t20,i,j€kFE,

where the P;j(s) are called transition functions. This means that the finite dimensional
distributions of X are given by: for alln e N, 0 <ty <---<t, and all states ig,11,...,1, € B

P(X(tn) =in,..., X (t1) =11|X(0) =1dg) = Piyi, (t1) Piyiy(ta = t1) ... Pi, i (tn = tn1).

Remark 3.1.2 The set of stochastic matrices (P(t) :t>0) with P(t) = (P;;(t))ijer s a
semigroup, that is
P(s+t)=P(s)P(t), for all s,t>0.

This is the Chapman-Kolmogorov equation for the continuous-time case.
Proof.

Py(s+t) =P(X(s+t) =] X(0)=1)
= 3 P(X(s) = k| X(0) =) P(X(s+1) = j | X(s) = k)

keE

= Z Pi,k(S)Pk,j(t) = (P(S)P(t))ld

keE
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Remark 3.1.3 Let E; ~ Exp(X\;), ¢ = 1,...,n be independent exponential random
variables with rates \; € (0,00), i.e., P(E; <x)=1-e?%. Then

1. (E;-s)|(E; > s) is again Exp(\;) distributed (memoryless property).
2. BE(E;) =1/\;

3. min(Ey,...,E,) ~ Exp(A +-+\);

4. P(Ep=min(Ey, ..., E,)) = /(A +--+ ).

Example 3.1.4 The simplest example is on the state space E ={0,1}. When in state 0
we wait for a random exponential time Ey ~ Exp(\) with parameter X € (0,00) and then
jump to 1.

(Q-matriz)

Example 3.1.5 Take E = {1,2,3}. In state 3 take two independent exponential times
Ey ~ Exp(2) and Ey ~ Exp(4), if Ey is the smaller then go to 1 after time Fy, and if Es
is the smaller go to 2 after time Ey. Rules for states 1 and 8 are similar. The time spent
in state 8 is min(FEy, Ey) ~ Exp(2+4) (see Ex. 3, Série 1), and the probability of jumping
from 3 to 1 is2/(2+4)=1/3 (Ezr. 2, Série 1).

rg ()
2 l
e (Q-matriz)

Another way of thinking about the evolution of the Markov process X is in terms of its
() matrix which is known as the generator of the process.

Definition 3.1.6 (The Q-matrix) A matriz Q = ()i jer s a Q-matriz if it satisfies
1. q;; <0 forallie E;
2. ¢i; >0 for alli+j;
3. Yjerqij =0 for allie E.

The numbers ¢;;,j # ¢ can be intrepeted as follows: Being in state 7 we sample for each
other state j # 7 an exponential random variable £; with rate ¢;; and then jump to state
k e E after time Fj, if E) = min;.; E;, then the process starts afresh. Equivalently, we can
think as follows: Being in state ¢, the number d; = —¢;; = ¥,.;¢i; 2 0 is the exponential
rate with which the process leaves state i, and then jumps to state j with probability
Ej = ¢;;/0;. The matrix P is called the jump matrix of the process X.
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Example 3.1.7 (Poisson process) Let us define a stochastic process (N(t))so in the
following way. ForieIN, let E; be independent copies of an Exp(\) distribution. Define
T,=E+---+E, and

N(t) = Z 1{Tnst}7 t 2 O.
1=1

This counting process is called a homogeneous Poisson process with intensity X. It can be
used as model for the number of earthquakes, for instance. [picture/

o The Q-matriz of the Poisson process is given by q; = =X and ¢; 1 = .
e For eacht>0, N(t) has a Poisson distribution with parameter X\t (Ez.), that is for

all j e N

e (ALY
P()j(t) =€ AtT.
o (N(t))s0 is a Markov process, i.e., for any s > 0, conditional on N(s), (N(s+t))o0,
is again a Poisson process with rate \, started in state N(s), independent of (N(r) :
T2 s). We even have that the Poisson process is homogeneous in space, that is
(N(t))s0 = (N(s+1t) = N(5))0 s a Poisson process with rate A\ (started at 0),
independent of (N(r):7 > s). In fact, this even holds if the time s is replaced by a

stopping time T (strong Markov property).

Proof.
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It suffices to show the claim conditional on the event N(s) =1 for all i > 0. We have
{N(s)=i} ={T;<s<Ty1} ={T; < s} n{Ei1 >s-T;}.
On this event i
N(r) = Z; Lipyay, 1<,
i
and the holding times Ey, Es, ... are given by
Ey=Eiy—(s-T)), E,=FEj, n>2.

Condition on Fi,...,E; and {N(s) = i}, then by the memoryless property of FEj.,

and independence, Ei, Fy, ... are themselves independent Exp()). Since Ei,...E; are

independent of Fj,q,..., it suffices to condition on {N(s) = i}, such that Ey, E,,...
are independent Exp()), independent of Ey, ..., E;. Hence, conditional on {N(s) = i},
(N(t))es0 is a Poisson process with rate A and independent of (N(r) :r < s). O

Theorem 3.1.8 Let (N(t))i0 be a Poisson process. Then, conditional on the event
{N(t) = n}, the jump times Ty, Ts, ..., T, have the same distribution as an ordered
sample of size n from the uniform distribution on [0,t].

We refer to Theorem 2.4.6 in Norris for the proof.

Proposition 3.1.9 Let (N1(t))w0 and (Nao(t))wso be two independent Poisson processes
with parameters A1 and \a. The process M(t) = N1(t) + No(t),t > 0 is again a Poisson
process with parameters Ay + Ao.

Proof.  We use induction to show that the waiting time E; between the (i — 1) and ¢*»
jumps of M follows an exponential law of parameters (A; + A2) independent of the time
E; for all 1< j <1, we prove this for all ¢ € IN.

For i = 1, we have that 7} = E; = min{Sy, 52} where S; is the first arrival time of the
process (N;(t))is0, 0 =1,2. As S; ~ Exp(\;) for i = 1,2 and as S; and Sy are independent,
we have that T} = Fy ~ Exp(\ + Ay). Let us assume that Ey, -, E; are independent and
have the same law Exp(A; + A2). Using that T; = E; + --- + E; is a stopping time for N;
and Ny, we can use the strong Markov property

M(t) = M(t+T)=M(T;) = (N1 (t+T3)=Ni(T,)) +(Na(t+T3) = No(T2)) £ Nu () +No (1) = M (1).

The process (M(t))so is then independent of Ey, -, E;. Implying Ej,q :=inf{t >0 | M (t+
T;)-M(T;) > 0} inf{t >0 | M(t) > 0}. We finally get that Ej,; is an exponential variable
with parameter (A; + \y) and is independent of Fy,---, F;. ]
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Example 3.1.10 In a population of size N, a rumour is bequn by a single individual who
tells it to everyone he meets; they in turn pass the rumour to everyone they meet. Assume
that each individual meets another randomly with exponential rate 1/N. How long does it
take until everyone knows the rumour? If i people know the rumour, then N —1i do not,
and the rate at which the rumour is passed on is (Q-matriz)

Giiv1 =i(N—-9)/N, ie{l,...,N}.

The expected time until everyone knows the rumour is then

]V—l
1=1

N-1 N-1 N N-1 1
Z( - ~2log N,
i

N-1
EY. Bi- Y at = Y, i
i=1 i=1

i=1 1=1

®|;_|

as N — oo,

Note that the Strong Markov property extends to the continuous-time setting: for any
stopping time 7T for X and any state j € F/, we have

P(X(T+s)=7|X(u),0<u<T)=P(X(s)=4|X(T)).

