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Chapter 1

Review of Probability Theory

Remark 1.0.1 In these notes, we adopt the convention N = {0,1,2, . . .}, i.e. 0 is included
in the set N.

1.1 Some notions in probability theory

Probability theory is explicitly based on mathematical analysis and measure theory.
Measure theory is general and powerful (measurable functions, integration, . . . ) and
underpins probability theory.
Let Ω be a nonempty set, the so-called sample space, let A be a σ-algebra on Ω, the
so-called event set, and let P ∶ A → [0,1] be a probability measure. We call the tuple
(Ω,A) a measurable space, and we call the triple (Ω,A,P) a probability space. Elements
of the event set A are called events. Recall the following de�nitions.

De�nition 1.1.1 A σ-algebra on a set Ω is a collection of subsets of Ω such that the
following holds.

1. Ω ∈ A

2. If A ∈ A, then we also have Ac ∈ A. Here, Ac = Ω∖A denotes the complement of A.
Another common notation for the complement of A is Ā.

3. If (Ai)i∈N is a countable collection of sets such that Ai ∈ A for all i ∈ N, then we
also have ⋃i∈NAi ∈ A.

1. and 2. imply that any σ-algebra A also satis�es ∅ ∈ A. 3. implies that if A,B ∈ A,
then A ∪B ∈ A. By de Morgan's law, 2. and 3. imply that if A,B ∈ A, then A ∩B ∈ A.
Some people use the term σ-�eld instead of σ-algebra.

De�nition 1.1.2 A probability measure P on a measurable space (Ω,A) is a measure on
(Ω,A) such that P(Ω) = 1. In order for P to be a measure on (Ω,A), we need
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1. P(A) ≥ 0 for all A ∈ A.

2. If (Ai)i∈N is a countable collection of pairwise disjoint sets in A, then

P(⋃
i∈N

Ai) = ∑
i∈N
P(Ai).

Property 2. is called σ-additivity.
To be able to do interesting things in probability, we next de�ne the notion of �random
variable�, X.

Random variables

Let (Ω,A,P) be a probability space, let E be a nonempty set and let ξ be a σ-algebra on
E . A random variable is a measurable function

X ∶ Ω→ E .

Recall that X is measurable if for all B ∈ ξ, X−1(B) ∈ A, where X−1(B) = {ω ∈ Ω ∶X(ω) ∈
B}. The distribution of X is de�ned as the push-forward measure of P under the mapping
X. This is a probability measure on (E , ξ) and we denote it by PX . That is we have

PX(B) = P(X−1(B)) = P(X ∈ B), B ∈ ξ.

Example 1.1.3 Suppose that E = R and that ξ is the Borel σ-algebra on R, i.e. the
smallest σ-algebra on R that contains all open subsets of R. Let X ∶ Ω → R be a
random variable. Then, for any two real numbers a ≤ b, the probability that X ∈ [a, b]
is P[X−1([a, b])] = PX([a, b]).

For the remainder of this chapter, unless otherwise speci�ed, random variables will always
map to R equipped with the Borel σ-algebra. The cumulative distribution function (or
c.d.f. in short) of a random variable X is de�ned as

F (x) = P(X ≤ x) = PX((−∞, x]), x ∈ R.

We always have limx→−∞F (x) = 0 and limx→∞F (x) = 1. Moreover, if X and Y are two
random variables with the same distribution (if X and Y are identically distributed), then
they also have the same c.d.f.

1.2 Conditional probability

De�nition 1.2.1 Let (Ω,A,P) be a probability space and let A and B be two events.
Assume further that P(B) > 0. Then, the conditional probability of A given B is de�ned
as

P(A ∣ B) =
P(A ∩B)

P(B)
.
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If P(B) > 0, the concept of conditional probability lets us de�ne a new probability measure
PB:

PB[●] = P[● ∣ B] =
P(● ∩B)

P(B)

Dividing the term P(●∩B) by P(B) can be interpreted as a �normalization�, i.e. it ensures
that PB(Ω) = 1 and that PB is thus truly a probability measure.
Conditional probabilities allow many problems to be simpli�ed. A particularly helpful
tool is the law of total probability that we state below.

Theorem 1.2.2 (Law of total probability) Let (Bi)i∈I be a �nite or countably in�nite
partition of Ω such that Bi ∈ A for all i ∈ I. This means that the sets (Bi)i∈I are pairwise
disjoint and that ⋃i∈I Bi = Ω. Then, for any event A ∈ A, we have

P(A) = ∑
i∈I
P(A ∣ Bi)P(Bi).

Here, one should interpret P(A ∣ Bi)P(Bi) as 0 if P(Bi) = 0.

The law of total probability follows immediately from σ-additivity of P and the de�nition
of conditional probability.

1.3 Independence

Independence of events

Two events A and B are called independent if P(A ∩B) = P(A)P(B). If P(B) > 0, this
is equivalently to

P(A ∣ B) = P(A),

which has the following interpretation: If P(B) > 0, then A and B are independent if and
only if knowing that B occurred has no e�ect on the likelihood of A occurring. We use
the shorthand A ⊥⊥ B to indicate that A and B are independent events. A �nite collection
of events A1, . . . ,An is called mutually independent (or just independent) if

P(A1 ∩ . . . ∩An) = P(A1) ⋅ . . . ⋅P(An).

Finally, an in�nite collection of events is called (mutually) independent if every �nite
subcollection is independent.

Independence of random variables

Let X1, . . . ,Xn be �nitely many random variables. Then X1, . . . ,Xn are called mutually
independent (or just independent) if for any a1, . . . , an ∈ R, we have

P(X1 ≤ a1, . . . ,Xn ≤ an) = P(X1 ≤ a1) ⋅ . . . ⋅P(Xn ≤ an).
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If the random variables X1, . . . ,Xn are independent, then for every i ∈ {1, . . . , n} and for
every a1, . . . , an ∈ R such that P(X1 ≤ a1, . . . ,Xi−1 ≤ ai−1,Xi+1 ≤ ai+1, . . . ,Xn ≤ an) > 0, we
have

P(Xi ≤ ai ∣X0 ≤ a0, . . . ,Xi−1 ≤ ai−1,Xi+1 ≤ ai+1, . . . ,Xn ≤ an) = P(Xi ≤ ai).

An in�nite collection of random variables is called (mutually) independent if every �nite
subcollection is independent.

Conditional independence

Let A,B,C be three events such that P(C) > 0. We say that A and B are conditionally
independent given C if

P(A ∩B ∣ C) = P(A ∣ C)P(B ∣ C).

If P(B ∩C) > 0, this is equivalent to

P(A ∣ B ∩C) = P(A ∣ C).

Using the de�nition of conditional probability, we can rewrite P(A ∣ B ∩C) = P(A ∣ C) as

P(A ∩B ∩C)

P(B ∩C)
=
P(A ∩C)

P(C)
.

Thus,

P(A ∩B ∩C) =
P(B ∩C)

P(C)
P(A ∩C) = P(B ∣ C)P(A ∩C).

Dividing both sides by P(C) yields

P(A ∩B ∣ C) = P(B ∣ C)P(A ∣ C).

Here is another way to state conditional independence: Two events A and B are
conditionally independent given C if they are independent with respect to the probability
measure PC introduced in Section 1.2. In words, conditional independence given C means
that A and B are independent if the event C occurs.
Two random variables X and Y are called conditionally independent given Z if for each
a, b ∈ R and for every c ∈ R such that P(Z ≤ c) > 0 we have

P(X ≤ a, Y ≤ b ∣ Z ≤ c) = P(X ≤ a ∣ Z ≤ c)P(Y ≤ b ∣ Z ≤ c).

Further Reading

You can �nd a more extensive review of core concepts from probability theory in Chapter
6 of Norris's textbook.
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Chapter 2

Markov chains

2.1 Stochastic processes

De�nition 2.1.1 Let (Ω,A,P) be a probability space and let T be an index set (such as
N or R, often representing time), and let (E , ξ) be a measurable space. For every t ∈ T ,
let Xt ∶ Ω → E be a random variable. The collection of random variables (Xt)t∈T (or
{Xt ∶ t ∈ T}) is then called a stochastic process.

Instead of Xt we sometimes write X(t), especially if T is an interval of the real line.
Typical examples for the set T are

� T =N; then, (Xt)t∈T is a random sequences with values in E ;

� T = [0,∞) or T = R; a stochastic process with such an index set often represents
the evolution of a system in time: at each moment t, the system is represented by
the random variable Xt.

A stochastic process represents the evolution (generally in time) of a random variable
(a �system�). If E = R and if ξ is the Borel σ-algebra on R, then the distribution of the
stochastic process (Xt)t∈T is a probability measure on (RT ,B(RT )), where B(RT ) denotes
the Borel σ-algebra on RT . The distribution of (Xt)t∈T speci�es all �nite-dimensional
distributions, i.e. the distributions of all random vectors (Xt1 , . . . ,Xtm) for any m ∈ N
and any t1, . . . , tm ∈ T . Thus, it captures the dependence between the single random
variables.

NOTE: In order to specify the distribution of a stochastic process (Xt)t∈T , it is not enough
to just specify the distribution of each individual random variable Xt as this doesn't take
into account the dependence structure.

Example 2.1.2 Consider the stochastic process {Xn ∶ n ∈N}, where the random variables
Xn are i.i.d. (independent and identically distributed), with c.d.f. F . For all n ∈ N and
for all a0, . . . , an ∈ R, we have

P(X0 ≤ a0, . . . ,Xn ≤ an) = P(X0 ≤ a0) ⋅ . . . ⋅P(Xn ≤ an) = F (a0) ⋅ . . . ⋅ F (an).
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The hypothesis that the random variables Xn are i.i.d. is usually too simplistic. We will
now de�ne some processes which treat more general settings.

2.2 Markov chains

De�nition 2.2.1 Let X = (Xn)n∈N be a stochastic process with values in a countable set
E, i.e. Xn maps to E for every n ∈N. If E is �nite, we may assume that E = {1, . . . ,N}
for some positive integer N . If E is countably in�nite, we assume E =N∖{0}. We call X
a Markov chain if for each n ∈ N, Xn+1 is conditionally independent of X0,X1, . . . ,Xn−1,
given Xn. This is called the Markov property. The Markov property implies in particular
that for all n ∈ N, for all j ∈ E, and for all i0, i1, . . . , in ∈ E such that P(X0 = i0, . . . ,Xn =
in) > 0,

P(Xn+1 = j ∣X0 = i0, . . . ,Xn = in) = P(Xn+1 = j ∣Xn = in).

Markov chains are a �rst step to relax the assumption of independence, which is too
simplistic to represent reality. In short, the Markov property means that predicting the
state of a system in the future, with the present known, is not made more precise through
knowledge of supplementary information about the past, as this information becomes
unnecessary.
In this lecture we will only consider time-homogeneous Markov chains.

De�nition 2.2.2 A Markov chain X is called (time-)homogeneous if for all n,m ∈ N
and for all i, j, ∈ E such that P(Xn = i),P(Xm = i) > 0 we have

P(Xn+1 = j ∣Xn = i) = P(Xm+1 = j ∣Xm = i) =∶ pij.

The number pij is unde�ned if P(Xn = i) = 0 for all n ∈N. If pij is de�ned for all i, j ∈ E,
we call the matrix P = (pij) of size ∣E∣ × ∣E∣ (possibly in�nite) the transition matrix. The
initial distribution α = (αi)i∈E of X is de�ned by

αi = P(X0 = i), i ∈ E.

If X is a homogeneous Markov chain with initial distribution α and transition matrix P ,
we say that X is Markov(α, P ) and write X ∼Markov(α, P ).

In Theorem 2.2.4, we shall see that the distribution of a homogeneous Markov chain is
completely determined by the initial distribution α and the transition matrix P . In an
abuse of terminology, we will often identify a Markov chain X with its distribution, i.e.
we will forget about the underlying probability space (Ω,A,P) and only focus on the
�nite-dimensional distributions of X.

Remark 2.2.3 pij is the probability to go from i to j in one time step. Clearly

(i) Each entry of P is nonnegative because each pij is a probability;
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(ii) If 1 = (1,1, . . . ,1)⊺ for �nite E and 1 = (1,1, . . .)⊺ for countably in�nite E, we have
P1 = 1. This is because for every i ∈ E,

∑
j∈E

pij = ∑
j∈E
P(Xn+1 = j ∣Xn = i)

= P(Xn+1 ∈ ⋃
j∈E

{j} ∣Xn = i)

= P(Xn+1 ∈ E ∣Xn = i)

= 1.

A stochastic matrix P = (pij) is a matrix which satis�es both pij ≥ 0 for every i, j ∈ E and
P1 = 1. In particular, if P is the transition matrix of a Markov chain, then P is also a
stochastic matrix.

Theorem 2.2.4 Let X be Markov(α, P ). Then, for all n ∈ N and for all i0, . . . , in ∈ E
we have

P(X0 = i0, . . . ,Xn = in) = αi0pi0i1pi1i2 . . . pin−1in .

Proof. We show the statement by induction. In the base case n = 0, we have

P(X0 = i0) = αi0 .

In the induction step, suppose there is n ∈ N for which the statement holds. Let
i0, . . . , in+1 ∈ E. By induction hypothesis,

P(X0 = i0, . . . ,Xn = in) = αi0pi0i1 . . . pin−1in . (2.1)

If P(X0 = i0, . . . ,Xn = in) = 0, this implies αi0pi0i1 . . . pin−1in = 0 and hence

P(X0 = i0, . . . ,Xn = in,Xn+1 = in+1) = 0 = αi0pi0i1 . . . pin−1inpinin+1 .

If P(X0 = i0, . . . ,Xn = in) > 0, we may condition on this event and obtain

P(X0 = i0, . . . ,Xn = in,Xn+1 = in+1)

= P(X0 = i0, . . . ,Xn = in)P(Xn+1 = in+1 ∣X0 = i0, . . . ,Xn = in).

The Markov property and homogeneity imply

P(Xn+1 = in+1 ∣X0 = i0, . . . ,Xn = in) = P(Xn+1 = in+1 ∣Xn = in) = pinin+1 .

Together with (2.1), this yields the desired result. ◻

So far, we have de�ned Markov chains, but we do not know yet whether they exist,
i.e. whether there are stochastic processes that are homogeneous and satisfy the Markov
property. Theorem 2.2.4 can be used to construct Markov processes explicitly and to thus
show their existence: Fix any probability measure α on E, and �x any stochastic matrix
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P of dimension ∣E∣ × ∣E∣. One can show that there is a stochastic process X = (Xn)n∈N on
E with �nite-dimensional distributions

P(X0 = i0, . . . ,Xn = in) = αi0pi0i1 . . . pin−1in

for n ∈ N and i0, . . . , in ∈ E. Once this is established, it is not hard to see that X is
homogeneous and satis�es the Markov property.

Let X ∼ Markov(α, P ) and let i ∈ E such that αi > 0. Then, we de�ne the probability
measure

Pi(●) = P(● ∣X0 = i).

For i, j ∈ E and n ∈ N, we denote the entry in the ith row and jth column of the matrix
P n = P . . . P (n times) by

p
(n)
ij .

Note that p
(1)
ij = pij.

Proposition 2.2.5 For each n ∈N and for each j ∈ E,

Pi(Xn = j) = p
(n)
ij .

Proof. We prove the statement by induction. The case n = 0 follows from the convention
that P 0 is the identity matrix with 1s on the diagonal and 0s o� the diagonal. In the
induction step, suppose the formula holds for some n ∈N. We need to show that Pi(Xn+1 =

j) = p
(n+1)
ij . The law of total probability applied to Pi yields

Pi(Xn+1 = j) = ∑
h∈E∶

Pi(Xn=h)>0

Pi(Xn = h)Pi(Xn+1 = j ∣Xn = h).

The Markov property and the fact that X is homogeneous let us write

Pi(Xn+1 = j ∣Xn = h) = P(Xn+1 = j ∣Xn = h) = phj.

And by induction hypothesis,
Pi(Xn = h) = p

(n)
ih .

As a result,
Pi(Xn+1 = j) = ∑

h∈E∶
Pi(Xn=h)>0

p
(n)
ih phj.

For any h ∈ E such that Pi(Xn = h) = 0, we also have p
(n)
ih = 0 by induction hypothesis.

Thus, we may sum over the entire set E and obtain

Pi(Xn+1 = j) = ∑
h∈E

p
(n)
ih phj = p

(n+1)
ij ,

as desired. ◻

In light of Proposition 2.2.5, we can interpret p
(n)
ij as the probability of X going from state

i to state j in n steps.
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Remark 2.2.6 Since X is homogeneous, we have the following slight generalization of
Proposition 2.2.5:
For any i, j ∈ E and any m,n ∈N with P(Xm = i) > 0, we have

P(Xm+n = j ∣Xm = i) = p
(n)
ij .

Corollary 2.2.7 a) Let X ∼Markov(α, P ). For any n ∈N and any i ∈ E, we have

P(Xn = i) = (αP n)i,

i.e. P(Xn = i) is the ith component of the row vector αP n.

b) [Chapman�Kolmogorov equation] For all m, n ∈ N and for all i, j ∈ E with αi > 0,
we have

Pi(Xm+n = j) = ∑
h∈E
Pi(Xm = h)P(Xm+n = j ∣Xm = h).

Here we interpret Pi(Xm = h)P(Xm+n = j ∣Xm = h) as 0 if P(Xm = h) = 0.

Draw a picture to illustrate the Chapman�Kolmogorov equation.
Proof.

a) By the law of total probability,

P(Xn = i) = ∑
h∈E,
αh>0

P(X0 = h)Ph(Xn = i).

By de�nition P(X0 = h) = αh, and Proposition 2.2.5 yields Ph(Xn = i) = p
(n)
hi for

every h ∈ E such that αh > 0. As p
(n)
hi is also de�ned if αh = 0, we obtain

P(Xn = i) = ∑
h∈E

αhp
(n)
hi = (αP )i.

b) The de�nition of the matrix product yields

p
(m+n)
ij = ∑

h∈E
p
(m)
ih p

(n)
hj .

Then, we just apply Proposition 2.2.5 to the terms on both sides:

p
(m+n)
ij = Pi(Xm+n = j), p

(m)
ih = Pi(Xm = h)

provided that αi > 0, and

p
(n)
hj = P(Xm+n = j ∣Xm = h)

if P(Xm = h) > 0.
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◻

Remark 2.2.8 a) To any Markov chain we can associate a transition graph between
states: this is a weighted, directed graph with an edge from i to j if and only if
pij > 0. The weight assigned to the edge from i to j is precisely pij.

b) We say that state i leads to state j (and write i→ j) if

p
(n)
ij > 0, for some n ∈N.

In this case, there is a path from i to j in the transition graph. Notice however that
if j = i, we always have i→ j and j → i, even if there is no loop at the vertex i. This
is because p

(0)
ii = 1 > 0.

c) We say that i communicates with j (and write i↔ j) if both i→ j and j → i.

d) It is easy to check that the relation↔ is an equivalence relation on the state space E,
i.e. we have i↔ i; i↔ j if and only if j ↔ i; and i↔ j and j ↔ k together imply
i ↔ k. Therefore, the relation ↔ partitions E into so-called equivalence classes.
These are subsets of E of the form

{i ∈ E ∶ i↔ j}

for j ∈ E. We call these equivalence classes communicating classes.

e) We say that a communicating class C is closed if

i ∈ C, i→ j implies j ∈ C.

The state i is called absorbing if {i} is a closed communicating class. If i is
absorbing, then

pij =

⎧⎪⎪
⎨
⎪⎪⎩

0, j ≠ i,

1, j = i.

f) We call a Markov chain with transition matrix P (and the matrix P itself)
irreducible if the entire set E is a communicating class, i.e. if i↔ j for all i, j ∈ E.

Example 2.2.9 a) Consider a Markov chain on the state space E = {1,2} with
transition matrix

P = (
p11 p12

p21 p22
) .

Suppose p12, p21 > 0. Then 1 ↔ 2, so the Markov chain is irreducible. If we have
in addition p11, p22 > 0, then the transition graph of the chain looks as follows.

0 1p11 p12
p22

p21
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b) Consider the transition matrix

P =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2

1
2 0 0 0 0

0 0 1 0 0 0
1
3 0 0 1

3
1
3 0

0 0 0 1
2

1
2 0

0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The corresponding transition graph is:

3

2

1 4

5 6

1/2

1/2

1

1/3

1/3

1/3

1/2

1/2

1

1

The communicating classes are {1,2,3}, {4}, and {5,6}. Only {5,6} is a closed
communicating class.

c) (One-dimensional random walk) A random walk on the set of integers Z is a Markov
chain on the state space E = Z of the form Xn = X0 + ∑

n
i=1 εi, n ∈ N. Here X0

is an integer-valued random variable and (εi)i≥1 are integer-valued and i.i.d. If the
distribution of the εi's is given by P(εi = 1) = p, P(εi = −1) = 1−p for some p ∈ (0,1),
we call X a simple random walk. A simple random walk starts at some randomly
chosen integer given by X0. Then, in each successive step, it jumps to its nearest
neighbor on the right with probability p and to its nearest neighbor on the left with
probability 1 − p. The direction of each jump (i.e. left or right) is independent of
previous jumps. The site to which a jump leads does however depend on previous
jumps as the walker can only jump to a nearest neighbor of its current location. The
corresponding transition matrix is the in�nite matrix

P =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋱ ⋮
1 − p 0 p 0 0

⋯ 0 1 − p 0 p 0 ⋯
0 0 1 − p 0 p

⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

d) (Birth and death chain on N) For i ∈ N let pi, ri, qi be real numbers in [0,1] such
that pi + ri + qi = 1. Assume further that q0 = 0. A birth and death chain on N is a
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Markov chain on the state space E =N with transition matrix P = (pij) satisfying

pij =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

pi, j = i + 1,

ri, j = i,

qi, j = i − 1.

(2.2)

Here, Xn can be interpreted as the size of a population at time n. From one time step
to the next, there is either exactly one birth or exactly one death or the population
size stays constant. The probabilities of birth are given by the pi's, the probabilities
of death by the qi's and the probabilities of nothing happening by the ri's. Why do
we need to impose q0 = 0?

2.2.1 Strong Markov property

For a homogeneous Markov chain, we have the Markov property at each �xed time n:
the random variable Xn+1 is conditionally independent of X0, . . . ,Xn−1 given Xn. What
happens if we replace n with a random time T?
Let X be a Markov chain. For n ∈ N, let σ(X0, . . . ,Xn) denote the σ-algebra generated
by the random variables X0, . . . ,Xn. By de�nition, this is the smallest σ-algebra on
Ω with respect to which each Xi, 1 ≤ i ≤ n, is measurable. We have σ(X0, . . . ,Xn) ⊂
σ(X0, . . . ,Xn,Xn+1), so as we increase the number of random variables, the σ-algebra they
generate becomes larger. Such an increasing sequence of σ-algebras is called a �ltration.
One can think of σ(X0, . . . ,Xn) as measuring the information about the chain X that is
known at time n. As n increases, more information becomes available.

De�nition 2.2.10 1. Let (Ω,A) be a measurable space and let (An)n∈N be a family of
σ-algebras on Ω such that An ⊂ An+1 ⊂ A for every n ∈ N. Then we call (An)n∈N a
�ltration of (Ω,A).

2. A random variable T with values in N ∪ {∞} is called a stopping time with respect
to a �ltration (An)n∈N if the event {T ≤ n} is an element of An for every n ∈ N. It
is called a stopping time with respect to a Markov chain X if it is a stopping time
with respect to the �ltration (σ(X0, . . . ,Xn))n∈N.

Example 2.2.11 Let (Xn)n∈N be a random walk on Z.

� For j ∈ Z, set
Tj = inf{n ≥ 1 ∶Xn = j}.

The random variable Tj indicates the �rst time the random walk visits the state j.
It is called the �rst passage time for state j. For any n ∈N, we have

{Tj ≤ n} =
n

⋃
k=1

{Xk = j}.

12



And for 1 ≤ k ≤ n, the event {Xk = j} lies in σ(Xk) ⊂ σ(X0, . . . ,Xn). As
σ(X0, . . . ,Xn) is closed under countable unions, ∪nk=1{Xk = j} ∈ σ(X0, . . . ,Xn). This
shows that Tj is a stopping time with respect to X.

� For j ∈ Z, set
Lj = sup{n ∈N ∶Xn = j}.

The random variable Lj indicates the last time X vists the state j. For any n ∈N,

{Lj ≤ n} =
∞
⋂

k=n+1

{Xk ≠ j}.

As this event depends on the random variables Xn+1,Xn+2, . . ., it is typically not
contained in σ(X0, . . . ,Xn), i.e. Lj is typically not a stopping time with respect to
X.

De�nition 2.2.12 Let T be a stopping time with respect to a �ltration (An)n∈N of a
measurable space (Ω,A). Then, we set

AT = {A ∈ A ∶ A ∩ {T ≤ n} ∈ An ∀n ∈N} .

One can show that AT is a σ-algebra on Ω.

De�nition 2.2.13 For i ∈ E, let δi denote the Dirac measure on E de�ned by

δi({j}) =

⎧⎪⎪
⎨
⎪⎪⎩

0, j ≠ i,

1, j = i.

Theorem 2.2.14 Let X = (Xn)n∈N be Markov(α, P ). Let T be a stopping time with
respect to X and let i ∈ E such that P(T < ∞,XT = i) > 0. Then, (XT+n)n∈N is
Markov(δi, P ) with respect to the probability measure P(● ∣ T < ∞,XT = i). Furthermore,
(XT+n)n∈N is independent of the σ-algebra AT (where An = σ(X0, . . . ,Xn)), meaning that
for any n ∈N, i0, . . . , in ∈ E and B ∈ AT we have

P(XT = i0, . . . ,XT+n = in,B ∣ T < ∞,XT = i) =P(XT = i0, . . . ,XT+n = in ∣ T < ∞,XT = i)
(2.3)

⋅P(B ∣ T < ∞,XT = i). (2.4)

Remark 2.2.15 Any Markov process in discrete time � even if it has an uncountable
state space � satis�es a version of Theorem 2.2.14. Most Markov processes in continuous
time (e.g. Brownian motion) also satisfy a version of Theorem 2.2.14, but some don't.
If a Markov process satis�es a version of Theorem 2.2.14, we say that it has the strong
Markov property. Theorem 2.2.14 then tells us that any Markov chain on a discrete state
space and in discrete time has the strong Markov property.
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Proof. Let n ∈ N, i0, . . . , in ∈ E and B ∈ AT . If i0 ≠ i we have 0 on both sides of the
formula in (2.3) and (2.4), so we will assume from now on that i0 = i. Then,

P(XT = i0, . . . ,XT+n = in,B ∣ T < ∞,XT = i)

=
P(XT+1 = i1, . . . ,XT+n = in,B, T < ∞,XT = i)

P(T < ∞,XT = i)
.

As {T < ∞} = ∪∞m=0{T =m}, we can write the term in the numerator as
∞
∑
m=0

P(XT+1 = i1, . . . ,XT+n = in,B, T =m,XT = i) (2.5)

=
∞
∑
m=0

P(Xm+1 = i1, . . . ,Xm+n = in,B, T =m,Xm = i)

=
∞
∑
m=0

P(Xm+1 = i1, . . . ,Xm+n = in,B, T =m ∣Xm = i)P(Xm = i).

Fix m ∈ N such that P(Xm = i) > 0. Since X satis�es the Markov property, the
random variables Xm+1, . . . ,Xm+n are independent of X0, . . . ,Xm under P(● ∣ Xm = i).
(Technically, the Markov property only said that Xm+1 is conditionally independent of
X0, . . . ,Xm−1 given Xm, but one can derive this stronger statement without too much
e�ort.) And since B ∈ AT , we have

B ∩ {T =m} ∈ σ(X0, . . . ,Xm).

Hence,

P(Xm+1 = i1, . . . ,Xm+n = in,B, T =m ∣Xm = i)P(Xm = i)

=P(Xm+1 = i1, . . . ,Xm+n = in ∣Xm = i)P(B,T =m,Xm = i).

Homogeneity implies

P(Xm+1 = i1, . . . ,Xm+n = in ∣Xm = i) = pii1 . . . pin−1in ,

which doesn't depend on m. As a result, the term in (2.5) equals

pii1 . . . pin−1in

∞
∑
m=0

P(B,T =m,XT = i) = pii1 . . . pin−1inP(B,T < ∞,XT = i).

For the moment, let B = Ω. Then, we have shown that

P(XT = i0, . . . ,XT+n = in ∣ T < ∞,XT = i) = δi({i0})pii1 . . . pin−1in ,

i.e. (XT+n)n∈N is indeed Markov(δi, P ) under P(● ∣ T < ∞,XT = i). Hence, for arbitrary
B ∈ AT ,

P(XT = i0, . . . ,XT+n = in,B ∣ T < ∞,XT = i)

= P(XT = i0, . . . ,XT+n = in ∣ T < ∞,XT = i)
P(B,T < ∞,XT = i)

P(T < ∞,XT = i)

= P(XT = i0, . . . ,XT+n = in ∣ T < ∞,XT = i)P(B ∣ T < ∞,XT = i).

◻
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Remark 2.2.16 While the previous proof may look somewhat technical, its main steps
are simple and can serve as a blueprint for dealing with Markov chains and stopping times:
First, condition on the possible values the stopping time T may assume; then, for each
�xed value of T you have a regular Markov chain that you can manipulate as needed;
�nally, remove the conditioning to get back T .

2.3 Recurrence and transience

Let P be a stochastic matrix. We say that a state i ∈ E is recurrent (with respect to P
or with respect to a Markov chain X with transition matrix P ) if

P(Xn = i for in�nitely many n) = 1,

where X ∼Markov(δi, P ). We call it transient if

P(Xn = i for in�nitely many n) = 0

for X ∼ Markov(δi, P ). Recurrent states are those to which you keep coming back and
transient states are those which you eventually leave forever. Our �rst important result
will be that every state is either recurrent or transient.
Recall the �rst passage time

Tj = inf{n ≥ 1 ∶Xn = j},

where we use the convention that inf ∅ = ∞. De�ne inductively

T
(0)
j = 0, T

(1)
j = Tj

and
T

(r+1)
j = inf{n ≥ T

(r)
j + 1 ∶Xn = j}, r ≥ 1.

Then, T
(r)
j is the time at which X visits the state j for the rth time. For r ≥ 1, the length

of the rth excursion from j is de�ned as

S
(r)
j =

⎧⎪⎪
⎨
⎪⎪⎩

T
(r)
j − T

(r−1)
j if T

(r)
j < ∞

+∞ otherwise.

Draw a picture to illustrate this.

Lemma 2.3.1 Let r = 2,3, . . . , and suppose that P(T
(r−1)
j < ∞) > 0. Conditional on

T
(r−1)
j < ∞, S

(r)
j is independent of A

T
(r−1)
j

and

P(S
(r)
j = n ∣ T

(r−1)
j < ∞) = Pj(Tj = n).
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Proof. We apply the strong Markov property for the stopping time T = T
(r−1)
j . By

de�nition of T , XT = j, which spares us conditioning on the event {XT = j}. Under
the probability measure P(● ∣ T < ∞), (XT+n)n∈N is independent from AT and is
Markov(δj, P ). Conditional on T < ∞, we have

S
(r)
j = inf{n ≥ 1 ∶XT+n = j}.

Therefore, under P(● ∣ T < ∞), S
(r)
j is the �rst passage time to j of the Markov chain

(XT+n)n∈N that has the same distribution as the original chain X under Pj. It follows

that S
(r)
j is independent of AT and that

P(S
(r)
j = n ∣ T

(r−1)
j < ∞) = Pj(Tj = n).

◻

De�ne the number of visits Vi to state i as

Vi =
∞
∑
n=0

1{Xn=i},

and note that

Ei[Vi] = Ei
∞
∑
n=0

1{Xn=i} =
∞
∑
n=0

Pi(Xn = i) =
∞
∑
n=0

p
(n)
ii .

Here, Ei stands for expected value with respect to the probability measure Pi. With this
notation at hand, we can now say that a state i is recurrent if Pi(Vi = ∞) = 1. It is
transient if Pi(Vi = ∞) = 0. We can compute the distribution of Vi under Pi in terms of
the return probability

fi = Pi(Ti < ∞).

Lemma 2.3.2 For any r ∈N,
Pi(Vi > r) = f

r
i .