We are now going to study the length of time that X spends in each state before the
next transition, and formally prove that it is exponentially distributed, using the Markov
property and the homogeneity property.

Definition 3.1.11 We define by W, the length of time the Markov process X remains in
the state being occupied at time t, that is,

Wiy=inf{s>0| X(t+s)+ X(t)}.
We then have the important

Theorem 3.1.12 Take a Markov process X. Then for all i € E, there exists 6; € [0, 00]
such that for all t,z >0,
P(W,> x| X(t)=1)=e%"

and therefore W,{ X (t) =i} ~ Exp(;).
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Proof. By the homogeneity property:

P(W, >z | X(t) =) = P(Wo >z | X(0) =) := fi().

Since the event {Wy > x + y} is equivalent to the event {Wy > 2, W, >y}, we have

fi(z +y)

P(Wo >z +y| X(0)=1),

P(Wy >z, W, >y| X(0)=1),

P(Wy> x| X(0)=i)P(W, >y | X(0)=1i,W,>x),
fi(@)P(W,>y| X(u)=i,0<u<x),

fi(x)P(W, >y | X(x)=14), (Markov property)
fi(@)P(Wy >y | X(0)=4), (homogeneity)
fi(x) fi(y).

The function f;(-) is bounded by 0 and 1 and satisfies f;(z+y) = fi(z) fi(y) for all z,y > 0.
Therefore it must be of the form f;(x) = 7% for some 0; € [0, o] (see also Serie 1, exercise

4(2)).

a

Note that we accept J; = +o0 to cover the case where W; = 0 with probability one. We
then classify the states as follows, depending on the value of 9;.

[ If0<6i<+001

P(W,<x| X(t)=i)=1-e7"

State ¢ is a stable state.

[ J If§z=0

P(W;<x| X(t)=14)=0 for all z>0.

Therefore W, = co with a probability 1, and ¢ is an absorbing state.

o If §;, = +o0:

P(W;<ax| X(t)=14)=1for all z>0.

State i is an instantaneous state (the process jumps of an instantaneous state as
soon as it enters it, but also returns to it infinitely often within arbitrarily short

times).

We will restrict ourselves to Markov processes with no instantaneous states.

Definition 3.1.13 A Markov process is conservative if all its states are stable or
absorbing. This is equivalent to each of the following:

(1) the function t — X (t) is right-continuous almost surely;
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(i)
11I(T)£ Pij(S) = (52]

Indeed, this follows since in this case
1=P(W,;>0| X(t)=1) :IP(lir(%X(t+s) =X(t) | X(t) =1)
= IP(lir(%X(s) =i| X(t)=1)= lir(% Pii(s)
A conservative Markov process stays a certain time in each state visited and does not
leave it immediately. We suppose from now on that the Markov process is conservative.

In the next section, we will study together the time spent in a state, the jumps between
states, and the times between jumps.

3.2 Jump chain

For a conservative Markov process with no absorbing state the jump times are defined in
terms of the holding times W, as

Ty =0, Ty =T, +Wrp,  forall n>0,

and we define the values of X at the jump times as

—

Xo=X(0), X =X(Thn).

X is the chain of the successive states visited by the Markov process X. It is called
the jump chain of the process X. This chain does not contain all the Markov process’
information: it does not record the length of time spent in each state.

In this section, we examine the underlying structure of X defined by the jump chain
X and the jump times T,,. We first prove that X is a Markov chain, and T,,,; — T}, is
exponentially distributed with rate depending on X,.

Theorem 3.2.1 For anyn >0, je E, and u e R",

IP(YTHl :j7Tn+1_Tn > U | XOa"'aynyTOF"uTn)
= IP(5(\n+1 :jaTn+1 =T, >u | X\n) (*)

Furthermore, if X, =1,
IP(XrHl :jaTn+1_Tn>u|X\n:i) :pij 6_&“7 (**)

where P is a stochastic matriz such that 1322 =0 if i is stable, and ]3“ =1 if i is absorbing.



Proof. Recall that P(Wy > u | X = i) = e %", For any n >0,

P(Xp1 =7, T -To>ul| Xo, ..., Xn, To, ..., T0)
=P(X(Ths1) =4, Tns1 - Tn>u| X(t),0<t<T),)
=P(X(Thi1) =7,Tn1 - T >u| X(T,)) (strong Markov property)
=P(Xpi1 =7 Tpir - T >u | X,)

which shows (*). Now, if X(7},) =1,

P(Xpo1 =, Toir - Tp > u| X, =)
=P(X(Wy)=4,T1>u| X(0)=i) (homogeneity)
=P(Wo>u|X(0) =0)P(X(Wo) =7 | X(0)=4,Wo>u)
= e P(X(Wy) =7 | X(t)=i forallt:0<t<u)
=e U P(X(u+W,) =7 X(t)=4,0<t<u)
= e UP(X (u+W,) =7 X(u)=1), (Markov property)
= e P(X (W) =4 | X(0)=4) (homogeneity)
= e 0P(X, = | Xy =1)

—_ 76iu'\
=€ Pij7
and we have shown (*x). O

Corollary 3.2.2 We have

(i) The jump chain X is a Markov chain with transition matriz P (putting u =0 in the
previous theorem,).

(ii) Given Xy, X1, ..., the intervals (Ty - Ty), (Ty = T1), ... are independent.

In other words, the times between transitions are conditionally independent of each other
given the successive states being visited, and each such sojourn time has an exponential
distribution with the parameter dependent on the state being visited. This and the fact
that the successive states visited form a Markov chain clarify the structure of a Markov
process.

If there are absorbing states, then T,, may potentially be infinite, in which case we define
We = +00, and the definition of the jump chain becomes
S = B X(Tn+1) if Tn+1 < 00

If i is an absorbing state for X, then it is an absorbing state for X as well and in that
case P; = 1.
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Definition 3.2.3 A conservative Markov process is regular if

lim 7, = +o0 a.s. (non explosiveness)
[ee)

n—

Can we define X in terms of X and {T, }ns0? Tt follows from the definitions that
X(t)=X, forte[T,,Thn),

hence X can be defined in terms of X and {T,} n>0 provided that for any real ¢ there exists
some nonnegative integer n such that ¢ € [T,,,T,,11), or in other words, provided that the
Markovian process is regular. From now on, we will assume that this is the case.

3.3 Kolmogorov’s equations

There are two equivalent ways to describe how a Markov process X evolves. The first is
in terms of the jump chain X and the holding times {Wz, }. The second is in terms of
the semigroup P(¢). The objective here is to go from P;;(t) to I/%j and 0; (i,j € E), and
vice versa in a regular Markov process.

3.3.1 {P;,6} — Pyt
Theorem 3.3.1

keE k+i

t
Pyt =y e [ 52 e 6 PuPy(t-u)du
0

where 0;; is Kronecker’s delta.

Remark 3.3.2 We can write this theorem in a matriz form, by using the definition of
the exponential of a matriz A:

-5

n!’
n=0 .
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and setting A = diag(d;,1 € E):
¢
P(t) =e ™M+ / e M APP(t - u)du.
0

Proof. First recall that
P(X(T)) =k, Ty <u| X(0) =1i) = Py(1—e)
d -
= —P(X(T1) = k. Ty <u | X(0) =) = Pyd e
U

So
IP(X(TI) =k,u<Ti<u+du | X(O) = z) = ]’51“5@ e~ %ildy.

Next, we will use the theorem of total probabilities twice. We first condition on the value
of T}, and then on the value of the next state visited after state :

Py(t) = P(X(t)=7]X(0)=1)
- fIP(X(t)=j|X(O)=i,T1=U) fri (u) du,

=§;e-%v because Ty~exp(s;)

f S5 S P(X (1) = j | X(0) =i, 1 =, X (u) = k)

keE

P(X(u) =k| X(0)=14,T) =u)du,

f S e Py P(X (1) = 7 | X(0) =i, Ty = u, X () = k) du.

0 keE

(%)
We now separate the integral into two parts, depending on the value of u:

o [fu<t:

() = P(X(t)=j|X(z):0<2z<u, X(u)=k),
= P(X(t)=7|X(u)=k), (Markov property)
= P(X(t-u)=4]X(0)=k), (homogeneity)
= B(t-u).

o If u>t: (x)=40;; (no state change before u > t.)

20



Therefore:

t
P,(t) = f S G670 By Py (- ) du

0 k+i
[e o]
+/(5i6_6iuéij szk dua
p keE
——

-1 because P is stochastic.

and observing that [ d;e7%%du = e~%* completes the proof. O
t

3.3.2 Py(t) > Py,

Definition 3.3.3 The generator of the Markov process is the Q-matriz (of size |E|x|E|)
such that:

Qii _51'7
Qij = 51'131‘3‘ (i#7).
Theorem 3.3.4 p
Q = EP(t)lt:O'”

and:

Pi(t)=QP(t) = P(1)Q-

Proof.

t
Pylt) = 5y [ S 8Pl (i )

0 k+i

¢
e 0t ((L-j + f Z e5i36iEkij(s)ds) (s=t-u),
0

k+i

—(Si eiait(. .. ) +676it Z 51?2]@ ij(t)etsit,
M ——— k¢in—/
=Qii =Py;(t) =Qik

= Quby(t) + ZQikij (1),

k+i

= Y QuPi(t) = (QP())ij,

keE

d
— P (t

which implies P'(t) = Q P(t).
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Next,
lim P'(t) = lim Q P(t) = Q,

where lim,_o+ P(t) = I because X is a conservative Markov process.
Finally, by the Chapman-Kolmogorov Theorem (Chapter 2),

d d
%P(t +8) = P(t)gP(s),

therefore by taking lim,_o+ we find that P/(t) = P(t) Q. O

The differential equations P’(t) = QP(t) and P'(t) = P(t)Q are called, respectively,
Kolmogorov’s backward and forward equations.

Corollary 3.3.5 For any t >0, we have P(t) = e??.

Remark 3.3.6 We have seen that (o, Q) entirely determines the Markov process X
(where o = the vector of initial probabilities.) We have also shown that a relationship
between every pair P(t) <— {P,(d;,i€ E)}, P(t) «— Q, Q «— {P,(0;,i€ E)}.

3.3.3 Interpretation of Q:

If we expand P(t) = e?! using the definition of the matrix exponential, we find that for ¢
small,

P(#)

I+Qt+(QTt)2+...
I+Qt+o(t),

L JiEgs Py =P(X(1) = 5[ X(0) =) = Qijt +o(1),
i=j: Puy(t)=1+Qut+o0(t)=1-09;t+0(t).

Also note that e™%t =1 - §;t + o(t) for small ¢.
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The fact that P(t) is defined by its first derivative at ¢ = 0 makes these results interesting.
For this reason, @) is called the generator of the process X.

The class structure of a continuous-time Markov chain X is simply the discrete-time class
structure of its corresponding jump chain X.

Theorem 3.3.7 The following three affirmations are equivalent:
(i) 3t>0: P;(t) >0,
(ii) © ~ j in the graph of P,

(i) Py;(t) >0 for allt > 0.

Proof.

(ii7) = (i): trivial.

(i) = (4i): trivial as well because we can go from one state to another on the condition
that there exists n such that (Pm);; > 0.

(ii) = (iii):
Case 1: we suppose that Ej > 0.
The event {7} <t,X; =j,To — Ty >t} implies that {X(¢) = 7}. We then have

P(X(t) =7 | X(0) =)

v

P(Ty <t, X1 =4, T, -Ty >t]| X(0) =1),
(1 _6_6it)ﬁije_6jt,

> 0 forallt>0.

Case 2: If Case 1 does not apply, that is, if F’ij = 0, the chain goes from i to j through
intermediate states, and (i7) can be reformulated:

— — — —

321, N | such that -Pz',ila 11,429 327i3, ceey Pin—l,j > 0.

We then have

v

P(X(t)=7]X(0)=14) P(X(t/n) =11, X (2t/n) =iy,..., X(t) = 7| X(0) =1),
Pi,il (t/n) Pi1,i2 (t/n) s Pin—l,j(t/n%

>0 by Case 1 >0 >0

> 0 forallt>0.

a

Condition (477) shows that the situation is simpler than in discrete-time, where it may be
possible to reach a state, but only after a certain length of time, and then only periodically.
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3.4 States

Let 6; be the total cumulative time spent in the state ¢ by the Markov process X (this is
the equivalent of V; in discrete time Markov chains). We have

9i=/1{X(u)=i}du.
0

We can decompose 6; into the following:

N; = total number of visits of state i in X,
0; = Z V) where Y, = time spent in ¢ during the n' visit,
fenshs YV iid., VO~ exp(6).

We will therefore classify the states into two groups, namely transient states and recurrent
states. They have the following properties:

Definition 3.4.1
State i is transient if (equivalent conditions):

e 0; < co with probability 1,
o N, < oo with probability 1,
e i 15 transient in )?,
e E[V;] < o0.

State 1 is recurrent if
e 0; = co with probability 1,
o N,; = oo with probability 1,
e 1 15 recurrent in X,
e E[V; | X(0) =] = oo.

State i is positive recurrent if it is recurrent and if the expected return time to i is finite;
otherwise a recurrent state v 1s called null recurrent.
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We have

E[0; | X(0) =] E f 1{X<u>z’|X(o>z}du] ;
0

f E[1¢x(=ix(=iy]du,  (Fubini)
0

f P(X(u) =] X(0) =) du

[ Pyi(u) du.
0
Therefore, ¢ is transient if and only if

|5.]
1<n<N;

E[N]E[Y®],  (Wald’s identity)

< o0

E[0;]

Y

and we also have:

e i transient < [ Py;(u) du < oo,
0

e i recurrent < [ Py (u)du = oo,
0

3.5 Limit behaviour of P(t)
We are now interested in calculating
fim Py () =7
Problem: lim,_. P(X(t) = | X(0) = %) is not necessarily equal to lim_ P(X, = j | X, =

).

Counter-example: consider a Markov process X with corresponding jump chain

0 1/2 1/2
P=|1/2 o0 1/2 ],
1/2 1/2 0

and such that 1/6; = 1, 1/6y = 1, 1/63 = 10?". We the have lim, ., P(X(t) = 3) >>
lim;_ o, P(X(t) =14), but the stationary distribution of X is (1/3,1/3,1/3).
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We define a new Markov chain: For all h > 0, the discrete skeleton Z,, := X (nh), n >0, is
a Markov chain with probability transition matrix P(h):

P(Zuot = | Zo=1) = P(X((n+ 1)h) = | X(nh) = i) = P(h).

{Z,} is called the h-skeleton of X (t) (of the Markov process). The next theorem shows
that recurrence and transience of a state are determined by any discrete-time sampling
of X.

Proposition 3.5.1 Statei is transient for X if and only if i is transient for the h-skeleton
Z, for any h > 0.