Proof. We prove the statement by induction. To deal with the base case r = 0, observe
that Pi(Vi > 0) = 1. This is because Vi already counts the 0th visit to state i (i.e. the start
of the chain at i) as one visit. By convention, f 0

i = 1, so the base case has been veri�ed.
In the induction step, we will use the general observation that

{Vi > r} = {T
(r)
i < ∞}, r ∈N. (2.6)

Suppose the statement holds for some r ∈N. Then,

Pi(Vi > r + 1) = Pi(T
(r+1)
i < ∞)

= Pi(T
(r)
i < ∞, S

(r+1)
i < ∞)

= Pi(S
(r+1)
i < ∞ ∣ T

(r)
i < ∞)Pi(T

(r)
i < ∞).
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With (2.6) and the induction hypothesis, we obtain

Pi(T
(r)
i < ∞) = Pi(Vi > r) = f

r
i .

Thus, if Pi(T
(r)
i < ∞) = 0, we also have fi = 0 and the desired formula holds. If Pi(T

(r)
i <

∞) > 0, Lemma 2.3.1 yields

Pi(S
(r+1)
i < ∞ ∣ T

(r)
i < ∞) =

∞
∑
n=1

Pi(S
(r+1)
i = n ∣ T

(r)
i < ∞) =

∞
∑
n=1

Pi(Ti = n) = Pi(Ti < ∞) = fi.

To summarize:

Pi(S
(r+1)
i < ∞ ∣ T

(r)
i < ∞)Pi(T

(r)
i < ∞) = fif

r
i = f

r+1
i .

◻

Recall the basic formula for the expectation of a non-negative random variable V with
values in N:

E[V ] =
∞
∑
r=0

P(V > r).

(To derive it, write E[V ] as ∑
∞
n=1∑

n−1
k=0 P(V = n) and change the order of summation.)

The next theorem gives two useful criteria to establish recurrence or transience of a given
state.

Theorem 2.3.3 (i) If fi = 1, then i is recurrent and ∑
∞
n=0 p

(n)
ii = ∞;

(ii) If fi < 1, then i is transient and ∑
∞
n=0 p

(n)
ii < ∞.

In particular, every state is either transient or recurrent.

Proof. If fi = 1, then

Pi(Vi = ∞) = lim
r→∞Pi(Vi > r) = lim

r→∞ f
r
i = 1.

The �rst equality follows from {Vi = ∞} = ∩∞r=0{Vi > r} and the fact that probability
measures are continuous from above, meaning that if P is a probability measure and
if (An)n∈N is a family of events such that A1 ⊃ A2 ⊃ A3 ⊃ . . ., then limn→∞P(An) =
P(∩n∈NAn). The second equality follows from Lemma 2.3.2. Thus, i is recurrent and

∞
∑
n=0

p
(n)
ii = Ei[Vi] = ∞.

If fi < 1, we have

∞
∑
n=0

p
(n)
ii = Ei[Vi] =

∞
∑
r=0

Pi(Vi > r) =
∞
∑
r=0

f ri =
1

1 − fi
< ∞.
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The key point here is the convergence of the geometric series. If the event {Vi = ∞} had
a positive Pi-probability, then Ei[Vi] would be in�nite. Hence, Pi(Vi = ∞) = 0 and i is
transient. ◻

This result allows us to provide simple criteria for recurrence/ transience. The criteria
we are about to develop hold for an arbitrary countable state space E, but they are
particularly helpful if the Markov chain evolves on a �nite state space. First, we show
that recurrence/ transience is a property shared by all members of a communicating class.

Theorem 2.3.4 Let C be a communicating class. Then either all states in C are transient
or recurrent.

Proof. Take i, j ∈ C and suppose that i is transient. In order to prove the theorem, it
is enough to show that j is transient because every state is either transient or recurrent.
Since i ↔ j, there are n,m ∈ N such that p

(n)
ij > 0 and p

(m)
ji > 0. As a corollary of the

Chapman�Kolmogorov equation, we have the estimate

p
(n+r+m)
ii ≥ p

(n)
ij p

(r)
jj p

(m)
ji , r ∈N.

This should also be clear on a more probabilistic level: On the left, we have the probability
of going from i to i in (n + r +m) steps. On the right, we have the probability of going
from i to i in (n + r +m) steps AND of being at j after n steps AND of being again at j
after another r steps. The inequality above yields the estimate

∞
∑
r=0

p
(r)
jj ≤

1

p
(n)
ij p

(m)
ji

∞
∑
r=0

p
(n+r+m)
ii .

Since state i is transient, part (ii) of Theorem 2.3.3 implies that the series on the right
converges. Hence, the series on the left converges as well and j is also transient, again by
Theorem 2.3.3. ◻

We can therefore speak of a recurrent or transient communicating class (or Markov chain/
transition matrix if it is irreducible).

Theorem 2.3.5 Every recurrent communicating class is closed.

Proof. We show the contraposition: Every communicating class that isn't closed is
transient. Let C be a communicating class which is not closed. Then, there exist i ∈ C
and j ∉ C such that i → j. In particular, there is m ≥ 1 such that p

(m)
ij > 0. Since j is

not in the same communicating class as i and since i→ j, we necessarily have j ↛ i. This
implies

Pi({Xm = j} ∩ {Xn = i for in�nitely many n}) = 0,

which, in light of p
(m)
ij > 0, can only hold if

Pi({Xn = i for in�nitely many n}) < 1.
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As a result, i is transient. ◻

Theorem 2.3.5 states that any recurrent communicating class is closed. How about
the converse statement? Is it always true that any closed communicating class is
recurrent? When we discuss recurrence and transience for the simple random walk on
Z in the following section, we shall see that this is not the case. However, we can
turn Theorem 2.3.5 into an "if and only if"-statement if we restrict ourselves to �nite
communicating classes.

Theorem 2.3.6 Every �nite closed communicating class is recurrent. In particular, a
�nite communicating class is recurrent if and only if it is closed.

Proof. Let C be a closed and �nite communicating class of a Markov chain X whose
initial distribution α satis�es αi = 0 if i ∉ C. Let us �rst show that there exists a state
i ∈ C such that

P(Xn = i for in�nitely many n) > 0.

If this wasn't the case, we would have

0 = ∑
i∈C
P(Xn = i for in�nitely many n) = P(⋃

i∈C
{Xn = i for in�nitely many n}).

But since X starts in C and since C is closed, each random variable Xn takes on values
only in C. And since C is �nite,

P(⋃
i∈C

{Xn = i for in�nitely many n}) = 1,

a contradiction. Let i ∈ C such that

P(Xn = i for in�nitely many n) > 0.

Since {Xn = i for in�nitely many n} = {Xn = i for in�nitely many n > Ti}, we can write
the probability on the left as

P(XTi+n = i for in�nitely many n ∣ Ti < ∞)P(Ti < ∞).

By the strong Markov property,

P(XTi+n = i for in�nitely many n ∣ Ti < ∞) = Pi(Xn = i for in�nitely many n).

Thus, the probability on the right is positive and i is recurrent. ◻

It is relatively easy to spot closed communicating classes, so determining whether a �nite
communicating class is transient or recurrent is usually not hard.

Corollary 2.3.7 If E is the �nite state space of a Markov chain, it can be uniquely
partitioned as

E = I ∪E1 ∪E2 ∪ ⋅ ⋅ ⋅ ∪Em,

where I is the set of all transient states and E1,E2, . . . ,Em are the closed communicating
classes.
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The following theorem is often useful.

Theorem 2.3.8 Suppose P is irreducible and recurrent. Then, for all j ∈ E, we have
P(Tj < ∞) = 1.

Notice that we are not making any assumptions on the initial distribution.
Proof. By the law of total probability,

P(Tj < ∞) = ∑
i∈E
αiPi(Tj < ∞).

Thus, we only need to show Pi(Tj < ∞) = 1 for all i ∈ E with αi > 0. Fix such i ∈ E. Since

P is irreducible, there is m ∈N such that p
(m)
ji > 0. As j is recurrent,

1 = Pj(Xn = j for in�nitely many n)

= Pj(Xn = j for some n ≥m + 1)

= ∑
k∈E
Pj(Xn = j for some n ≥m + 1 ∣Xm = k)Pj(Xm = k).

Let k ∈ E such that Pj(Xm = k) > 0. By the Markov property and homogeneity, (Xn+m)n∈N
is Markov(δk, P ) under Pj(● ∣Xm = k). Hence,

Pj(Xn = j for some n ≥m + 1 ∣Xm = k) = Pk(Tj < ∞).

This gives
1 = ∑

k∈E
Pk(Tj < ∞)p

(m)
jk .

As ∑k∈E p
(m)
jk = 1, we have Pk(Tj < ∞) = 1 for all k ∈ E with p

(m)
jk > 0. In particular,

Pi(Tj < ∞) = 1. ◻

Example 2.3.9 Recall Example 2.2.9(b):

3

2

1 4

5 6

1/2

1/2

1

1/3

1/3

1/3

1/2

1/2

1

1

with communicating classes {1,2,3}, {4}, and {5,6}. Since only {5,6} is closed, this is
the only recurrent communicating class. The communicating classes {1,2,3} and {4} are
transient.

The only interesting case left is then the case of communicating classes that are in�nite
and closed. A priori, such communicating classes could be recurrent or transient, and we
will see in the next section that both of these situations occur.
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2.3.1 Recurrence and transience for classical chains

Simple random walk on Z

Recall that a simple random walk on Z is a Markov chain with transition probabilities

P(Xn+1 = y ∣Xn = x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p y = x + 1

1 − p y = x − 1

0 otherwise

,

where p ∈ (0,1). As we assume p ∈ (0,1), this Markov chain is irreducible. Suppose

we start at 0, then p
(2n+1)
00 = 0 for all n. The fact that simple random walk starting

at 0 never returns to 0 at odd times is often a source of minor and at times of major
technical di�culties when dealing with it. Any given sequence of 2n steps from 0 to 0
has probability pn(1 − p)n, provided of course that we always step to a nearest neighbor.
The total number of such sequences is the number of ways to choose n steps (say the ones
taken to the right) out of 2n. Thus,

p
(2n)
00 = (

2n

n
)pn(1 − p)n =

(2n)!

(n!)2
(p(1 − p))n.

We will use Stirling's approximation to n!, which states that

lim
n→∞

n!en
√

2πn nn
= 1.

With this we obtain

lim
n→∞

p
(2n)
00

√
πn

(4p(1 − p))n
= 1.

In particular, there are constants 0 < c < C such that

c
(4p(1 − p))n

√
n

≤ p
(2n)
00 ≤ C

(4p(1 − p))n
√
n

, n ∈N.

In the symmetric case p = 1/2, 4p(1 − p) = 1, so

∞
∑
n=0

p
(2n)
00 ≥ c

∞
∑
n=0

1
√
n
= ∞,

showing with Theorem 2.3.3 that the one-dimensional simple symmetric random walk is
recurrent.
If p ≠ 1

2 , then 4p(1 − p) = r < 1 and thus

∞
∑
n=0

p
(2n)
00 ≤ C

∞
∑
n=0

rn
√
n
< ∞.

Thus the asymmetric simple random walk is transient.
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Birth and death chain on N

On N, consider a simpli�ed version of the birth and death chain with transition
probabilities

pij =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p, i ≥ 1, j = i + 1,

1 − p, i ≥ 1, j = i − 1,

1, i = 0, j = 1,

(2.7)

where p ∈ (0,1). We can think of this Markov chain as a simple random walk on N that
is re�ected at 0. Just like the simple random walk on Z, it is irreducible. For k ∈ N, let
u(k) = Pk(Xn ≠ 0 ∀n ∈ N). The chain is recurrent if and only if u(k) = 0 for all k ∈ N:
If the chain is recurrent, we have

Pk(T0 < ∞) = 1, k ∈N,

by Theorem 2.3.8. Therefore,

u(k) = Pk(T0 = ∞,X0 ≠ 0) ≤ Pk(T0 = ∞) = 1 −Pk(T0 < ∞) = 0.

Conversely, if u(k) = 0 for all k ∈N, we have in particular u(1) = 0, so

0 = P1(T0 = ∞,X0 ≠ 0) = P1(T0 = ∞) = 1 −P1(T0 < ∞).

With p01 = 1, we obtain
P0(T0 < ∞) = P1(T0 < ∞) = 1

and recurrence follows with Theorem 2.3.3. Clearly u(0) = 0, and moreover

u(k) =pkk−1Pk(Xn ≠ 0 ∀n ∈N ∣X1 = k − 1) + pkk+1Pk(Xn ≠ 0 ∀n ∈N ∣X1 = k + 1)

=(1 − p)u(k − 1) + pu(k + 1), k ≥ 1.

After rearranging terms, this gives

u(k + 1) − u(k) =
1 − p

p
(u(k) − u(k − 1)) = (

1 − p

p
)
k

(u(1) − u(0)) = (
1 − p

p
)
k

u(1).

Using telescopic summation,

u(k+1) = (u(k+1)−u(k))+(u(k)−u(k−1))+⋅ ⋅ ⋅+(u(1)−u(0)) = u(1)
k

∑
j=0

(
1 − p

p
)
j

. (2.8)

Suppose now that p ≤ 1
2 . In this case, the series

∞
∑
j=0

(
1 − p

p
)
j
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diverges. Thus, if u(1) was strictly positive, the sequence u(1)∑
k
j=0(

1−p
p )j on the right

side of (2.8) would diverge to ∞ as k → ∞. However, the sequence u(k + 1) on the left
side of (2.8) is bounded by 1 because every u(k) is the probability of some event. This
implies u(1) = 0, and on account of (2.8) then even u(k) = 0 for all k ∈ N. As a result,
the chain is recurrent if p ≤ 1

2 .

In tutorial, you were also asked to show that the chain is transient if p > 1
2 . One way of

doing this is by comparison to the simple random walk on Z.

Simple symmetric random walk on Zd

For d ≥ 1, we consider the simple symmetric random walk (SSRW) on Zd, the Markov
chain X on Zd with transition probabilities

P(Xn+1 = y∣Xn = x) =

⎧⎪⎪
⎨
⎪⎪⎩

1
2d , ∥y − x∥1 = 1

0, otherwise
.

Here, ∥ ⋅ ∥1 is the 1-norm on Rd de�ned by ∥v∥1 = ∣v1∣ + . . . + ∣vd∣. In words, if X is at a
point x ∈ Zd at time n, it jumps to one of the 2d nearest neighbors of x on the lattice Zd

at time (n + 1). The Markov chain X is irreducible, and ∑
∞
n=0 p

(n)
ii = ∑

∞
n=0 p

(2n)
00 for every

i ∈ Zd.
We have already shown that X is recurrent if d = 1. Next, we consider the case d = 2. As
in the one-dimensional case, it is impossible for the SSRW in two dimensions (and in fact
in any dimension) to move from 0 to 0 in an odd number of steps. In order for it to move
from 0 to 0 in exactly 2n steps, the number of steps to the left must equal the number of
steps to the right, and the number of steps up must equal the number of steps down. For
0 ≤ i ≤ n, suppose there were i steps taken to the left and right, and n − i steps up and
down. The number of admissible paths of length 2n from 0 to 0 is thus given by the sum
of multinomial coe�cients

n

∑
i=0

(
2n

i, i, n − i, n − i
) =

n

∑
i=0

(2n)!

i!i!(n − i)!(n − i)!
.

As each path has the same likelihood 4−2n (where 4 comes from 4 = 2d), we have

p
(2n)
00 = 4−2n

n

∑
i=0

(2n)!

i!i!(n − i)!(n − i)!
= 4−2n(

2n

n
)

n

∑
i=0

(
n

i
)

2

= 4−2n(
2n

n
)

2

≥
c

n
(2.9)

for some c > 0. In the last step, we used Stirling's formula. The second to last step is
easiest to understand if we interpret the binomial coe�cients combinatorially: The term

(
2n

n
)

gives the number of ways of choosing n balls from an urn with n red and n blue balls.
For every choice we make, there is some i ∈ {0,1, . . . , n} such that i of the chosen balls are
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red and n− i of the chosen balls are blue. The estimate in (2.9) implies ∑
∞
n=0 p

(2n)
ii = ∞, so

SSRW in dimension 2 is recurrent as well.
For d = 3, we have

p
(2n)
00 = 6−2n ∑

i,j,k∈N,i+j+k=n

(2n)!

(i!j!k!)2
=2−2n(

2n

n
)3−2n ∑

i,j,k∈N,i+j+k=n
(

n

i, j, k
)

2

=2−2n(
2n

n
)3−n max

i,j,k∈N,i+j+k=n
(

n

i, j, k
)3−n ∑

i,j,k∈N,i+j+k=n
(

n

i, j, k
).