Proof. 1t suffices to show that

f Pu(t)dt < 0 <= 3 (P(h)");i < oo.

n>0

We have

(P(h)")ii

P(Z,=i| Zo=i)=P(X(nh) =i| X(0) =)

Therefore, all we need to show is

jopii(t)dt < 00 < Z P;i(nh) < oco.
Let t € [nh, (n+ 1)h] for some n € IN. We have:
{X((n+1)h) =i}, (*)
{X(#) =i} (+*)

(X(t) =i, W, > h}
(X (nh) =i, Wy > h)

N N

Therefore, using (*),

v

P(X((n+ 1)) =i| X(0)=i) > P(X(t)=4,W;>h|X(0)=1),
P(X(t)=1|X(0)=d)P(W:>h|X(t)=1),

= P;((n+1)h) > Py(t)e%"

Similarly, using (**), we obtain a second inequality, and

Pi((n+1)h)e"" 2 Py(t) > Py(nh)e™". (#)
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Therefore,
oo (n+1)h
[ Pawar = ¥ [ raoa
0 n20 Ty
(n+1)h
> [ et Py, (by (#)
n>0 oh

—

n>0

v

>0

n>0
for some strictly positive constant C;. Therefore, we have
f Pi(dt<co = 3 Py(nh) < oco.
0 n>0

Similarly, using the other inequality in (#),

f Py(t)dt < he*"S Py(nh)
0 n>1
= O?ZPu(nh)7
n>1

for some strictly positive constant Cs, and

Y Pi(nh)<oo = /OoPii(t)dt< 00,
0

n>0

a

The limiting behaviour of the transition function P(t) as ¢t — oo is just as in the case
of discrete-time Markov chains, except that it is made simpler by the disappearance of
periodicity.

Theorem 3.5.2 (Convergence to equilibrium) Let X be an irreducible conservative
Markov process. Then, for any 1,7 € F,

0 4f 7 1s transient or null recurrent,
m; if J 18 positive recurrent

fin (X0 =51 X(0) =) -
Proof.
Case 1: ¢t - oo with t = nh.

lim P(X(t) =] X(0) =)

t—o00,t=n

lm P(Z, =7 | Zo =14)

0 if 7 is transient or null recurrent,
aj(h) if j is positive recurrent,
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by the results on discrete-time Markov chains.
We now want to show that the limit «;(h) actually does not depend on the choice of h.

Case 2: t - oo in an arbitrary way.
Let € > 0, and let us fix an arbitrary h > 0 such that e=%" > 1 - /2. Therefore,

e >1-¢/2 for all s€]0,h][.
By Case 1, there exists N such that for all n > IV,
| Pij(nh) = a;(h) |< /2.

Let T'= Nh, and fix t >T. We need to show that | P;;(t) — o;(h) |< e. There exists v > N
such that vh <t < (v+1)h. Then,

| P (t) = a;(R) <] Piy(t) = Pij(vh) [ +] Pij(vh) = a;(h) |

~

<g/27? <e/2
Take t = s + vh. We have
Py;(t) = Py(s+vh),
= (P(s)P(vh))i;, (Chapman-Kolmogorov)
= ). Pu(s)Py;(vh),
keE

which implies

| P;(t) - Pij(vh) | Y. Pi(s)Prj(vh) - (1 - Py(s)) Py (vh) |,

keE
k+i

max {kz]:ﬂ Pi.(s) P (vh), (1 - Hi(s))ﬂj(vh)} a

<
k#1
< max{z Pi(s),1- Pii(s)} ,
ke
k#i
= 1-Py(s), (P(s) is a stochastic matrix)
< g/2,

because Pj;(s) > e % >1-¢/2.

We have shown that, for the fixed value of h, P;;(t) - a;(h) as t - co. This implies that
for any sequence {tx} with ¢, - co as k — oo, P,;(t;) — a;(h). By taking ¢; = khy for any
arbitrary ho, and using Case 1, we have that a;(h) = a;(hg). This proves that the limit
a;(h) actually does not depend on h, and we write o;(h) = ;. O
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Remark 3.5.3 If X is reducible and j is positive recurrent, then
lim P(X () = | X(0) =) = fiy .

where f;; is the probability that, starting from i, state j is visited after a finite time, that
18,

flj = IP(TJ < o0 | X(O) = Z),
where ; =inf{t > 0: X (t) = j}, and m; = lim;, P(X(¢) =7 | X(0) = 7).

The next theorem characterizes the limiting distribution 7r in the positive recurrent case
as the solution of some systems of linear equations.

Theorem 3.5.4 The following three assertions are equivalent:
(i) The states of a conservative irreducible Markov process are positive recurrent
(i) There exists w such that wP(s) = for all s,

(11i) There exists 7 such that w@Q =0,

In (i) and (iii), 7 is such that m; = lim;o P(X(¢) = 7 | X(0) = j), with ™ > 0, and
wl=1.

Proof.
(i) < (i1). We have

}im]P(X(t):j|X(0):i):Wj if lim P(X(nh)=7|X(0)=14)=m; forall h>O0.

For the h-skeleton, the states are positive recurrent if and only if there exists x(h) such
that

{w(h)P(h) = z(h)
x(h)l1=1

In this case, x;(h) = lim, . P(X(nh) = 7 | X(0) = i) = 7;, as we have shown in the
previous theorem that the limit does not depend on h.

(i1) <> (vi1). If the number of states is finite,

wP(s) = m foralls,
< @P'(s) = 0 (since the sum is finite) ,
< wP(s)Q = 0,
< @ = 0.

For an arbitrary number of states, first observe that w@ = 0 implies that 7wP(s) = we@s =
T Y so(@s)?/n! = m for all s, so we have (iii) = (ii). We remains to show (i) = (ii).
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We look at the Markov jump chain, whose transition matrix is P. We know that its states
are positive recurrent if and only if there exists 7 such that P = 7. However, recall that

{Qij = 51']31'3‘ (1#7),
Qii = 0.
Letting A =diag(d;), we can then write

Q=AMP-I) < P=I+A1'Q
and 1/5” = (. Therefore

7P = T,
= T+RAIQ = T,
< TAIQ = 0.

In order to have (7i7), we need to show that TA~! = 7.

Let ¢t — v be the time of the last state change before time ¢t. We have

t

Pij(t) = e7%it5;; + / > Pu(t- )0 Prje % dv,
0k
or in matrix form,
t
P(t)=e ™M+ / P(t-v)APe2dv.

0

But we know that «wP(t) = 7 for all ¢, hence

t —_
we M+ [ TPt —v)APeMdy
0

= 71'7
t —_
= we M+ [wAPeMdv = w (wP(t-v)=m),
0
_t
< we M+ AP [ e Mdy =
0
we Mg APA e ] =

¢ ¢

me M gAPAle M rAPAY = 7 forall t.
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We take the limit of each term as ¢ — oo and observe that limy_,e e~ = 0, limy_,co TAPA et =
0, and 7, wAPA~! do not dependent on t. We then obtain

mAPA =7 < wAP =7A.

On the other hand, we know that 7 is the unique solution to P = 7 to one multiplying
constant, therefore
T =mA

to one multiplying constant, and we have
ZANIQ=0 < 7wAANIQ=0 < wQ-=0.

This shows (ii) = (ii1).

Remark 3.5.5

e In the last proof, we showed that if T is the stationary distribution of the jump chain
X (with positive recurrent states, irreducible), then

=N/ (FA'D),
where A = diag(0;) = diag(-Qy)-

e In the last theorem, we supposed that all the states were stable (if a state is absorbing
in an irreducible process, that state will be visited and will never be left).

The complete description of limiting behaviour for irreducible chains in continuous-time
is provided by the following result.

Theorem 3.5.6 Let X be an irreducible Markov process with arbitrary initial distribution
and generator (). Then

P(X(t)=j)—>1/(d;m;) ast— oo forall jeFE,

where m; = E(7; | X(0) = j) is the expected return time to state j.

3.6 Example: The M/M/1 queue

The simplest queueing model has exponential interarrival times with mean 1/\, exponen-
tial service times with mean 1/u and a single server. Customers are served in order of
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arrival. Let X (¢) denote the number of customers in the system at time ¢ (including the
one being served, if there is one). {X(¢)} forms a Markovian process with generator

-A A 0 0
wo —(pu+A) A 0
Q=] 0 [t —(u+A) A

0 0 oo =(p+A)

So in this example, the parameters of the exponential sojourn time distributions are dy = A,
d; = A+ p for ¢ > 1. The Markov process is irreducible and there is no absorbing state.
The probability transition matrix of the corresponding jump chain is

0 1 0 0
R w/(p+ N) 0 A+ X) 0
P = 0 w/(p+ ) 0 M(p+A) .. |,

00 ey

which corresponds to a random walk on Z*.

What is the distribution of X (¢) given that the chain start in some initial distribution a
(o =P(X(0) =1))? Tt is given by p(t) := a P(t) where p,(t) = P(X(t) =n), n>0. We
write the forward Kolmogorov equation, P’(t) = P(t) @ which, after pre-multiplication by
a, gives p'(t) = p(t) Q. This is the matrix expression for the infinite system of differential
equations

po(t) = =Apo(t) + ppa(t), (3.1)
(1) Apn-1(t) = (A + p)pp(t) + ppnsa(t), n=1,2,... (3.2)

It is difficult to solve these differential equations. An explicit solution for the probabilities
pn(t) can be written but it involves an infinite sum of modified Bessel functions. So
already one of the simplest interesting queueing models leads to a difficult expression
for the time-dependent behaviour of its state probabilities. For more general systems we
can only expect more complexity. However, after some transition period the system will
become stable, and the limiting or equilibrium behaviour of this system is much easier
to analyse. Of course the state will permanently change, but the probabilities of various
numbers of customers in the system will be constant.

We have seen that a stationary probability vector 7 satisfies w@Q = 0 and w1 = 1. This
gives

=Ty + pmy 0 (3.3)
Mp 1 - A+ )T +pumpg = 0, n=1,2,... (3.4)

Note that this is exactly the system we obtain if we let ¢ - oo in the forward Kolmogorov
equations. From this system, we obtain that

=) " m, n=0,1,2,...
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so a solution such that w1 = 1 exists if and only if the states are positive recurrent, and it
happens if and only if ¥,.0(A/p)" < oo, if and only if A < p. In that case, the stationary
distribution is given by

Tn=\p)" (1=Au), n=0,1,2....

You will study the M/M/1 queue in more detail in Serie 9, including criteria for null
recurrence and transience.

63



Chapter 4

Renewal processes

In the stochastic processes we have studied so far, an important property has been the
existence of times, usually random, from which onward the future of the process is a
probabilistic replica of the original process. In Markov chains and Markov processes, for
example, if the initial state is ¢, then the times of successive entrances to that state ¢
plays this role; and this fact in turn enables us to obtain many of the limiting results we
listed before. This “regeneration” property may hold in much more general situations, and
when it holds, surprisingly sharp results can be obtained by the methods we are going to
develop in this chapter.

4.1 Definition

Let F'(-) be the distribution function of a non-negative random variable (that is, F'(z) =0
if £ <0). Let Wy, Ws,... be i.id. random variables ~ F(-).

Definition 4.1.1 The renewal process associated with F(-) is the process {S, : n € N}
such that:

e Sy =0 almost surely,
® Spi1 =S+ Wiy foralln=0,1,2,....

The S,, are called renewal times.
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Example 4.1.2 Consider an item installed at time So = 0. When it fails it is replaced
by an identical item; when that item fails, it in turn is replaced by a new item, and
so on. Suppose the lifetime of the successive items are Uy, Us, ... and the replacements
take Vi,Vs, ... units of time. Hence, the successive items start working at times Sy = 0,
S1=Uy + Vi, So =Usy + Vs, and so on. It is reasonable to assume the U; to be i.i.d. and
the same for the V;, and the U; and V; to be independent. Then W; =U;+V; are i.i.d. and
the S, form a renewal process.

Definition 4.1.3 Let F(-) and G(-) be the distribution functions of two non-negative
random variables. The convolution of F(-) and G(-) is defined as

(F+G)(z) = / G(z—u)dF(u).
0
We know that if X and Y are independent random variables with X ~ F'(-), and Y ~ G(+),
then X +Y ~ (F x G)(-) (exercise), that is,
P(X+Y <z)=(F*G)(x).

Note that the convolution operation is commutative. Here, the renewal times are such
that:

So = 0

S, = W ~F()

Sy = Wi+ W ~(F*F)()

Sy = Wi+Wy+Ws ”(F*F*F)(‘)

Definition 4.1.4

FO(z) = Lo
0 gz <0,
1 ifz>o,

FO () = (F % F™)(z) for alln>0.

These F(™ (nth fold convolution of F' with itself) are the distribution functions of the
renewal times:

e [(0(.) = distribution function of the random variable = 0 a.s.,
e F(N(.) = F(-) = distribution function of W; = S,
o F) ()= (F % F)(-) = distribution function of Wy + Wy = Sy, and so on.

Therefore
P(S,<x) = F(")(x).
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Definition 4.1.5 The number of renewals N(t) in the interval [0,t] is defined as
N(t) =inf{n: S, > t}.

Remark 4.1.6 N(0)>1 (N(0) =1, except if there are several simultaneous renewals in
t=0.)

We have
{N(t) <k} ={Sp>t}.
Indeed, the event {N(t) < k} is equivalent to the event that before time ¢, we have at
most k renewals, that is, at most Sp, S1,...,Sk-1, which is {Sg > t}.
We therefore have
P(N(t) <k)=P(Sp>t) =1-F®(¢),

and by calculating the F()(-), we know the distribution of S,, and N ().

Definition 4.1.7 The renewal function of the renewal process is the expected number of
renewals in the interval [0,t]:

R(t) = E[N(1)],

>, FW(),

k>0

The last equality is true because

E[N({)] = SP(N()> k),

k>0

= Y 1-P(N(t) <k),
k>0 —
=1-F&) (t)

= Y F®().

k>0

The renewal function plays an important role in the study of renewal processes. Before
showing this, we will first examine different possible behaviours of the renewal process
depending on the behaviour of F'(-).
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Behaviour in function of F'(0).

e [fF(0)=0:then P(W =0) =0, therefore the intervals of time between two renewals
cannot be of zero length:

e If0< F(0)<1:then 0 <P(W =0) <1, therefore we can have times where several
renewals take place:

e If F(0) = 1: then all the renewal intervals have length zero, therefore P(S, =0) =1
for all n. This case is not interesting, since an infinity number of renewals take place
at time 0.

Assumption (A): From now on, we will always suppose that F'(0) < 1, that is, we cannot
have infinitely many renewals at one time.
Behaviour in function of F'(0).
F(o0) = lim F(x).
e [f F(o0) =1: then P(WW; < 00) =1 for all i, therefore all the renewal intervals are of
finite length.

e [f F(o0) < 1: then P(W; = 00) > 0 for all i, therefore W) = +o00 for some k, so that
the next renewal comes after an infinite time. Therefore, in this case, the renewal
process is “dead”, since no more renewals will ever occur.

67



Definition 4.1.8 We say that a renewal process is
e recurrent if F'(o0) =1,

e transient if F'(o0) < 1.