Next, observe that

∑
i,j,k∈N,i+j+k=n

(
n

i, j, k
) = 3n

because both terms give the number of ways of placing n balls in three boxes. For the
case where n = 3m, we have

(
n

i, j, k
) =

n!

i!j!k!
≤ (

n

m,m,m
),

so

p
(6m)
00 ≤ 2−2n(

2n

n
)3−n(

n

m,m,m
) ≤

C

n
3
2

by Stirling's formula. Hence ∑
∞
m=0 p

(6m)
00 < ∞, by the comparison test. On the other hand,

p
(6m−2)
00 ≤ 62p

(6m)
00 and p

(6m−4)
00 ≤ 64p

(6m)
00 , so we must have

∞
∑
n=0

p
(n)
00 < ∞.

This shows that SSRW in three dimensions is transient.

Remark 2.3.10 For the d-dimensional SSRW, the probability p
(2n)
00 is of order n−

d
2 . As

the series ∑
∞
n=1 n

− d
2 converges for all d ≥ 3, SSRW is transient in any dimension d ≥ 3.

2.4 Stationarity

De�nition 2.4.1 Let π be a probability measure on E. Since E is countable, such a
probability measure can be identi�ed with a vector of ∣E∣ components that are nonnegative
and sum up to 1. We call π invariant measure or stationary distribution of a Markov
chain with transition matrix P if

πi = ∑
j∈E

πjpji, i ∈ E.

This means that π = πP , i.e. π, viewed as a row vector, is a left eigenvector of the matrix
P to the eigenvalue 1.
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Remark 2.4.2 If π is an invariant measure, the following holds.

1. π = πP n for any n,

2. If X0 has distribution π, then Xn has distribution π for any n ∈ N. This is the
reason we call π invariant. To see this fact, observe that

Pπ(X1 = i) = ∑
j∈E

πjP(X1 = i ∣X0 = j) = ∑
j∈E

πjpji = πi.

Here, Pπ is the law of a Markov chain in Markov(π,P ).

2.4.1 Long-run proportion of number of visits

Recall the total number of visits to state j ∈ E, Vj = ∑
∞
k=0 1{Xk=j}, and de�ne the number

of visits up to time n − 1 (n ≥ 1) by

V
(n)
j =

n−1

∑
k=0

1{Xk=j}.

The next theorem gives the long-run proportion of time spent by a Markov chain in each
state.

Theorem 2.4.3 Let X be an irreducible Markov chain. P�almost surely, we have

lim
n→∞

V
(n)
j

n
=

1

EjTj
, j ∈ E.

Remark 2.4.4 In the theorem above, Tj denotes the �rst passage time of state j. (Recall
that Tj = inf{n ≥ 1 ∶Xn = j}). The term 1/EjTj should be interpreted as 0 if EjTj = ∞.

Proof. If the Markov chain is transient, then Vj is P�almost surely �nite and thus

V
(n)
j

n
≤
Vj
n
→ 0 =

1

EjTj
, P − a.s.

Let us now consider the recurrent case and de�ne the rth passage time T
(r)
j and the length

of the rth excursion S
(r)
j as before. Since the Markov chain is irreducible and recurrent,

a stronger version of Theorem 2.3.8 states that P�almost surely, T
(r)
j < ∞ for every r ∈N.

By Lemma 2.3.1, the random variables (S
(r)
j )r≥1 are thus independent and have the same

distribution under P as Tj under Pj. For k ∈ N, we have T
(k)
j = ∑

k
r=1 S

(r)
j . By the strong

law of large numbers, P�almost surely,

lim
k→∞

T
(k)
j

k
= EjTj ∈ (0,∞]. (2.10)
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Fix ω ∈ Ω such that limk→∞
T
(k)
j (ω)
k = EjTj. To �nish the proof of Theorem 2.4.3, it is

enough to show that

lim sup
n→∞

V
(n)
j (ω)

n
≤

1

EjTj
(2.11)

and

lim inf
n→∞

V
(n)
j (ω)

n
≥

1

EjTj
. (2.12)

Let M ∈ (0,EjTj). Then, there is n(1) ∈ N such that
T
(n)
j (ω)
n ≥ M for all n ≥ n(1). This

implies T
(n)
j (ω) ≥ ⌈Mn⌉, n ≥ n(1). Here, ⌈x⌉ denotes the smallest integer greater than or

equal to x. Notice that V
(n)
j ≤ k if and only if T

(k)
j ≥ n. Therefore, V

⌈Mn⌉
j (ω) ≤ n for all

n ≥ n(1). Hence,

V
⌈Mn⌉
j (ω)

⌈Mn⌉
≤

n

⌈Mn⌉
≤

1

M
, n ≥ n(1).

Now, let k ≥ ⌈Mn(1)⌉. Then, there are n ≥ n(1) and l ∈ {0, . . . , ⌈M⌉} such that k =
⌈Mn⌉ + l. With this representation,

V
(k)
j (ω)

k
≤
V

⌈Mn⌉
j (ω) + l

⌈Mn⌉ + l
≤
V

⌈Mn⌉
j (ω)

⌈Mn⌉
+

⌈M⌉

⌈Mn⌉
.

As limn→∞
⌈M⌉
⌈Mn⌉ = 0, we have

lim sup
n→∞

V
(n)
j (ω)

n
≤

1

M
.

As 1
M > 1

EjTj
can be chosen arbitrarily close to 1

EjTj
, we deduce (2.11). The proof of (2.12)

is similar. We leave it to you as an exercise. ◻

Corollary 2.4.5 If X is an irreducible Markov chain, we have

lim
n→∞

1

n

n−1

∑
k=0

p
(k)
ij =

1

EjTj
, j ∈ E.

Proof. Since ∣V
(n)
j /n∣ ≤ 1 and Ei1{Xk=j} = p

(k)
ij , this follows from the dominated

convergence theorem. ◻

De�nition 2.4.6 We call a state j ∈ E positive recurrent if (i) it is recurrent and (ii) it
has �nite expected return time, i.e.

EjTj < ∞.

We call j null recurrent if it is recurrent, but not positive recurrent.
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Example 2.4.7 On the state space E = N, consider the Markov chain (Xn)n∈N with
transition probabilities

pij =

⎧⎪⎪
⎨
⎪⎪⎩

1, i > 0, j = i − 1,

pj, i = 0, j > 0.

Here, (pj)j≥1 are given real numbers in [0,1]. We would like to identify conditions on
(pj)j≥1 under which the Markov chain is (i) irreducible, (ii) recurrent and (iii) positive
recurrent.
First, observe that the Markov chain is irreducible if and only if the set {j ≥ 1 ∶ pj > 0} is
unbounded. If X is irreducible, then it is recurrent because

P0(T0 < ∞) =
∞
∑
j=1

pjPj(T0 < ∞) =
∞
∑
j=1

pj = 1.

If X is not irreducible, the chain has transient states as well. As X cannot stay at 0, we
have P0(T0 = 1) = 0 and thus

E0T0 =
∞
∑
j=2

jP0(T0 = j) =
∞
∑
j=2

jpj−1 =
∞
∑
j=1

(j + 1)pj = 1 +
∞
∑
j=1

jpj.

If ∑
∞
j=1 jpj < ∞ (e.g. pj = j−3), 0 (and thus X, as we'll see later) is positive recurrent, and

if ∑
∞
j=1 jpj = ∞ (e.g. pj = j−2), 0 is null recurrent.

Our immediate goal is to relate the concepts of positive recurrence and null recurrence to
the question whether a given Markov chain has a unique invariant measure.

Theorem 2.4.8 Let X be irreducible and let π be an invariant measure of X. Then, X
is recurrent and

πj =
1

EjTj
, j ∈ E.

In particular, there exists a state that is positive recurrent.

Proof. For any n ≥ 1,

πj =
1

n

n−1

∑
k=0

(πP k)j = ∑
i∈E
πi

1

n

n−1

∑
k=0

p
(k)
ij

by invariance of π. For i ∈ E, Corollary 2.4.5 yields

lim
n→∞

1

n

n−1

∑
k=0

p
(k)
ij =

1

EjTj
.

Thus,

lim
n→∞

1

n

n−1

∑
k=0

(πP k)j = ∑
i∈E

πi
EjTj

=
1

EjTj
.

Since πj does not depend on n, πj =
1

EjTj
. Any state j ∈ E such that πj > 0 is therefore

positive recurrent and in particular recurrent. Irreducibility of X then implies recurrence
of the entire Markov chain. ◻
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Remark 2.4.9 We have just shown that if an irreducible Markov chain has an invariant
measure, then the invariant measure is unique, i.e. there is not more than one invariant
measure. It could happen, though, that an irreducible Markov chain has no invariant
measure at all.

Lemma 2.4.10 If an irreducible Markov chain X is recurrent and if i ∈ E is positive
recurrent, then, P�almost surely,

lim
n→∞

V
(n)
j

n
=
Ei[∑

Ti−1
k=0 1{Xk=j}]
EiTi

, j ∈ E.

Proof. Since X is irreducible and recurrent, we have limn→∞ V
(n)
i = ∞, P�almost surely.

For any realization of the Markov chain with limn→∞ V
(n)
i = ∞, there is N ∈ N such that

V
(n)
i ≥ 1 for all n ≥ N . For such n, we have

V
(n)
j

n
=

1

n

Ti−1

∑
k=0

1{Xk=j} (2.13)

+
V

(n)
i

n

1

V
(n)
i

V
(n)
i −1

∑
l=1

T
(l+1)
i −1

∑
k=T (l)i

1{Xk=j} (2.14)

+
1

n

n−1

∑

k=T (V
(n)
i

)
i

1{Xk=j} , (2.15)

where we also used that T
(V (n)i )
i ≤ n− 1 by de�nition. Since ∑

Ti−1
k=0 1{Xk=j} does not depend

on n, the term on the right side of (2.13) tends to 0 as n → ∞. By Theorem 2.4.3 and
our assumption that X is irreducible, we have P�almost surely

lim
n→∞

V
(n)
i

n
=

1

EiTi
. (2.16)

Recurrence and irreducibility of X also imply that the random variables

T
(l+1)
i −1

∑
k=T (l)i

1{Xk=j}, l ≥ 1,

are independent and identically distributed by virtue of Theorem 2.3.8 and the strong
Markov property. By the strong law of large numbers,

lim
n→∞

1

n

n−1

∑
l=1

T
(l+1)
i −1

∑
k=T (l)i

1{Xk=j} = Ei [
Ti−1

∑
k=0

1{Xk=j}] , P − a.s.
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As limn→∞ V
(n)
i = ∞, P�almost surely, we also have

lim
n→∞

1

V
(n)
i

V
(n)
i −1

∑
l=1

T
(l+1)
i −1

∑
k=T (l)i

1{Xk=j} = Ei [
Ti−1

∑
k=0

1{Xk=j}] , P − a.s.

So far, we haven't used the assumption that i is positive recurrent. This is needed now:
As i is positive recurrent, 1

EiTi
> 0 and

Ei [
Ti−1

∑
k=0

1{Xk=j}] ≤ EiTi < ∞.

Hence, as n→∞, the term in (2.14) converges P�almost surely to

Ei[∑
Ti−1
k=0 1{Xk=j}]
EiTi

.

By de�nition,

1

n

n−1

∑

k=T (V
(n)
i

)
i

1{Xk=j} ≤
V

(n)
i

n

1

V
(n)
i

T
(V (n)
i

+1)
i −1

∑

k=T (V
(n)
i

)
i

1{Xk=j}

=
V

(n)
i

n
(

1

V
(n)
i

V
(n)
i

∑
l=1

T
(l+1)
i −1

∑
k=T (l)i

1{Xk=j} −
1

V
(n)
i

V
(n)
i −1

∑
l=1

T
(l+1)
i −1

∑
k=T (l)i

1{Xk=j}).

Thus, the strong law of large numbers implies

lim
n→∞(

1

V
(n)
i

V
(n)
i

∑
l=1

T
(l+1)
i −1

∑
k=T (l)i

1{Xk=j} −
1

V
(n)
i

V
(n)
i −1

∑
l=1

T
(l+1)
i −1

∑
k=T (l)i

1{Xk=j})

=Ei [
Ti−1

∑
k=0

1{Xk=j}] −Ei [
Ti−1

∑
k=0

1{Xk=j}] = 0, P − a.s.

Together with (2.16), this implies that the term in (2.15) converges to 0 P�almost surely
as n→∞. This �nishes the proof. ◻

Theorem 2.4.11 If a Markov chain is irreducible and has a positive recurrent state, then
every state is positive recurrent and

πj =
1

Ej(Tj)
, j ∈ E (2.17)

is the unique invariant measure of the chain.
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Proof. Since the Markov chain is irreducible, Theorem 2.4.8 implies that if there is an
invariant measure, it is unique and has the form of (2.17). We still need to show that
positive recurrence of one state of an irreducible Markov chain implies positive recurrence
of all states, and that (2.17) de�nes in fact an invariant measure. Let i be positive

recurrent and j ∈ E ∖ {i}. Irreducibility gives s, r ∈N such that p
(r)
ji p

(s)
ij > 0. As we saw in

the proof of Theorem 2.3.4,

1

n

n−1

∑
k=0

p
(r+k+s)
jj ≥ p

(r)
ji p

(s)
ij

1

n

n−1

∑
k=0

p
(k)
ii .

Letting n→∞, we have

1

EjTj
≥
p
(r)
ji p

(s)
ij

EiTi
> 0

by virtue of Theorem 2.4.3. (For the term on the left, we used

1

n

n−1

∑
k=0

p
(r+k+s)
jj = −

1

n

r+s−1

∑
k=0

p
(k)
jj +

1

n

n−1

∑
k=0

p
(k)
jj +

1

n

r+s+n−1

∑
k=n

p
(k)
jj ,

where the �rst and third term on the right tend to 0 as n → ∞.) Since EjTj < ∞, the
state j is positive recurrent.
The only points left to check are that π as de�ned in (2.17) is a probability measure (i.e.
that its components sum up to 1) and that π is invariant under the transition matrix
P . Fix any state i ∈ E. Since the Markov chain is positive recurrent, Theorem 2.4.3,
Lemma 2.4.10 and uniqueness of the limit imply

1

EjTj
=
Ei[∑

Ti−1
k=0 1{Xk=j}]
EiTi

, j ∈ E.

Hence,

∑
j∈E

πj =
∑j∈E Ei[∑

Ti−1
k=0 1{Xk=j}]
EiTi

=
Ei[∑

Ti−1
k=0 ∑j∈E 1{Xk=j}]

EiTi
= 1.

To prove invariance of π, �x j ∈ E and choose any i ∈ E ∖ {j}. Then,

Ei[Ti]πj =Ei [
Ti−1

∑
k=0

1{Xk=j}] = Ei [
∞
∑
n=1

1{Ti=n}
Ti−1

∑
k=0

1{Xk=j}]

=Ei [
∞
∑
n=1

n−1

∑
k=0

1{Xk=j,Ti=n}] = Ei [
∞
∑
k=0

∞
∑

n=k+1

1{Xk=j,Ti=n}] =
∞
∑
k=0

Pi(Xk = j, k < Ti).

(2.18)

If k = 0 we have Pi(Xk = j, k < Ti) = 0, and if k = 1 we have Pi(Xk = j, k < Ti) = pij. Now,
suppose k ≥ 2. As i ≠ j, we have Pi(Xk = j, Ti = k) = 0. Thus,

Pi(Xk = j, k < Ti) = Pi(Xk = j, k − 1 < Ti) = ∑
l∈E∖{i}

Pi(Xk = j,Xk−1 = l, k − 1 < Ti).
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All this shows that the term at the very right of (2.18) equals

pij +
∞
∑
k=2

∑
l∈E∖{i}

Pi(Xk = j,Xk−1 = l, k − 1 < Ti)

=pij +
∞
∑
k=2

∑
l∈E∖{i}

Pi(Xk−1 = l, k − 1 < Ti)Pi(Xk = j ∣Xk−1 = l, k − 1 < Ti). (2.19)

For 2 ≤ k < ∞ and l ∈ E ∖ {i}, we have

Pi(Xk = j ∣Xk−1 = l, k − 1 < Ti) = Pi(Xk = j ∣Xk−1 = l,Xk−2 ≠ i, . . . ,X1 ≠ i) = plj

by the Markov property. As a result, the term on the right side of (2.19) can be written
as

pij + ∑
l∈E∖{i}

∞
∑
k=2

Pi(Xk−1 = l, k − 1 < Ti)plj

=Ei[Ti]πipij + ∑
l∈E∖{i}

∞
∑
k=0

Pi(Xk = l, k < Ti)plj

=Ei[Ti]πipij + ∑
l∈E∖{i}

Ei[Ti]πlplj

=Ei[Ti]∑
l∈E
πlplj.

Dividing by EiTi shows that π is invariant. ◻

We now summarize several previous results for irreducible chains.
(1) There exists an invariant measure if and only if there exists a positive recurrent state.
(2) In this case, every state is positive recurrent, and the invariant measure is πi = (EiTi)−1,
i ∈ E.

Remark 2.4.12 Let X be an irreducible Markov chain on a �nite state space. As an
exercise, show that X is positive recurrent. Hence, any irreducible Markov chain on a
�nite state space has a unique invariant measure.

Remark 2.4.13 To �nd invariant measures π of a transition matrix P , one can:

1. Solve the eigenvector equation πP = π for a vector π with nonnegative entries that
satis�es ∑i∈E πi = 1.

2. Try �detailed balance": see if there exists π = (πi)i∈E with nonnegative entries and

∑i∈E πi = 1 such that πipij = πjpji for any i, j ∈ E. This is often easier to solve
than πj = ∑i∈E πipij, j ∈ E, and it is a su�cient condition for π being an invariant
measure. However, not every invariant measure satis�es detailed balance (see Ex. 2
on Série 5).
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3. Intuition.

Example 2.4.14 (Birth and death chain on N) Recall the transition probabilities of
a general birth and death chain on N:

P(Xn+1 = j∣Xn = i) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

pi, j = i + 1

ri, j = i

qi, j = i − 1

, q0 = 0, pi + qi + ri = 1. (2.20)

To simplify the ensuing analysis, we will also assume that qn > 0 for all n ≥ 1 and pn > 0
for all n ∈N. This guarantees that the chain is irreducible. If π is an invariant measure,
then it must satisfy

πn = πn+1qn+1 + πn−1pn−1 + πn(1 − pn − qn), n ≥ 1,

so
πn+1qn+1 − πnpn = πnqn − πn−1pn−1 = ⋅ ⋅ ⋅ = π1q1 − π0p0.

But π0 = π0r0 + π1q1, i.e. π0(1 − r0) = π1q1 and π0p0 = π1q1. Combining this, we obtain

πnqn − πn−1pn−1 = 0 ∀n ≥ 1.

Hence,

πn = πn−1
pn−1

qn
= . . . = π0

p0 . . . pn−1

q1 . . . qn
, n ≥ 1. (2.21)

According to what we have discovered before, the chain is positive recurrent if and only
if it admits an invariant measure. In light of (2.21), this is in turn equivalent to the
existence of π0 > 0 such that

π0 + π0

∞
∑
n=1

p0 . . . pn−1

q1 . . . qn
= 1.

Consider the special case p0 = 1 and pi = p, qi = 1 − p for i ≥ 1. Then,

π0 + π0

∞
∑
n=1

p0 . . . pn−1

q1 . . . qn
= π0 +

π0

1 − p

∞
∑
n=0

(
p

1 − p
)
n

.

The series on the right converges if and only if p < 1
2 . In this case, the entire term on the

right equals

π0
2 − 2p

1 − 2p
,

which is 1 for π0 =
1−2p
2−2p . The invariant measure of the birth and death chain in case p < 1

2

is thus

πn =

⎧⎪⎪
⎨
⎪⎪⎩

1−2p
2−2p , n = 0,

1−2p
2(1−p)2 ( p

1−p)
n−1

, n ≥ 1.

If p ≥ 1
2 , there is no invariant measure. By our existence result for the invariant measure

of an irreducible Markov chain, the birth and death chain is positive recurrent if and only
if p < 1

2 . If p =
1
2 , the chain is null recurrent.
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2.4.2 Periodicity

In order to discuss under which conditions a Markov chain converges in law to its invariant
measure, we need the notion of periodicity that we introduce in this subsection.

De�nition 2.4.15 The period di of a state i ∈ E is the greatest common divisor of
{r > 0 ∶ p

(r)
ii > 0}. If di = 1, we say that the state i is aperiodic.

Example 2.4.16 Consider the two-state Markov chain with transition matrix

P = (
0 1
1 0

) .

For any n ∈ N, P 2n is the identity matrix, and P 2n+1 = P . Thus, for i ∈ {1,2}, p
(r)
ii > 0 if

and only if r is even. It follows that {r > 0 ∶ p
(r)
ii > 0} is the set of even positive integers

and that di = 2. In particular, neither of the two states is aperiodic. Also notice that
the sequence of matrices (P n)n∈N does not converge as n → ∞. If a Markov chain is not
aperiodic, the initial distribution still has a noticeable e�ect on the distribution of Xn for
large n. In other words, we never forget where we started from.

Theorem 2.4.17 If i↔ j, then di = dj. In particular, if the Markov chain is irreducible,
then there exists d ≥ 1 such that di = d for all i ∈ E. The integer d is called the period of
the Markov chain. If d = 1, then the Markov chain is called aperiodic.

Proof. If i = j, the statement clearly holds, so we may assume that i ≠ j. Since i→ j, j → i
and i ≠ j, there exist m,n ≥ 1 such that p

(m)
ij > 0 and p

(n)
ji > 0. By Chapman�Kolmogorov,

p
(m+n)
ii = ∑

k∈E
p
(m)
ik p

(n)
ki ≥ p

(m)
ij p

(n)
ji > 0.

Since di is a divisor for every r > 0 such that p
(r)
ii > 0, it follows that di∣(m + n). Now, let

r > 0 such that p
(r)
jj > 0. Then,

p
(m+r+n)
ii ≥ p

(m)
ij p

(r)
jj p

(n)
ji > 0.

This implies di∣(m + r + n), and hence di∣r. We have thus shown that di is a common

divisor of {r > 0 ∶ p
(r)
jj > 0}. As dj is the greatest common divisor of this set, we have

di ≤ dj. Reversing the roles of i and j gives the desired equality. ◻

Lemma 2.4.18 Let t be a positive integer and let n ∈ N. If p
(nt)
ii > 0 and p

(n+1)t
ii > 0 then

p
(vt)
ii > 0 for every integer v ≥ n(n − 1).
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Proof. Let us �rst discuss the case n = 0. In this case, p
(t)
ii > 0, so

p
(vt)
ii ≥ (p

(t)
ii )v > 0.

Now, suppose n > 0. Then, any v ≥ n(n−1) can be written as kn+w, where 0 ≤ w ≤ n−1 ≤ k.
Adding and subtracting wn, we obtain

v = (k −w)n +w(n + 1).

Thus,
p
(vt)
ii ≥ p

((k−w)nt)
ii p

w(n+1)t
ii ≥ (p

(nt)
ii )k−w(p(n+1)t

ii )w > 0.

◻

Remark 2.4.19 Lemma 2.4.18 implies in particular that if there is t ≥ 1 such that p
(t)
ii >

0, then p
(vt)
ii > 0 for every v ∈N.

Theorem 2.4.20 The state i is aperiodic if and only if there is r0 > 0 such that p
(r)
ii > 0

for all r ≥ r0.

Proof. A set of integers that contains all but �nitely many integers only has 1 as common
divisor, so it is clear that a state i with p

(r)
ii > 0 for every r ≥ r0 is aperiodic. For the

converse implication, we will show that there is n > 0 such that p
(n)
ii and p

(n+1)
ii > 0. This

fact, together with Lemma 2.4.18 with t = 1, yields the desired result. Let us suppose
there is no n such that p

(n)
ii , p

(n+1)
ii > 0, and derive a contradiction. Under this assumption,

c ∶= inf{r − s ∶ r > s, p
(r)
ii > 0, p

(s)
ii > 0} > 1.

Then, we can show that there is some large n0 such that p
(nc)
ii > 0 for all n ≥ n0: By

de�nition of c, there is n ∈ N such that p
(n)
ii , p

(n+c)
ii > 0. Thus, p

(nc)
ii ≥ (p

(n)
ii )c > 0 and

p
(c(n+1))
ii = p

((c−1)n+n+c))
ii ≥ (p

(n)
ii )c−1p

(n+c)
ii > 0. This lets us apply Lemma 2.4.18 with t = c.

Next, we show that there are m ≥ n0 and v ∈ {1, . . . , c − 1} such that p
(mc+v)
ii > 0. Since

c > 1 and since di = 1, there is r > 0 such that p
(r)
ii > 0 and such that c does not divide

r. (Otherwise c would be a common divisor of {r > 0 ∶ p
(r)
ii > 0} that is greater than the

greatest common divisor.) Let N ∈N be so large that Nr > n0c, and assume further that c
does not divide Nr. (As c does not divide r, such N always exists, for otherwise we would
have for large N both c ∣ Nr and c ∣ (N + 1)r, which gives c ∣ (N + 1)r −Nr = r.) Then,
we can represent Nr as mc + v for m ≥ n0 and v ∈ {1, . . . , c − 1}. And by Remark 2.4.19,

p
(Nr)
ii > 0. As a result, p

(mc)
ii , p

(mc+v)
ii > 0 and (mc+v)−mc = v < c, which is in contradiction

with the de�nition of c. ◻

A careful inspection of the proof shows that we have actually veri�ed the following number-
theoretic result: If S ⊂ N ∖ {0} has greatest common divisor 1 and is closed under both
addition and multiplication by numbers c ∈N∖{0}, then S contains all but �nitely many
elements of N ∖ {0}.
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Remark 2.4.21 If i ∈ E such that pii > 0, then the state i is aperiodic. If an irreducible
Markov chain has a state i0 ∈ E such that pi0i0 > 0, then the entire Markov chain is
aperiodic. However, the converse is wrong: there are aperiodic irreducible Markov chains
that satisfy pii = 0 for all i, for example the chain with transition matrix

P =
⎛
⎜
⎝

0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

⎞
⎟
⎠
.

2.4.3 Convergence to the invariant measure

Theorem 2.4.22 Let (Xn)n∈N be a Markov chain that is irreducible, positive recurrent
and aperiodic, with some initial distribution α. Then, for any i ∈ E, we have

lim
n→∞P(Xn = i) = πi > 0,

where π is the unique invariant measure of X.

Remark 2.4.23 If P is irreducible, aperiodic and not positive recurrent (i.e., transient
or null recurrent), then

lim
n→∞P(Xn = i) = 0, i ∈ E.

In the transient case, this is an easy exercise. For the null recurrent case, see Theorem
1.8.5 in Norris's textbook. If P fails to be aperiodic, the sequence P(Xn = i) may not
converge as n→∞ (see Example 2.4.16).

The proof of Theorem 2.4.22 relies on a technique called coupling. It was invented by the
French mathematician Vincent Doeblin, son of the famous German writer Alfred Döblin.
His Jewish family had escaped from Nazi Gerrmany to France in the 1930's. To evade
capture by German troops in World War II, Doeblin committed suicide at the age of 25.

Remark 2.4.24 (See also Ex. 6 on Série 3)
Let α be a probability measure and let P be a stochastic matrix with respect to a countable
state space E. We can assume without loss of generality that E = N. (This should
be clear if E is in�nite. If E is �nite, de�ne a new probability measure α̃ on N by
assigning probability 0 to every state that is not already in E; similarly, de�ne an in�nite-
dimensional stochastic matrix P̃ as the block-diagonal matrix with block P in the upper
left corner and an in�nite-dimensional identity matrix in the lower right corner.) We can
construct a Markov chain X ∼Markov(α,P ) on E as follows:

1. Choose a random variable X0 with law α;

2. Let (Un)n≥1 be an i.i.d. sequence of random variables that are uniformly distributed
on the interval [0,1] and live on the same probability space (Ω,A,P) as X0. We then
construct the random variables (Xn)n≥1 inductively: Suppose the random variable
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Xn is given, and we want to construct Xn+1. Fix ω ∈ Ω, and set x =Xn(ω). We set
Xn+1(ω) = 1 if Un+1(ω) ∈ [0, px,1), Xn+1(ω) = 2 if Un+1(ω) ∈ [px,1, px,1 + px,2), and so
on.

Proof. (of Theorem 2.4.22) The main idea of coupling is to construct two copies of the
Markov chain that have a very particular joint distribution. Let (Un)n≥1 and (U ′

n)n≥1 be
two i.i.d. sequences of random variables that are uniformly distributed on [0,1] and live
on the same probability space (Ω,A,P). Assume in addition that the sequences (Un)n≥1

and (U ′
n)n≥1, viewed as stochastic processes, are independent of each other. Let X0 be a

random variable with law α, and let X = (Xn)n∈N be Markov(α,P ), generated from the
random variables (Un)n≥1 as outlined in the previous remark. Then, let Y0 be a random
variable with law π (the unique invariant measure of P ), independent of X0, and let
Y = (Yn)n∈N ∼Markov(π,P ) be generated from (U ′

n)n≥1.
First, observe that X and Y are independent because X0 and Y0 as well as (Un)n≥1 and
(U ′

n)n≥1 are independent. Next, note that Yn has law π for every n ∈ N because π is
invariant. In Série 6, we show that (X,Y ) = (Xn, Yn)n∈N is an irreducible and aperiodic
Markov chain on E × E. It is also positive recurrent since π̃(i,j) = πiπj is an invariant
measure. (Here, we use independence of X and Y .) Let x be any state in E, and let T(x,x)
denote the �rst passage time of state (x,x) with respect to the Markov chain (X,Y ). As
(X,Y ) is recurrent, P(T(x,x) < ∞) = 1, so in particular

T = inf{n ∈N ∶Xn = Yn} ≤ T(x,x) < ∞ P − a.s.

In words, the two Markov chains X and Y meet in �nite time with probability 1. Now,
we de�ne a new Markov chain X ′ = (X ′

n)n∈N that corresponds to X up to the random
time T of the �rst meeting of X and Y , and corresponds to Y after time T . In a sense,
we force X and Y to stay together once they meet. Set X ′

0 = X0. For �xed ω ∈ Ω, we
set X ′

n(ω) = Xn(ω) if T (ω) ≥ n, and X ′
n(ω) = Yn(ω) if T (ω) < n. It is then not hard to

see that X ′ is also Markov(α,P ), just like X. The Markov chains X and X ′ are the two
copies referred to in the �rst sentence of this proof. Because of how we de�ned X and
X ′, we have already �xed their joint distribution. For any n ∈N,

P(Xn = i) = P(X ′
n = i) = P(X ′

n = i, n > T ) +P(X ′
n = i, n ≤ T )

= P(Yn = i, n > T ) +P(Xn = i, n ≤ T )

= P(Yn = i, n > T ) +P(Yn = i, n ≤ T ) +P(Xn = i, n ≤ T ) −P(Yn = i, n ≤ T )

= P(Yn = i) +P(Xn = i, n ≤ T ) −P(Yn = i, n ≤ T )

= πi +P(Xn = i, n ≤ T ) −P(Yn = i, n ≤ T ).

Since limn→∞P(n ≤ T ) = 0, it follows that limn→∞P(Xn = i) = πi. ◻

Remark 2.4.25 What happens if P is not irreducible? If j is not positive recurrent, then
limn→∞Pi(Xn = j) = 0, i ∈ E. If j is positive recurrent and aperiodic, then

lim
n→∞Pi(Xn = j) = πjPi(Tj < ∞),
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where Tj is the �rst passage time for j and where π is the unique invariant measure
supported on the communicating class of j.

2.5 Applications in statistics

2.5.1 Metropolis�Hastings algorithm

Markov chains are the basis for many important methods in statistics. We will �rst
consider a way of generating random samples from a distribution.
Given a countable state space E and some probability measure p on E with pi > 0 for all
i ∈ E, the main idea for sampling from p is to construct an irreducible, aperiodic Markov
chain (Xn)n≥0 with invariant measure p. Once this has been accomplished, we can simply
start the chain at some arbitrary state j ∈ E, and simulate transitions of the chain until
the distribution of Xn is very close to p. More precisely, we use the result from Theorem
2.4.22 that

lim
n→∞P(Xn = i) = pi.

Therefore, for n large enough, the distribution of Xn should be close to p.
How to construct a Markov chain with invariant measure p?

Lemma 2.5.1 (Metropolis�Hastings) For any i ∈ E, let qi(⋅) be a probability measure
on E (called the proposal distribution) with qi(j) > 0 if and only if qj(i) > 0, i, j ∈ E. The
Metropolis�Hastings algorithm constructs a Markov chain (Xn)n∈N as follows:

1. Let X0 = i0 ∈ E be an arbitrary deterministic starting value.

2. Suppose that Xn = i. Generate j from the proposal distribution qi, and let U be
uniformly distributed on [0,1]. Then we de�ne Xn+1 by

Xn+1 =

⎧⎪⎪
⎨
⎪⎪⎩

j, if U ≤ min{
pjq

j(i)
piqi(j) ,1} ,

i, otherwise.
(2.22)

If the Markov chain (Xn)n∈N is irreducible (e.g., if qi(j) > 0 for all i, j ∈ E), then it has
invariant measure p.