Let us return to the renewal function R(t). We will show that, under Assumption (A),
the renewal function R(t) is always finite for 0 <t < oo, that is, that we cannot have an
infinite number of renewals in a finite time:

Proposition 4.1.9 If F(0) <1, then R(t) < oo for all finite t > 0.

Proof.  We will construct a (finite) bound for R(t).
Since F'(0) <1, and F is right continuous, there is some b > 0 such that F(b) <1 (that is,
P(W >b) >0). We have

SQ = 0,
Sp=S,.1+W, foralln>1.

We construct a new renewal process by taking:

n

oo 0 ifW,<b,
b if W, >b.

We then have a renewal process

S\70 = O)
§n = §n_1 + Wn for all n > 1,
such that for all n,t,

S, >S,,
N(t) < N(t).

This implies that _
R(t) = E[N()] < E[N(?)],
and B[N (t)] < oo because
E[N(1)] < (% + 1) E[Y]

where Y is the number of instantaneous renewals (W =0) between two non-instantaneous
renewals (W; =b), so Y ~ Geom(F (b)) and E[Y]=1/(1 - F(b)) < co because F(b) <1. O
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Example 4.1.10 Suppose F(t) =1-e . Then the renewal process is actually a Poisson
process with an arrival at time 0. Hence, R(t) =1+ Xt for all t > 0.

Proposition 4.1.11 Under Assumption (A), R(t) is right continuous, and non-decreasing.
Furthermore, if f:R* - R* is bounded and null outside a finite interval, we have

/fu)dRu) IE[ZfS)]«m

Proof.  The function N(t) is increasing and right-continuous (by definition), therefore
R(t) in particular is also increasing.
In order to show that R(t) is right-continuous, let (¢,) N t, n > 0. We have

N(t,) ~ N(t) (N(t) right-continuous)
N(t) < N(ty) foralln>0 (N(t) increasing).
Since E[N(t9)] = R(to) < o0, we have, by the theorem of dominated convergence,
lim R(t,) = lim E[N(¢,)],

n—>00 n—oo

= E[N(1)],
= R(b).

Therefore R(t) is right-continuous.
Next, if f is bounded by C and vanishes outside [0,¢],then

S £(S,)<CN(t), and E li f(Sn)] < OR(t) < oo

n>0
To prove [ f(u)dR(u) =E[Yr, f(Sy)], we observe the following:
0

o For f =14, we have:
E[Z:Of(sn)] = E[N(t) - N(s)],
= R(t) - R(s),

[ ]l{(s,t]}(u)dR(u) - ok.
0

e It is therefore also true for all step functions (or simple functions, that is,
functions that are linear combinations of finitely many indicator functions) since
the expectation of a sum is the sum of the expectations, and the integral of a sum
is the sum of the integrals.
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e [t is therefore also true for an arbitrary f >0, taking f as the limit of an increasing
sequence (f,) of step functions, then applying the monotone convergence theorem.

a

Remark 4.1.12 From here, we have for all renewal processes:

R(0) > 1,

therefore, when we calculate [ f(u)dR(u), we must not forget the term R(0)f(0) which
0
is to be added to the integral over (0, 00).

Example 4.1.13 Let X be a discrete-time Markov chain, and let j be a fixed state. Let
S1,55,... be the successive step numbers at which state j is visited. If Xo = j, then the
times Sy, Sy — S1, S3 —S3, ..., between returns in j are independent and identically
distributed, hence {S,} forms a renewal process (this fact will be used later to prove an
important result about Markov chain using the theory of renewal processes). Consider the
renewal function R(-) for this process. Since the number of visits to j during [0,t] is
Yon<t Lix,=j1, we have
R(t) = E; [Z ]l{Xn—j}] =2 (P")j,
n<t n<t

where P™ is the n-step probability transition matrixz. Note that in this case, all the S, are
integer-valued, so R(-) is a step function whose jumps are restricted to the times0,1,2,. ...

Remark 4.1.14 We have previously defined the convolution F * G between two distribu-
tion functions F' and G. We now define the convolution F' % g where F' is a distribution
function, and g is any non-negative function defined on R* which is bounded over any
finite interval:

(Fxg)(0)= [ g(t-u)dF(u)

(Lebesgue-Stieltje integral). Note that if F() s the distribution of a degenerate random
variable equal to 0 a.s., that is, if FO(x) = 1,0y is the Heaviside step function, then
(FO) % g)(t) = g(t) for all t. This comes from the fact that dF© (u) = 6(u)du where §(-)
is the Dirac delta function. It is also because, since FO)(-) has point mass at zero,

[ ot=0aFOw) = g FO©) + [t -0)dFOw) = g(t)
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4.2 Renewal equations

A renewal equation is an equation of the form:

f@)=g()+(F=*[)(t), (%)
where

e f(t) is the unknown function,
e F'(t) is the distribution function of a non-negative random variable,

e ¢(t) is a given function, bounded on all finite intervals, and such that g(¢) = 0 if
t<0.

This equation will arise when studying properties of regenerative processes. These are
stochastic processes Z which are such that every time a certain phenomenon occurs, the
future of Z after that time becomes a probabilistic replica of the future after time 0. Such
times (usually random) are called regeneration times of Z. For example, if Z is a Markov
chain and if j is a fixed state, then every time at which state j is entered is a regeneration
time for Z starting at j.

Theorem 4.2.1 The renewal equation (x) has the unique solution given by

f(#) = (Rxg)(t),

where R(t) is the renewal function of the renewal process associated with F(-),

R(t) =Y FM(¢).
n>0
This theorem will be very useful in future: often, the computation of quantities related to
renewal processes will reduce to the resolution of an equation of type (x). This theorem
provides us with the unique solution.

Proof. We first show that R % g is a solution:

(R=g)(t) = Y(F™ xg)(t),

n>0

= () + 2 (F+ FO D xg)(t)  (FO(t) = Loy,

n>1

= g(t) + (F* 3 (F™ = g))(1),

g(#) + (F % (R + 9))(1).

We now show the uniqueness of the solution: if fi(¢) and f5(t) are both solutions of (x),
then

fi(#) =g(t) + (F = f1)(t)
fo(t) = g(t) + (F * f2)(1).
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Take h(t) = fi(t) — f2(t). We then have:

h(t) = (F=h)(1),
= (F'=(Fxh))(t),
= h(t) ; .(.F"(”)*h)(t) for all n,
= h(t) = giggo(F<n>*h)(t).

Since R(t) < oo for all ¢, the general term of the series R(t) = 3,50 F™ () goes to 0 for
all ¢ therefore

Tim (FO) « B) (1)
= h(t)

0,
0 for all ¢,

which shows uniqueness. O

4.3 Transient renewal processes

In the transient case (F(o0) < 1), W,, = oo for some n > 0 with probability one, which
stops the arrival of renewals times.

Example 4.3.1 The renewal process formed by the times of successive entrances to a
fized state 7 of a Markov process is transient if and only if 7 is transient.

The total number of renewals in [0, 00) then follows a geometric distribution with success
probability 1 - F'(o0), and in particular,

Theorem 4.3.2 In the case of transient renewal processes,

, 1
N C))

Proof.

lim PO() = lim P(Sy <t),
= P(Sk < o),
= P(Wy+-+ W, <o0),
= P(Wi<oo,...,Wi<00),
= P(W) <o0)P(Wy<o0)...P(W < o0),
= F(oo)".
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Therefore,

lim R(t)

t—o0

i (k)
tll)m Y F®(1),

k>0

= Y lim F®(#),  (x)

t—o0

k>0

= Y F(eo),
k>0

1
- T F(eo) (geometric series).