You will be asked to prove this lemma in tutorial. The proposal distribution qi should

� be easy to simulate from;

� allow the Markov chain to e�ciently cover the state space.
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Remark 2.5.2 � It is important to note that in the Metropolis�Hastings algorithm,
the Markov chain (Xn)n∈N only depends on the ratio pj/pi, that is, the probability
measure p only has to be known up to a constant. Often, pi has the form hi/Z,
where (hi)i∈E are known and Z = ∑i∈E hi is a normalizing constant. If E is large, it
may be di�cult to calculate Z explicitly even though we know the hi's. Fortunately,
calculating Z is not needed because the chain in (2.22) only depends on hj/hi.

� The time period {0,1, . . . , nb} until P(Xn ∈ ⋅) is su�ciently close to p is called
burn-in time. The corresponding values X0, . . . ,Xnb have to be discarded since their
distributions di�er too much from p. A suitable number nb is often determined by
visual inspection of the chain.

� After the burn-in time, each Xn, n > nb, has distribution close to p. Note that the
samples are however correlated, i.e. not independent. If independent samples of p
are required, then only every mth value of the chain should be taken, where m again
depends on the speci�c Markov chain (e.g., on the the proposal distribution in the
Metropolis�Hastings algorithm).

� In this course we only consider Markov chains and Markov processes on countable
state spaces E. The theory of Markov chains and stationarity can be extended to
uncountable state spaces (which are usually assumed to be complete, separable metric
spaces), and the Metropolis�Hastings algorithm works in this setting as well (p and
the qi's will then be densities).

2.5.2 Bayesian statistics

Let (pθ)θ∈Θ be a parametric family of probability density functions (in the continuous
case) or probability mass functions (in the discrete case) on Rd, with countable parameter
space Θ. We further suppose that we have independent observations z1, . . . , zn from the
distribution associated with pθ. In classical frequentist statistics, it is assumed that there
is a true, deterministic value θ0 that generated the data, and there are numerous methods
to estimate this parameter, e.g. maximum likelihood.
In Bayesian statistics, one models the uncertainty about the underlying parameter as a
random variable on Θ. In order to do so, one de�nes a prior distribution π on Θ, which
incorporates the prior belief of the modeler about the parameter, without taking into
account any data (the prior can include also beliefs about the shape/structure of the
parameter). If now independent data z1, . . . , zn from the parametric model {pθ ∶ θ ∈ Θ}
becomes available, one updates this prior belief with the new information. The result
is the so-called posterior distribution on the parameter space Θ, which is given as p(θ ∣
z1, . . . , zn). By Bayes' theorem,

p(θ ∣ z1, . . . , zn) =
π(θ)p(z1, . . . , zn ∣ θ)

p(z1, . . . , zn)
=
π(θ)∏

n
i=1 pθ(zi)

p(z1, . . . , zn)
,
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where p(z1, . . . , zn) = ∑θ∈Θ p(z1, . . . , zn ∣ θ)π(θ) does not depend on θ.
Generating samples from the posterior distribution is generally not possible in a direct
way. Instead, one simulates a Markov chain on the state space E = Θ with invariant
measure p(θ ∣ z1, . . . , zn). Since the posterior is usually only known up to a constant, the
Metropolis�Hastings algorithm is one of the most popular methods to this end. Another
widely used method is the so-called Gibbs sampler. If one is interested in a point estimator
of the parameter, one can take for instance the mean of the posterior distribution.

2.6 Ergodic theorem

The ergodic theorem for Markov chains relates the time average of the Markov chain to
the space average with respect to the invariant measure.

Theorem 2.6.1 (Ergodic theorem) Let X be an irreducible, positive recurrent Markov
chain with invariant measure π, and let f ∶ E → R be a bounded function. Then, P�almost
surely,

lim
n→∞

1

n

n−1

∑
k=0

f(Xk) = Eπf = ∑
i∈E
f(i)πi.

Remark 2.6.2 For a Markov chain with i.i.d. random variables (Xn)n∈N, the ergodic
theorem (slightly generalized to unbounded functions) recovers the strong law of large
numbers: In the i.i.d. case, the invariant measure of the Markov chain clearly equals
the distribution of X1.

Proof. As f is bounded, there is c > 0 such that ∣f(i)∣ ≤ c for all i ∈ E. Recall that

V
(n)
i =

n−1

∑
k=0

1{Xk=i}, i ∈ E,

and observe that

1

n

n−1

∑
k=0

f(Xk) =
1

n

n−1

∑
k=0

∑
i∈E

1{Xk=i}f(Xk) = ∑
i∈E
f(i)

V
(n)
i

n
.

Hence,

∣
1

n

n−1

∑
k=0

f(Xk) −Eπf ∣ =
RRRRRRRRRRR
∑
i∈E

⎛

⎝

V
(n)
i

n
− πi

⎞

⎠
f(i)

RRRRRRRRRRR

≤ c∑
i∈E

RRRRRRRRRRR

V
(n)
i

n
− πi

RRRRRRRRRRR

.

For pedagogical reasons, let us �rst consider the simpler case that E is �nite. By
Theorem 2.4.3 and Theorem 2.4.11, the set of ω ∈ Ω such that

lim
n→∞

V
(n)
i (ω)

n
= πi, i ∈ E,
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has probability measure 1 under P. As E is �nite, this implies for any such ω

lim
n→∞∑

i∈E

RRRRRRRRRRR

V
(n)
i (ω)

n
− πi

RRRRRRRRRRR

= 0,

and the statement is proved. Now, suppose E is in�nite. Since π is a probability measure,
the in�nite series ∑i∈E πi converges to 1. Thus, for any ε > 0 there is a �nite subset J of
E such that

∑
i∈J
πi > 1 − ε.

We have

∑
i∈E

RRRRRRRRRRR

V
(n)
i

n
− πi

RRRRRRRRRRR

= ∑
i∈J

RRRRRRRRRRR

V
(n)
i

n
− πi

RRRRRRRRRRR

+∑
i∉J

RRRRRRRRRRR

V
(n)
i

n
− πi

RRRRRRRRRRR

≤ ∑
i∈J

RRRRRRRRRRR

V
(n)
i

n
− πi

RRRRRRRRRRR

+∑
i∉J

⎛

⎝

V
(n)
i

n
+ πi

⎞

⎠
. (2.23)

Since

∑
i∉J

V
(n)
i

n
= ∑
i∈E
πi −∑

i∈J

V
(n)
i

n
≤ ∑
i∈J

RRRRRRRRRRR

V
(n)
i

n
− πi

RRRRRRRRRRR

+∑
i∉J
πi,

the term on the right side of (2.23) is less than or equal to

2∑
i∈J

RRRRRRRRRRR

V
(n)
i

n
− πi

RRRRRRRRRRR

+ 2∑
i∉J
πi ≤ 2∑

i∈J

RRRRRRRRRRR

V
(n)
i

n
− πi

RRRRRRRRRRR

+ 2ε.

As J is �nite,

lim
n→∞∑

i∈J

RRRRRRRRRRR

V
(n)
i

n
− πi

RRRRRRRRRRR

= 0, P − a.s.

Thus,

lim sup
n→∞

∑
i∈E

RRRRRRRRRRR

V
(n)
i

n
− πi

RRRRRRRRRRR

≤ 2ε, P − a.s.

Since P is continuous from above, letting ε ↓ 0 yields the desired convergence. ◻
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Chapter 3

Markov processes

3.1 Continuous time Markov chains

De�nition 3.1.1 A Markov process (or continuous time Markov chain) is a collection
(X(t))t∈R+ of random variables with values in a countable set E. The index t often
represents time. Unlike Markov chains, here we have continuous time processes.
As for Markov chains, we will impose two conditions:

1. Markov property:

P(X(t + s) = j ∣X(u),0 ≤ u ≤ t) = P(X(t + s) = j ∣X(t)), s, t ≥ 0, i, j ∈ E.

2. Homogeneity:

P(X(t + s) = j ∣X(t) = i) = P(X(s) = j ∣X(0) = i) = Pij(s), s, t ≥ 0, i, j ∈ E,

where the Pij(s) are called transition functions. This means that the �nite dimensional
distributions of X are given by: for all n ∈N, 0 ≤ t1 ≤ ⋅ ⋅ ⋅ ≤ tn and all states i0, i1, . . . , in ∈ E:

P(X(tn) = in, . . . ,X(t1) = i1∣X(0) = i0) = Pi0i1(t1)Pi1i2(t2 − t1) . . . Pin−1in(tn − tn−1).

Remark 3.1.2 The set of stochastic matrices (P (t) ∶ t ≥ 0) with P (t) = (Pij(t))i,j∈E is a
semigroup, that is

P (s + t) = P (s)P (t), for all s, t ≥ 0.

This is the Chapman-Kolmogorov equation for the continuous-time case.
Proof.

Pij(s + t) = P(X(s + t) = j ∣X(0) = i)

= ∑
k∈E

P (X(s) = k ∣X(0) = i)P (X(s + t) = j ∣X(s) = k)

= ∑
k∈E

Pi,k(s)Pk,j(t) = (P (s)P (t))i,j.

◻
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Remark 3.1.3 Let Ei ∼ Exp(λi), i = 1, . . . , n be independent exponential random
variables with rates λi ∈ (0,∞), i.e., P(Ei ≤ x) = 1 − e−λix. Then

1. (Ei − s)∣(Ei > s) is again Exp(λi) distributed (memoryless property).

2. E(Ei) = 1/λi;

3. min(E1, . . . ,En) ∼ Exp(λ1 + ⋅ ⋅ ⋅ + λn);

4. P(Ek = min(E1, . . . ,En)) = λk/(λ1 + ⋅ ⋅ ⋅ + λn).

Example 3.1.4 The simplest example is on the state space E = {0,1}. When in state 0
we wait for a random exponential time E1 ∼ Exp(λ) with parameter λ ∈ (0,∞) and then
jump to 1.

0 1
λ

(Q-matrix)

Example 3.1.5 Take E = {1,2,3}. In state 3 take two independent exponential times
E1 ∼ Exp(2) and E2 ∼ Exp(4), if E1 is the smaller then go to 1 after time E1, and if E2

is the smaller go to 2 after time E2. Rules for states 1 and 3 are similar. The time spent
in state 3 is min(E1,E2) ∼ Exp(2+4) (see Ex. 3, Série 1), and the probability of jumping
from 3 to 1 is 2/(2 + 4) = 1/3 (Ex. 2, Série 1).

1 2

3

3

7 42

(Q-matrix)

Another way of thinking about the evolution of the Markov process X is in terms of its
Q matrix which is known as the generator of the process.

De�nition 3.1.6 (The Q-matrix) A matrix Q = (qij)i,j∈E is a Q-matrix if it satis�es

1. qii ≤ 0 for all i ∈ E;

2. qij ≥ 0 for all i ≠ j;

3. ∑j∈E qij = 0 for all i ∈ E.

The numbers qij, j ≠ i can be intrepeted as follows: Being in state i we sample for each
other state j ≠ i an exponential random variable Ej with rate qij and then jump to state
k ∈ E after time Ek if Ek = minj≠iEj, then the process starts afresh. Equivalently, we can
think as follows: Being in state i, the number δi = −qii = ∑j≠i qij ≥ 0 is the exponential
rate with which the process leaves state i, and then jumps to state j with probability
P̂ij = qij/δi. The matrix P̂ is called the jump matrix of the process X.
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Example 3.1.7 (Poisson process) Let us de�ne a stochastic process (N(t))t≥0 in the
following way. For i ∈ N, let Ei be independent copies of an Exp(λ) distribution. De�ne
Tn = E1 + ⋅ ⋅ ⋅ +En and

N(t) =
∞
∑
i=1

1{Tn≤t}, t ≥ 0.

This counting process is called a homogeneous Poisson process with intensity λ. It can be
used as model for the number of earthquakes, for instance. [picture]

� The Q-matrix of the Poisson process is given by qii = −λ and qi,i+1 = λ.

� For each t ≥ 0, N(t) has a Poisson distribution with parameter λt (Ex.), that is for
all j ∈N

P0j(t) = e
−λt (λt)j

j!
.

� (N(t))t≥0 is a Markov process, i.e., for any s ≥ 0, conditional on N(s), (N(s+t))t≥0,
is again a Poisson process with rate λ, started in state N(s), independent of (N(r) ∶
r ≥ s). We even have that the Poisson process is homogeneous in space, that is
(Ñ(t))t≥0 = (N(s + t) − N(s))t≥0 is a Poisson process with rate λ (started at 0),
independent of (N(r) ∶ r ≥ s). In fact, this even holds if the time s is replaced by a
stopping time T (strong Markov property).

Proof.
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It su�ces to show the claim conditional on the event N(s) = i for all i ≥ 0. We have

{N(s) = i} = {Ti ≤ s < Ti+1} = {Ti ≤ s} ∩ {Ei+1 > s − Ti}.

On this event

N(r) =
i

∑
j=1

1{Tj≤t}, r ≤ s,

and the holding times Ẽ1, Ẽ2, . . . are given by

Ẽ1 = Ei+1 − (s − Ti), Ẽn = Ei+n, n ≥ 2.

Condition on E1, . . . ,Ei and {N(s) = i}, then by the memoryless property of Ei+1

and independence, Ẽ1, Ẽ2, . . . are themselves independent Exp(λ). Since E1, . . .Ei are
independent of Ei+1, . . . , it su�ces to condition on {N(s) = i}, such that Ẽ1, Ẽ2, . . .
are independent Exp(λ), independent of E1, . . . ,Ei. Hence, conditional on {N(s) = i},
(Ñ(t))t≥0 is a Poisson process with rate λ and independent of (N(r) ∶ r ≤ s). ◻

Theorem 3.1.8 Let (N(t))t≥0 be a Poisson process. Then, conditional on the event
{N(t) = n}, the jump times T1, T2, . . . , Tn have the same distribution as an ordered
sample of size n from the uniform distribution on [0, t].

We refer to Theorem 2.4.6 in Norris for the proof.

Proposition 3.1.9 Let (N1(t))t≥0 and (N2(t))t≥0 be two independent Poisson processes
with parameters λ1 and λ2. The process M(t) = N1(t) +N2(t), t ≥ 0 is again a Poisson
process with parameters λ1 + λ2.

Proof. We use induction to show that the waiting time Ei between the (i − 1)th and ith

jumps of M follows an exponential law of parameters (λ1 + λ2) independent of the time
Ej for all 1 ≤ j < i, we prove this for all i ∈N.
For i = 1, we have that T1 = E1 = min{S1, S2} where Si is the �rst arrival time of the
process (Ni(t))t≥0, i = 1,2. As Si ∼ Exp(λi) for i = 1,2 and as S1 and S2 are independent,
we have that T1 = E1 ∼ Exp(λ1 + λ2). Let us assume that E1,⋯,Ei are independent and
have the same law Exp(λ1 + λ2). Using that Ti = E1 + ⋯ +Ei is a stopping time for N1

and N2, we can use the strong Markov property

M̃(t) ∶=M(t+Ti)−M(Ti) = (N1(t+Ti)−N1(Ti))+(N2(t+Ti)−N2(Ti))
d
= N1(t)+N2(t) =M(t).

The process (M̃(t))t≥0 is then independent of E1,⋯,Ei. Implying Ei+1 ∶= inf{t > 0 ∣ M(t+

Ti)−M(Ti) > 0}
d
= inf{t > 0 ∣M(t) > 0}. We �nally get that Ei+1 is an exponential variable

with parameter (λ1 + λ2) and is independent of E1,⋯,Ei. ◻
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Example 3.1.10 In a population of size N , a rumour is begun by a single individual who
tells it to everyone he meets; they in turn pass the rumour to everyone they meet. Assume
that each individual meets another randomly with exponential rate 1/N . How long does it
take until everyone knows the rumour? If i people know the rumour, then N − i do not,
and the rate at which the rumour is passed on is (Q-matrix)

qi,i+1 = i(N − i)/N, i ∈ {1, . . . ,N}.

The expected time until everyone knows the rumour is then

E

N−1

∑
i=1

Ei =
N−1

∑
i=1

q−1
i =

N−1

∑
i=1

i(N − i)

N
=
N−1

∑
i=1

1

i
+

1

N − i
= 2

N−1

∑
i=1

1

i
∼ 2 logN,

as N →∞.

Note that the Strong Markov property extends to the continuous-time setting: for any
stopping time T for X and any state j ∈ E, we have

P(X(T + s) = j ∣X(u),0 ≤ u ≤ T ) = P(X(s) = j ∣X(T )).

We are now going to study the length of time that X spends in each state before the
next transition, and formally prove that it is exponentially distributed, using the Markov
property and the homogeneity property.

De�nition 3.1.11 We de�ne by Wt the length of time the Markov process X remains in
the state being occupied at time t, that is,

Wt = inf{s > 0 ∣X(t + s) ≠X(t)}.

We then have the important

Theorem 3.1.12 Take a Markov process X. Then for all i ∈ E, there exists δi ∈ [0,∞]
such that for all t, x ≥ 0,

P(Wt > x ∣X(t) = i) = e−δix,

and therefore Wt∣{X(t) = i} ∼ Exp(δi).
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Proof. By the homogeneity property:

P(Wt > x ∣X(t) = i) = P(W0 > x ∣X(0) = i) ∶= fi(x).

Since the event {W0 > x + y} is equivalent to the event {W0 > x,Wx > y}, we have

fi(x + y) = P(W0 > x + y ∣X(0) = i),

= P(W0 > x,Wx > y ∣X(0) = i),

= P(W0 > x ∣X(0) = i)P(Wx > y ∣X(0) = i,W0 > x),

= fi(x)P(Wx > y ∣X(u) = i,0 ≤ u ≤ x),

= fi(x)P(Wx > y ∣X(x) = i), (Markov property)

= fi(x)P(W0 > y ∣X(0) = i), (homogeneity)

= fi(x)fi(y).

The function fi(⋅) is bounded by 0 and 1 and satis�es fi(x+y) = fi(x)fi(y) for all x, y ≥ 0.
Therefore it must be of the form fi(x) = e−δix for some δi ∈ [0,∞] (see also Serie 1, exercise
4(2)). ◻

Note that we accept δi = +∞ to cover the case where Wt = 0 with probability one. We
then classify the states as follows, depending on the value of δi.

� If 0 < δi < +∞:
P(Wt ≤ x ∣X(t) = i) = 1 − e−δix.

State i is a stable state.

� If δi = 0:
P(Wt ≤ x ∣X(t) = i) = 0 for all x ≥ 0.

Therefore Wt = ∞ with a probability 1, and i is an absorbing state.

� If δi = +∞:
P(Wt ≤ x ∣X(t) = i) = 1 for all x ≥ 0.

State i is an instantaneous state (the process jumps of an instantaneous state as
soon as it enters it, but also returns to it in�nitely often within arbitrarily short
times).

We will restrict ourselves to Markov processes with no instantaneous states.

De�nition 3.1.13 A Markov process is conservative if all its states are stable or
absorbing. This is equivalent to each of the following:

(i) the function t→X(t) is right-continuous almost surely;
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(ii)
lim
s→0+

Pij(s) = δij.

Indeed, this follows since in this case

1 = P(Wt > 0 ∣X(t) = i) = P( lim
s→0+

X(t + s) =X(t) ∣X(t) = i)

= P( lim
s→0+

X(s) = i ∣X(t) = i) = lim
s→0+

Pii(s)

A conservative Markov process stays a certain time in each state visited and does not
leave it immediately. We suppose from now on that the Markov process is conservative.
In the next section, we will study together the time spent in a state, the jumps between
states, and the times between jumps.

3.2 Jump chain

For a conservative Markov process with no absorbing state the jump times are de�ned in
terms of the holding times Wt as

T0 = 0, Tn+1 = Tn +WTn for all n ≥ 0,

and we de�ne the values of X at the jump times as

X̂0 =X(0), X̂n+1 =X(Tn+1).

X̂ is the chain of the successive states visited by the Markov process X. It is called
the jump chain of the process X. This chain does not contain all the Markov process'
information: it does not record the length of time spent in each state.

In this section, we examine the underlying structure of X de�ned by the jump chain
X̂ and the jump times Tn. We �rst prove that X̂ is a Markov chain, and Tn+1 − Tn is
exponentially distributed with rate depending on X̂n.

Theorem 3.2.1 For any n ≥ 0, j ∈ E, and u ∈ R+,

P(X̂n+1 = j, Tn+1 − Tn > u ∣ X̂0, . . . , X̂n, T0, . . . , Tn)

= P(X̂n+1 = j, Tn+1 − Tn > u ∣ X̂n). (⋆)

Furthermore, if X̂n = i,

P(X̂n+1 = j, Tn+1 − Tn > u ∣ X̂n = i) = P̂ij e
−δiu, (⋆⋆)

where P̂ is a stochastic matrix such that P̂ii = 0 if i is stable, and P̂ii = 1 if i is absorbing.

47



Proof. Recall that P(W0 > u ∣ X̂0 = i) = e−δiu. For any n ≥ 0,

P(X̂n+1 = j, Tn+1 − Tn > u ∣ X̂0, . . . , X̂n, T0, . . . , Tn)

= P(X(Tn+1) = j, Tn+1 − Tn > u ∣X(t),0 ≤ t ≤ Tn)

= P(X(Tn+1) = j, Tn+1 − Tn > u ∣X(Tn)) (strong Markov property)

= P(X̂n+1 = j, Tn+1 − Tn > u ∣ X̂n)

which shows (⋆). Now, if X(Tn) = i,

P(X̂n+1 = j, Tn+1 − Tn > u ∣ X̂n = i)

= P(X(W0) = j, T1 > u ∣X(0) = i) (homogeneity)

= P(W0 > u ∣X(0) = i)P(X(W0) = j ∣X(0) = i,W0 > u)

= e−δiuP(X(W0) = j ∣X(t) = i for all t ∶ 0 ≤ t ≤ u)

= e−δiuP(X(u +Wu) = j ∣X(t) = i,0 ≤ t ≤ u)

= e−δiuP(X(u +Wu) = j ∣X(u) = i), (Markov property)

= e−δiuP(X(W0) = j ∣X(0) = i) (homogeneity)

= e−δiuP(X̂1 = j ∣ X̂0 = i)

= e−δiuP̂ij,

and we have shown (⋆⋆). ◻

Corollary 3.2.2 We have

(i) The jump chain X̂ is a Markov chain with transition matrix P̂ (putting u = 0 in the
previous theorem).

(ii) Given X̂0, X̂1, . . . , the intervals (T1 − T0), (T2 − T1), . . . are independent.

In other words, the times between transitions are conditionally independent of each other
given the successive states being visited, and each such sojourn time has an exponential
distribution with the parameter dependent on the state being visited. This and the fact
that the successive states visited form a Markov chain clarify the structure of a Markov
process.

If there are absorbing states, then Tn may potentially be in�nite, in which case we de�ne
W∞ = +∞, and the de�nition of the jump chain becomes

X̂0 =X(0), X̂n+1 = {
X(Tn+1) if Tn+1 < ∞

X̂n if Tn+1 = ∞
.

If i is an absorbing state for X, then it is an absorbing state for X̂ as well and in that
case P̂ii = 1.
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De�nition 3.2.3 A conservative Markov process is regular if

lim
n→∞Tn = +∞ a.s. (non explosiveness)

Can we de�ne X in terms of X̂ and {Tn}n≥0? It follows from the de�nitions that

X(t) = X̂n for t ∈ [Tn, Tn+1),

hence X can be de�ned in terms of X̂ and {Tn}n≥0 provided that for any real t there exists
some nonnegative integer n such that t ∈ [Tn, Tn+1), or in other words, provided that the
Markovian process is regular. From now on, we will assume that this is the case.

3.3 Kolmogorov's equations

There are two equivalent ways to describe how a Markov process X evolves. The �rst is
in terms of the jump chain X̂ and the holding times {WTn}. The second is in terms of
the semigroup P (t). The objective here is to go from Pij(t) to P̂ij and δi (i, j ∈ E), and
vice versa in a regular Markov process.

3.3.1 {P̂ij, δi} Ð→ Pij(t)

Theorem 3.3.1

Pij(t) = e
−δitδij +

t

∫
0

∑
k∈E,k≠i

e−δiu δiP̂ikPkj(t − u)du,

where δij is Kronecker's delta.

Remark 3.3.2 We can write this theorem in a matrix form, by using the de�nition of
the exponential of a matrix A:

eA =
∞
∑
n=0

An

n!
,
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and setting Λ = diag(δi, i ∈ E):

P (t) = e−Λt +

t

∫
0

e−Λu ΛP̂P (t − u)du.

Proof. First recall that

P(X(T1) = k, T1 ≤ u ∣X(0) = i) = P̂ik(1 − e
−δiu)

⇒
d

du
P(X(T1) = k, T1 ≤ u ∣X(0) = i) = P̂ik δi e

−δiu.

So
P(X(T1) = k, u ≤ T1 ≤ u + du ∣X(0) = i) = P̂ik δi e

−δiudu.

Next, we will use the theorem of total probabilities twice. We �rst condition on the value
of T1, and then on the value of the next state visited after state i:

Pij(t) = P(X(t) = j ∣X(0) = i)

=

∞

∫
0

P(X(t) = j ∣X(0) = i, T1 = u) fT1(u)
´¹¹¹¹¹¸¹¹¹¹¹¶

= δie−δiu because T1∼exp(δi)

du,

=

∞

∫
0

δie
−δiu∑

k∈E
P(X(t) = j ∣X(0) = i, T1 = u,X(u) = k)

⋅P(X(u) = k ∣X(0) = i, T1 = u)du,

=

∞

∫
0

∑
k∈E

δie
−δiuP̂ikP(X(t) = j ∣X(0) = i, T1 = u,X(u) = k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(∗)

du.

We now separate the integral into two parts, depending on the value of u:

� If u < t:

(∗) = P(X(t) = j ∣X(x) ∶ 0 ≤ x ≤ u, X(u) = k),

= P(X(t) = j ∣X(u) = k), (Markov property)

= P(X(t − u) = j ∣X(0) = k), (homogeneity)

= Pkj(t − u).

� If u ≥ t: (∗) = δij (no state change before u ≥ t.)
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Therefore:

Pij(t) =

t

∫
0

∑
k≠i
δie

−δiuP̂ikPkj(t − u)du

+

∞

∫
t

δie
−δiuδij ∑

k∈E
P̂ik

´¹¹¹¹¹¸¹¹¹¹¹¹¶
=1 because P̂ is stochastic.

du,

and observing that
∞
∫
t

δie−δiudu = e−δit completes the proof. ◻

3.3.2 Pij(t) → P̂ij, δi

De�nition 3.3.3 The generator of the Markov process is the Q-matrix (of size ∣E∣ × ∣E∣)
such that:

⎧⎪⎪
⎨
⎪⎪⎩

Qii = −δi,

Qij = δiP̂ij (i ≠ j).

Theorem 3.3.4

Q =
d

dt
P (t)∣

t=0+ ,

and:
P ′(t) = QP (t) = P (t)Q.

Proof.

Pij(t) = e−δitδij +
t

∫
0

∑
k≠i
e−δiuδiP̂ikPkj(t − u)du,

= e−δit
⎛

⎝
δij +

t

∫
0

∑
k≠i
eδisδiP̂ikPkj(s)ds

⎞

⎠
(s = t − u),

⇒
d

dt
Pij(t) = −δi

°
=Qii

e−δit(. . . )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Pij(t)

+e−δit∑
k≠i
δiP̂ik
±
=Qik

Pkj(t)e
δit,

= QiiPij(t) +∑
k≠i
QikPkj(t),

= ∑
k∈E

QikPkj(t) = (QP (t))ij,

which implies P ′(t) = QP (t).
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Next,
lim
t→0+

P ′(t) = lim
t→0+

QP (t) = Q,

where limt→0+ P (t) = I because X is a conservative Markov process.
Finally, by the Chapman-Kolmogorov Theorem (Chapter 2),

d

ds
P (t + s) = P (t)

d

ds
P (s),

therefore by taking lims→0+ we �nd that P ′(t) = P (t)Q. ◻

The di�erential equations P ′(t) = QP (t) and P ′(t) = P (t)Q are called, respectively,
Kolmogorov's backward and forward equations.

Corollary 3.3.5 For any t ≥ 0, we have P (t) = eQt.

Remark 3.3.6 We have seen that (α,Q) entirely determines the Markov process X
(where α = the vector of initial probabilities.) We have also shown that a relationship
between every pair P (t) ←→ {P̂ , (δi, i ∈ E)}, P (t) ←→ Q, Q←→ {P̂ , (δi, i ∈ E)}.

3.3.3 Interpretation of Q:

If we expand P (t) = eQt using the de�nition of the matrix exponential, we �nd that for t
small,

P (t) = I +Qt +
(Qt)2

2
+ . . .

= I +Qt + o(t),

⇒

⎧⎪⎪
⎨
⎪⎪⎩

i ≠ j ∶ Pij(t) = P(X(t) = j ∣X(0) = i) = Qijt + o(t),

i = j ∶ Pii(t) = 1 +Qiit + o(t) = 1 − δit + o(t).

Also note that e−δit = 1 − δit + o(t) for small t.
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The fact that P (t) is de�ned by its �rst derivative at t = 0 makes these results interesting.
For this reason, Q is called the generator of the process X.

The class structure of a continuous-time Markov chain X is simply the discrete-time class
structure of its corresponding jump chain X̂.

Theorem 3.3.7 The following three a�rmations are equivalent:

(i) ∃t > 0 ∶ Pij(t) > 0,

(ii) i↝ j in the graph of P̂ ,

(iii) Pij(t) > 0 for all t > 0.

Proof.
(iii) ⇒ (i): trivial.

(i) ⇒ (ii): trivial as well because we can go from one state to another on the condition

that there exists n such that (P̂ n)ij > 0.

(ii) ⇒ (iii):

Case 1: we suppose that P̂ij > 0.
The event {T1 ≤ t, X̂1 = j, T2 − T1 > t} implies that {X(t) = j}. We then have

P(X(t) = j ∣X(0) = i) ≥ P(T1 ≤ t, X̂1 = j, T2 − T1 > t ∣X(0) = i),

= (1 − e−δit)P̂ije−δjt,
> 0 for all t ≥ 0.

Case 2: If Case 1 does not apply, that is, if P̂ij = 0, the chain goes from i to j through
intermediate states, and (ii) can be reformulated:

∃i1, . . . , in−1 such that P̂i,i1 , P̂i1,i2 , P̂i2,i3 , . . . , P̂in−1,j > 0.

We then have

P(X(t) = j ∣X(0) = i) ≥ P(X(t/n) = i1,X(2t/n) = i2, . . . ,X(t) = j ∣X(0) = i),

= Pi,i1(t/n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

> 0 by Case 1

Pi1,i2(t/n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

. . . Pin−1,j(t/n)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

,

> 0 for all t > 0.

◻

Condition (iii) shows that the situation is simpler than in discrete-time, where it may be
possible to reach a state, but only after a certain length of time, and then only periodically.
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3.4 States

Let θi be the total cumulative time spent in the state i by the Markov process X (this is
the equivalent of Vi in discrete time Markov chains). We have

θi =

∞

∫
0

1{X(u)=i}du.

We can decompose θi into the following:

θi = ∑
1≤n≤Ni

Y
(i)
n where

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Ni = total number of visits of state i in X̂,

Y
(i)
n = time spent in i during the nth visit,

Y
(i)
n i.i.d., Y

(i)
n ∼ exp(δi).

We will therefore classify the states into two groups, namely transient states and recurrent
states. They have the following properties:

De�nition 3.4.1
State i is transient if (equivalent conditions):

� θi < ∞ with probability 1,

� Ni < ∞ with probability 1,

� i is transient in X̂,

� E[Ni] < ∞.

State i is recurrent if

� θi = ∞ with probability 1,

� Ni = ∞ with probability 1,

� i is recurrent in X̂,

� E[Ni ∣X(0) = i] = ∞.

State i is positive recurrent if it is recurrent and if the expected return time to i is �nite;
otherwise a recurrent state i is called null recurrent.
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We have

E[θi ∣X(0) = i] = E

⎡
⎢
⎢
⎢
⎢
⎣

∞

∫
0

1{X(u)=i∣X(0)=i}du
⎤
⎥
⎥
⎥
⎥
⎦

,

=

∞

∫
0

E[1{X(u)=i∣X(0)=i}]du, (Fubini)

=

∞

∫
0

P(X(u) = i ∣X(0) = i)du

=

∞

∫
0

Pii(u)du.