() By dominated convergence, since F'*)(t) < F(o0)* for all ¢ and Y. F(00)* <00, O

Theorem 4.3.3 [f F(o) <1, then
lim (R + g)(t) = R(s0) g(0)
provided that g(oo) =1lim; . g(t) exists.

Definition 4.3.4 The lifetime of a transient renewal process is the time of the last

renewal:
L =max{S, : S, < o}

In the next theorem, we will calculate the distribution of L. Combined with the previous
theorem, the next theorem also shows that IP(L < o0) = 1. The proof of the theorem
provides a good example of the “renewal-theoretic reasoning” that will be used a couple
of times.

Theorem 4.3.5
P(L<z)=(1-F(c0))R(x).
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Proof. Let us write f(z) = P(L > x). We will show that f(-) satisfies a renewal equation,
and we will then obtain its expression using the theorem in the previous section.

In order to do this, as we often do in the context of renewal processes, we will condition
on the time S; of the first renewal:

flx) = P(L>x),

[ P(L>x|S)=u)dF(u).

0

We then distinguish three cases:

o Case 1: Wy =400 (- u=o00).

In this case,

J
pacy
h
v
S
N
I
S
I

o Case 2: z <u < oo.

We have L > u, and x < u, which implies that

P(L>x|S1=u)=1.

o Case 3: 0<u<ux.

We “rest the clock” at time S; = u, therefore we have a new renewal process S of
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the same type as S (same function F'), which starts at the new time 0.

P(L+u>zx),
P(L>x-u).

=P(L>xz|5 =u)

Therefore,

() f P(L> 2| S =u)dF(u),

[OOIP(L>I|51=u) dF(U)+fP(L>$|51:U)dF(U),
! -1 (Case 2) 0 -f(a—u) (Case 3)
= f(x) = (F(o0) - F(z))+(F* f)(x).

So, f(-) satisfies a renewal equation with g(z) = F/(00)—F(z) = P[x < W < o0]. According
to the theorem in the previous section,

fx) = (Rxg)(2),
- f(F(oo) ~ F(x-u)) dR(u),

0

= F(oo)de(u)—jF(m—u)dR(u),

= F(eo)R(x) - (R * F)(x),
=R(z)-1 (*)

= 1-(1-F(e0))R(x),

=P(L<x) (1-F(o00))R(x).

Remark 4.3.6 1. Justification of (*):

(RxF)(x) = Y (F™xF)(x)=3 F™(x),

n>0 n>0
= S M) = ¥ FO() - FO (),
n>1 n>0

= R(z)-1 (FO(2) =Ly = 1).

75



2. First moment of L:

5
&
|

E[L1{g<w}] (since Sy=oc0o=L=0),
EL(L+5)Ts<00],  (3%)
E[L]F(c0) + f wdF(u),

[0,00)

SE[I] - ﬁJ(F(m)—F(u))du.

(xx) By doing the same as above, “resetting the clock at Sy.”

4.4 Recurrent renewal processes

4.4.1 Renewal theorems

In the case of recurrent renewal processes (F(o0) = 1), R(t) tends towards infinity when
t - co. We will now examine how this convergence happens.

Theorem 4.4.1 (Fundamental Theorem) In the case of recurrent renewal processes,

(i) Tlimyo Y8 = BO] Q-5

Cy g R
(1) limy_, o # = E[IW],

where E[W] = [udF(u) is the ezpected time between two renewals.
0

Note that almost sure convergence of a sequence {X,} of random variables does not
necessarily imply convergence of the means (take for example P(X,, =0) =1-1/n?, P(X,, =
27) = 1/n? where X,, - 0 a.s. but E(X,,) does not converge to 0)! It does so only if the
sequence is uniformly integrable .

In order to prove this theorem, we will need the following lemma:
Lemma 4.4.2
B[Sy = R(t) E[W]

Remark 4.4.3

N(t)

SN(t) = Z Wi7
=1
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is the time of the first renewal after time t. (N(0) > 1, because we count a renewal at
time Sp.)

Proof.  We write f(t) = E[Sn)]. We will show that f(-) satisfies a renewal equation. In
order to do this, we will as usual condition on Sy, the time of the first renewal after 0:

ft)

E[Sn ],

f E[Sxe | S1 = u] dF (u).

e Case 1: u>t.

We have

[
N

SN
= E[SN(t) | Sl = u]

|
s

e Case 2: u<t.
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We “reset the clocks” to the renewal time u. We have a new renewal process which
is the same as the old one, but starts at the new time “0”, and

Sny = U+ SN,

= E[SN(t) | Sl = u] = u-+ ]E[SN(t—u)]
[ —
=E[SN(t-u)]
because i.i.d. renewal times
= u+ f(t-u).

We therefore have:

oo t

fudF(u)+f(u+f(t—u))dF(u),

0

f()

udF(u)+/f(t—u)dF(u),

E[W]+ (F = f)(1).

I
0\8 ~+

Therefore, f(t) is the solution of a renewal equation, with ¢(¢) = E[W]. We then have
f@&) = (Rxg)(®),
t
E(W] [ dR(u),
0

- E[W]R(®).

Proof of the Fundamental Theorem. By the strong law of large numbers,

LL1+ LL2+"'+ LLn n—00
—
n

E[W] a.s.

Since the renewal process is recurrent, we have N(t) - +o00 as t - oo a.s., therefore

SN(t) Wi+Wy+---+ WN(t) t—>00
= — E[W .S.
N D) NG W] as

Furthermore, Sy)-1 <t < Sy a.s., therefore, with probability one,

SN(t)-1 t . SNt

N(@) ~ N(@) T N(@)

N(t) -1 Sn- t SN
N@#) N@) -1 - N@ - N@)
Sl B[] B[]
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By the sandwich theorem, we then have ﬁ - E[W] a.s., and

. N@®) 1 )
}LI?OT—W a.s. (x)

This proves (7).
We will now show (i), that is,

lim@ = lim]E[Nit)] 1

t—o0 t—oo

By Fatou’s lemma,

liinianE[@] > E[liminf@],

Il
E‘

~~
o

<
N

*
N—’
~—

It is then enough to show that

hmsup]E[NlEt)] < E[%/V] (x*)

t—o0

because we would then have

1 o N(t) _ N(t)] 1
— <1 fE|{——|<1 E <
B[]~ B [ ! ] R [ i | EW]
— }LIEOIE [Nit)] = IE[%/V] (and therefore we have (ii)).

To show (%x), we fixe a >0, and we define a new renewal process:

v - W, ifW,<a,
" 10 otherwise.

Therefore we have the renewal process

So =0,
gn+1 = Sn + Yn+1~
It is clear that S, > S, and N(t) < N(t) a.s., therefore

Nit)] <limsup & [@] .

t—o0

limsup [

t—o0
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However, by the previous lemma,

which implies that

IN
=
)
o
e
|

limsup E [NTt)]

t—o00

IN
=
w
=1
T

Therefore,

< for all a > 0.
E[Y (a)]

Since E[Y (a)] =400 E[W] (exercise), we have shown the inequality (**). O

limsup E [Nit)] L

t—o0

Definition 4.4.4 A function g: R* — R* is directly Riemann-integrable (g€ D) if:
(1) g is bounded on all finite intervals, and
(i1) if, for n € N and fized h, we define

my(h) =min{g(z) : x € [(n-1)h,nh]},
M, (h) =max{g(x):xe[(n-1)h,nh]},

then we have:

& > my(h) converges absolutely for all h,
& > M,(h) converges absolutely for all h,
& liInh—>0 Z;ozl(Mn(h) - mn(h)) =0.

We will now give one of the most important renewal theorems:

Theorem 4.4.5 (Key Renewal Theorem) For a recurrent renewal process, if the
function g is directly Riemann-integrable,

. 1
fim (R 0)(0) = gy | o)
(Proof: see Theorem 2.8 in Chapter 9 of Cinlar’s book.)
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Corollary 4.4.6 (Blackwell’s Theorem)

lim (R(t+ h) - (1)) - %.

Proof. See exercise Serie 12. O

Remark 4.4.7 In the chapter on Markov chains, we gave the following result without
proving it:
In an irreducible Markov chain with recurrent states:

lim P(X, = j | Xo =) =

0 if the states are null recurrent,
;>0  if the states are positive recurrent.

In fact, this is a consequence of Blackwell’s Theorem: in the Markov chain {X,}, if we
start from state j, the intervals of time between two transitions through state j are i.i.d.:

Therefore, we have a recurrent renewal process {S, :n >0}, where S, is the time of the
nth visit to state 7,

So = 0,
Sn+1 = Sn + Wn+17

where the W; are i.4.d. and have the same distribution as the first return time T} given
that the chain starts in j (E[W]=E[T;| X =j], see chapter on Markov chains).
For t e N, we consider the renewal function of this renewal process:

R(t)-R(t-1) E[N(t)-N(t-1)],

E[number of passages in j between t — 1 and t],

= E[lixw-j] (discrete time).
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Therefore, by Blackwell’s Theorem,

I P(X = | Xo =) = Jm(R()-R(t-1))

1

E[W]
1
E[T; | Xo = j]’

and consequently,

{E[W] = +00 = lim = 0 = null recurrent null states,

E[W]< oo =1lim>0= positive recurrent states.

4.4.2 Survival of a renewal process

Definition 4.4.8 The survival of a recurrent renewal process at time t is the random
variable
Zt = SN(t) —t.

(Recall that Sy is the time of the first renewal after time t.)

We will study the asymptotic distribution of Z; as t - co. Before doing so, we study the
distribution of Z, for any finite ¢:

Theorem 4.4.9 .
P(Z, > ) = fIP(W > t—u+z)dR(u).
0

Proof. For any fixed ¢, we write f(t,z) =1P(Z; > z). By the usual renewal conditioning
argument, we have

F(t,2) = fIP(Zt > 2| 81 =u) dF(u).
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o [fu>t:

Then Syp) =S1=u= Z;,=u~-t, and

IP(Zt > | Sl = U) = ]l{u—t>$}'

e If u <t: we reset the clock, and

P(Zy>x|S1=u)=P(Z;_y>x) = f(t—u,z).
Therefore,

f(t,) = f L pustra) dF (u) + f F(t—u,x) dF(u),

P(W >t +2)+(F+ f(-2))(1).

We have a renewal equation with g(¢,2) = P(W >t +z), and therefore
f(twl.) = (R * g(7$))(t)7
t
f g(t —u,z) dR(u).
0

Proposition 4.4.10 (Asymptotic survival of a recurrent renewal process) If
V(x):= 1tlim P(Z <),

we have

Vi) = ﬁof(l—}?(u))du.
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Note that this means that the density of the asymptotic survival is given by (1 -
F(z))/E[W].
Proof. With g(t,z) =P(W >t+x)=1- F(t+x), by the previous theorem,

tlim P(Z; > x)

lim (R + ) (1),

w1/
= —— [ g(u,x)du, (Key Renewal Theorem)
BT 4

s
W!(l—F(u))du.

This implies

V(z) = 1_}irilo]P(Zt>x)
) %0
- ](E[W]—wf(l—F(u))du)
- W(0/(1—F(u))du—x/(l—F(u))du),
because E[W] = [;°P(W > u) du. O

4.5 General renewal processes

Definition 4.5.1 A general renewal process (also called delayed renewal process) is a
process {S, :n € N} such that

5’\n+1 = S\n + Wn+1 fO?" all n,
where:
o Wi, Wy, ... are non-negative i.i.d. random variables with distribution function F(-),

e Sy is a non-negative random variable with distribution function G(-), independent

of the W;.

It is therefore a renewal process, but one for which the first renewal Sy doesn’t necessarily
come at time 0, but after a random time given by the distribution function G(-). There
are no new tools needed. In handling a general renewal process, first we condition the
event in question on the time Sy of first renewal, and then we use the fact that at time
Sp there starts an ordinary renewal process.
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S is still the time of the nt" renewal. If N (t) is the number of renewals before ¢,

P(S, <t)
P(N(t) > k)

(G * FM)(1),
P(S; <t).

Indeed, for the first equality,

P(S,<t) = P(Sy+Wy+---+W,<t),
(G FM)(t)

(sum of independent random variables).

The renewal function takes the following form:

R(t) = E[N(®)],
2, (G+ FM(t)

n>0

(G = R)(1).

4.6 Stationary processes

Definition 4.6.1 Let {S, : n € N} be a renewal process whose inter-renewal times W
have distribution function F(-). The stationary process {S, :n € N} associated to {S,}
is the general renewal process given by the W;, for which the distribution of Sy is the
asymptotic survival distribution V(-) (G(z) =V (z)).

Intuitively, the stationary process corresponds to a renewal process that has been going
on for a long time before time t = 0. We will see that, as expected, the stationary process
verifies properties which are only asymptotic for the associated renewal process.

Proposition 4.6.2 If {5,} is a stationary process, then

() ) = gy

and

(ii) P(Z, < z)=V(x) for all t.
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Proof. (i)

R(t) (V + R)(t) (see general renewal processes),

j V(t-u)dR(u),

(1-F(v))dvdR(u),

/
_ ﬁjf(l—F(s—u))dst(u),
/

/(1 ~ F(s—u))dR(u)ds,

where the last equality is obtained by changing the way of integrating on the domain.
However,

/(I—F(s—u))dR(u) = R(s)- F = R(s),

= 1+F*xR-FxR=1.
This implies

(ii) Let f.(t) = P(Z, > ). We have

Falt) = f]P(Z > 2| Sy =u)dV(u).

o [fu>t

Then Z; = u —t, so that
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IP(Zt > | §0 = U) = ]l{u>t+:13}'

o [fux<t

We reset the clock to Sy. If we start from Sp, by independence, the stationary
process behaves afterwards like a normal renewal process, and therefore

P(Z > x| Sy =u) =P(Ziy > ).

So, we have

fl,(t)zfoodV(u)+[tIP(Zt_u>x)dV(u)

=1-V (t+z) (*)

Here we do not have a renewal equation because () is not (V % f,), and P(Z;_, > x) #
P(Zi_y > x).... But we have already calculated P(Z;_, > z) in a previous section, and

P(Z;>x)=(R*g.)(t),
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where g,(t) =1- F(x+t) =P(W > x +t). We therefore have

P(Z,>z) = 1—V(t+a:)+[(R*gm)(t—u)dV(u),

= 1—V(t+w)+€V*R*gm)(t),
= 1—V(t+x)+(§>eg$)(t),
_ 1—V(t+x)+E[1W]fgz(t—u)du, by (i),
= 1—V(t+a:)+E[;V][(1—F(az+t—u))du,
_ 1—V(t+x)+E[1W]f(1—F(v))dv (=z+t-u),
= 1—V(t+x)+V(t+xg;—V(:c),
= 1_‘/(37)7

which shows that P(Z, < z) = V(). O

Example 4.6.3 The simplest stationary renewal process is the Poisson process. In this
case, the survival at time t, Z;, has exzactly the same (exponential) distribution as the
inter-renewal times (exercise). This is actually the only renewal process satisfying this

property.
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