Therefore, i is transient if and only if

E[θi] = E [ ∑
1≤n≤Ni

Y
(i)
n ] ,

= E[Ni]E[Y (i)], (Wald's identity)

< ∞,

and we also have:

� i transient ⇔
∞
∫
0

Pii(u)du < ∞,

� i recurrent ⇔
∞
∫
0

Pii(u)du = ∞.

3.5 Limit behaviour of P (t)

We are now interested in calculating

lim
t→∞Pij(t) =?

Problem: limt→∞P (X(t) = j ∣X(0) = i) is not necessarily equal to limt→∞P(X̂n = j ∣ X̂0 =
i).
Counter-example: consider a Markov process X with corresponding jump chain

P̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

and such that 1/δ1 = 1, 1/δ2 = 1, 1/δ3 = 1027. We the have limt→∞P(X(t) = 3) >>
limt→∞P(X(t) = i), but the stationary distribution of X̂ is (1/3,1/3,1/3).
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We de�ne a new Markov chain: For all h > 0, the discrete skeleton Zn ∶=X(nh), n ≥ 0, is
a Markov chain with probability transition matrix P (h):

P(Zn+1 = j ∣ Zn = i) = P(X((n + 1)h) = j ∣X(nh) = i) = P (h).

{Zn} is called the h-skeleton of X(t) (of the Markov process). The next theorem shows
that recurrence and transience of a state are determined by any discrete-time sampling
of X.

Proposition 3.5.1 State i is transient for X if and only if i is transient for the h-skeleton
Z, for any h > 0.

Proof. It su�ces to show that

∞

∫
0

Pii(t)dt < ∞⇔ ∑
n≥0

(P (h)n)ii < ∞.

We have

(P (h)n)ii = P(Zn = i ∣ Z0 = i) = P(X(nh) = i ∣X(0) = i)

= Pii(nh).

Therefore, all we need to show is

∞

∫
0

Pii(t)dt < ∞⇔ ∑
n≥0

Pii(nh) < ∞.

Let t ∈ [nh, (n + 1)h] for some n ∈N. We have:

{X(t) = i,Wt > h} ⊆ {X((n + 1)h) = i}, (⋆)

{X(nh) = i,Wnh > h} ⊆ {X(t) = i} (⋆⋆)

Therefore, using (⋆),

P(X((n + 1)h) = i ∣X(0) = i) ≥ P(X(t) = i,Wt > h ∣X(0) = i),

= P(X(t) = i ∣X(0) = i)P(Wt > h ∣X(t) = i),

⇒ Pii((n + 1)h) ≥ Pii(t)e
−δih.

Similarly, using (⋆⋆), we obtain a second inequality, and

Pii((n + 1)h)eδih ≥ Pii(t) ≥ Pii(nh)e
−δih. (#)
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Therefore,

∞

∫
0

Pii(t)dt = ∑
n≥0

(n+1)h

∫
nh

Pii(t)dt,

≥ ∑
n≥0

(n+1)h

∫
nh

e−δihPii(nh)dt, (by (#))

= ∑
n≥0

he−δih
²

>0

Pii(nh),

= C1 ∑
n≥0

Pii(nh)

for some strictly positive constant C1. Therefore, we have

∫
∞

0
Pii(t)dt < ∞ ⇒ ∑

n≥0

Pii(nh) < ∞.

Similarly, using the other inequality in (#),

∞

∫
0

Pii(t)dt ≤ heδih∑
n≥1

Pii(nh)

= C2 ∑
n≥1

Pii(nh),

for some strictly positive constant C2, and

∑
n≥0

Pii(nh) < ∞ ⇒ ∫
∞

0
Pii(t)dt < ∞.

◻

The limiting behaviour of the transition function P (t) as t → ∞ is just as in the case
of discrete-time Markov chains, except that it is made simpler by the disappearance of
periodicity.

Theorem 3.5.2 (Convergence to equilibrium) Let X be an irreducible conservative
Markov process. Then, for any i, j ∈ E,

lim
t→∞P(X(t) = j ∣X(0) = i) = {

0 if j is transient or null recurrent,
πj if j is positive recurrent

Proof.
Case 1: t→∞ with t = nh.

lim
t→∞, t=nh

P(X(t) = j ∣X(0) = i) = lim
n→∞P(Zn = j ∣ Z0 = i)

=

⎧⎪⎪
⎨
⎪⎪⎩

0 if j is transient or null recurrent,

αj(h) if j is positive recurrent,
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by the results on discrete-time Markov chains.
We now want to show that the limit αj(h) actually does not depend on the choice of h.

Case 2: t→∞ in an arbitrary way.
Let ε > 0, and let us �x an arbitrary h > 0 such that e−δih > 1 − ε/2. Therefore,

e−δis > 1 − ε/2 for all s ∈]0, h[.

By Case 1, there exists N such that for all n ≥ N ,

∣ Pij(nh) − αj(h) ∣≤ ε/2.

Let T = Nh, and �x t > T . We need to show that ∣ Pij(t) − αj(h) ∣< ε. There exists v ≥ N
such that vh ≤ t ≤ (v + 1)h. Then,

∣ Pij(t) − αj(h) ∣≤ ∣ Pij(t) − Pij(vh) ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤ε/2??

+ ∣ Pij(vh) − αj(h) ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤ε/2

.

Take t = s + vh. We have

Pij(t) = Pij(s + vh),

= (P (s)P (vh))ij, (Chapman-Kolmogorov)

= ∑
k∈E

Pik(s)Pkj(vh),

which implies

∣ Pij(t) − Pij(vh) ∣ =

RRRRRRRRRRRRRR

∑
k∈E
k≠i

Pik(s)Pkj(vh) − (1 − Pii(s))Pij(vh)

RRRRRRRRRRRRRR

,

≤ max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑
k∈E
k≠i

Pik(s)Pkj(vh), (1 − Pii(s))Pij(vh)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

≤ max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑
k∈E
k≠i

Pik(s),1 − Pii(s)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

= 1 − Pii(s), (P (s) is a stochastic matrix)

< ε/2,

because Pii(s) > e−δis > 1 − ε/2.
We have shown that, for the �xed value of h, Pij(t) → αj(h) as t→∞. This implies that
for any sequence {tk} with tk →∞ as k →∞, Pij(tk) → αj(h). By taking tk = kh2 for any
arbitrary h2, and using Case 1, we have that αj(h) = αj(h2). This proves that the limit
αj(h) actually does not depend on h, and we write αj(h) = πj. ◻
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Remark 3.5.3 If X is reducible and j is positive recurrent, then

lim
t→∞P(X(t) = j ∣X(0) = i) = fij πj,

where fij is the probability that, starting from i, state j is visited after a �nite time, that
is,

fij = P(τj < ∞ ∣X(0) = i),

where τj = inf{t ≥ 0 ∶X(t) = j}, and πj = limt→∞P(X(t) = j ∣X(0) = j).

The next theorem characterizes the limiting distribution π in the positive recurrent case
as the solution of some systems of linear equations.

Theorem 3.5.4 The following three assertions are equivalent:

(i) The states of a conservative irreducible Markov process are positive recurrent

(ii) There exists π such that πP (s) = π for all s,

(iii) There exists π such that πQ = 0,

In (ii) and (iii), π is such that πj = limt→∞P(X(t) = j ∣ X(0) = j), with π ≥ 0, and
π1 = 1.

Proof.
(i) ⇔ (ii). We have

lim
t→∞P(X(t) = j ∣X(0) = i) = πj if lim

n→∞P(X(nh) = j ∣X(0) = i) = πj for all h > 0.

For the h-skeleton, the states are positive recurrent if and only if there exists x(h) such
that

⎧⎪⎪
⎨
⎪⎪⎩

x(h)P (h) = x(h)

x(h)1 = 1

In this case, xj(h) = limn→∞P(X(nh) = j ∣ X(0) = i) = πj, as we have shown in the
previous theorem that the limit does not depend on h.

(ii) ⇔ (iii). If the number of states is �nite,

πP (s) = π for all s,
⇔ πP ′(s) = 0 (since the sum is �nite) ,
⇔ πP (s)Q = 0,
⇔ πQ = 0.

For an arbitrary number of states, �rst observe that πQ = 0 implies that πP (s) = πeQs =
π∑n≥0(Qs)

n/n! = π for all s, so we have (iii) ⇒ (ii). We remains to show (ii) ⇒ (iii).
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We look at the Markov jump chain, whose transition matrix is P̂ . We know that its states
are positive recurrent if and only if there exists π̂ such that π̂P̂ = π̂. However, recall that

⎧⎪⎪
⎨
⎪⎪⎩

Qij = δiP̂ij (i ≠ j),

Qii = −δi.

Letting Λ =diag(δi), we can then write

Q = Λ(P̂ − I) ⇔ P̂ = I +Λ−1Q

and P̂ii = 0. Therefore
π̂P̂ = π̂,

⇔ π̂ + π̂Λ−1Q = π̂,
⇔ π̂Λ−1Q = 0.

In order to have (iii), we need to show that π̂Λ−1 = π.

Let t − v be the time of the last state change before time t. We have

Pij(t) = e
−δitδij +

t

∫
0

∑
k

Pik(t − v)δkP̂kje
−δjvdv,

or in matrix form,

P (t) = e−Λt +

t

∫
0

P (t − v)ΛP̂ e−Λvdv.

But we know that πP (t) = π for all t, hence

πe−Λt +
t

∫
0

πP (t − v)ΛP̂ e−Λvdv = π,

⇔ πe−Λt +
t

∫
0

πΛP̂ e−Λvdv = π (πP (t − v) = π),

⇔ πe−Λt +πΛP̂
t

∫
0

e−Λvdv = π,

⇔ πe−Λt −πΛP̂Λ−1[e−Λv]t0 = π,

⇔ πe−Λt −πΛP̂Λ−1e−Λt +πΛP̂Λ−1 = π for all t.
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We take the limit of each term as t→∞ and observe that limt→∞ e−Λt = 0, limt→∞πΛP̂Λ−1e−Λt =
0, and π,πΛP̂Λ−1 do not dependent on t. We then obtain

πΛP̂Λ−1 = π ⇔ πΛP̂ = πΛ.

On the other hand, we know that π̂ is the unique solution to π̂P̂ = π̂ to one multiplying
constant, therefore

π̂ = πΛ

to one multiplying constant, and we have

π̂Λ−1Q = 0 ⇔ πΛΛ−1Q = 0 ⇔ πQ = 0.

This shows (ii) ⇒ (iii).
◻

Remark 3.5.5

� In the last proof, we showed that if π̂ is the stationary distribution of the jump chain
X̂ (with positive recurrent states, irreducible), then

π = π̂Λ−1/(π̂Λ−11),

where Λ = diag(δi) = diag(−Qii).

� In the last theorem, we supposed that all the states were stable (if a state is absorbing
in an irreducible process, that state will be visited and will never be left).

The complete description of limiting behaviour for irreducible chains in continuous-time
is provided by the following result.

Theorem 3.5.6 Let X be an irreducible Markov process with arbitrary initial distribution
and generator Q. Then

P(X(t) = j) → 1/(δjmj) as t→∞ for all j ∈ E,

where mj = E(τj ∣X(0) = j) is the expected return time to state j.

3.6 Example: The M/M/1 queue

The simplest queueing model has exponential interarrival times with mean 1/λ, exponen-
tial service times with mean 1/µ and a single server. Customers are served in order of
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arrival. Let X(t) denote the number of customers in the system at time t (including the
one being served, if there is one). {X(t)} forms a Markovian process with generator

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ λ 0 0 . . .
µ −(µ + λ) λ 0 . . .
0 µ −(µ + λ) λ . . .
0 0 µ −(µ + λ) . . .
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

So in this example, the parameters of the exponential sojourn time distributions are δ0 = λ,
δi = λ + µ for i ≥ 1. The Markov process is irreducible and there is no absorbing state.
The probability transition matrix of the corresponding jump chain is

P̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 . . .
µ/(µ + λ) 0 λ/(µ + λ) 0 . . .

0 µ/(µ + λ) 0 λ/(µ + λ) . . .
0 0 µ/(µ + λ) 0 . . .
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which corresponds to a random walk on Z+.
What is the distribution of X(t) given that the chain start in some initial distribution α
(αi = P(X(0) = i))? It is given by p(t) ∶= αP (t) where pn(t) = P(X(t) = n), n ≥ 0. We
write the forward Kolmogorov equation, P ′(t) = P (t)Q which, after pre-multiplication by
α, gives p′(t) = p(t)Q. This is the matrix expression for the in�nite system of di�erential
equations

p′0(t) = −λp0(t) + µp1(t), (3.1)

p′n(t) = λpn−1(t) − (λ + µ)pn(t) + µpn+1(t), n = 1,2, . . . (3.2)

It is di�cult to solve these di�erential equations. An explicit solution for the probabilities
pn(t) can be written but it involves an in�nite sum of modi�ed Bessel functions. So
already one of the simplest interesting queueing models leads to a di�cult expression
for the time-dependent behaviour of its state probabilities. For more general systems we
can only expect more complexity. However, after some transition period the system will
become stable, and the limiting or equilibrium behaviour of this system is much easier
to analyse. Of course the state will permanently change, but the probabilities of various
numbers of customers in the system will be constant.
We have seen that a stationary probability vector π satis�es πQ = 0 and π1 = 1. This
gives

−λπ0 + µπ1 = 0 (3.3)

λπn−1 − (λ + µ)πn + µπn+1 = 0, n = 1,2, . . . (3.4)

Note that this is exactly the system we obtain if we let t→∞ in the forward Kolmogorov
equations. From this system, we obtain that

πn = (λ/µ)n π0, n = 0,1,2, . . .
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so a solution such that π1 = 1 exists if and only if the states are positive recurrent, and it
happens if and only if ∑n≥0(λ/µ)

n < ∞, if and only if λ < µ. In that case, the stationary
distribution is given by

πn = (λ/µ)n (1 − λ/µ), n = 0,1,2 . . . .

You will study the M/M/1 queue in more detail in Serie 9, including criteria for null
recurrence and transience.
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Chapter 4

Renewal processes

In the stochastic processes we have studied so far, an important property has been the
existence of times, usually random, from which onward the future of the process is a
probabilistic replica of the original process. In Markov chains and Markov processes, for
example, if the initial state is i, then the times of successive entrances to that state i
plays this role; and this fact in turn enables us to obtain many of the limiting results we
listed before. This �regeneration� property may hold in much more general situations, and
when it holds, surprisingly sharp results can be obtained by the methods we are going to
develop in this chapter.

4.1 De�nition

Let F (⋅) be the distribution function of a non-negative random variable (that is, F (x) = 0
if x < 0). Let W1,W2, . . . be i.i.d. random variables ∼ F (⋅).

De�nition 4.1.1 The renewal process associated with F (⋅) is the process {Sn ∶ n ∈ N}
such that:

� S0 = 0 almost surely,

� Sn+1 = Sn +Wn+1 for all n = 0,1,2, . . ..

The Sn are called renewal times.
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Example 4.1.2 Consider an item installed at time S0 = 0. When it fails it is replaced
by an identical item; when that item fails, it in turn is replaced by a new item, and
so on. Suppose the lifetime of the successive items are U1, U2, . . . and the replacements
take V1, V2, . . . units of time. Hence, the successive items start working at times S0 = 0,
S1 = U1 + V1, S2 = U2 + V2, and so on. It is reasonable to assume the Ui to be i.i.d. and
the same for the Vi, and the Ui and Vi to be independent. Then Wi = Ui +Vi are i.i.d. and
the Sn form a renewal process.

De�nition 4.1.3 Let F (⋅) and G(⋅) be the distribution functions of two non-negative
random variables. The convolution of F (⋅) and G(⋅) is de�ned as

(F ∗G)(x) =

x

∫
0

G(x − u)dF (u).

We know that if X and Y are independent random variables with X ∼ F (⋅), and Y ∼ G(⋅),
then X + Y ∼ (F ∗G)(⋅) (exercise), that is,

P(X + Y ≤ x) = (F ∗G)(x).

Note that the convolution operation is commutative. Here, the renewal times are such
that:

S0 = 0
S1 = W1 ∼ F (⋅)
S2 = W1 +W2 ∼ (F ∗ F )(⋅)
S3 = W1 +W2 +W3 ∼ (F ∗ F ∗ F )(⋅)

De�nition 4.1.4

F (0)(x) = 1{x≥0}

=

⎧⎪⎪
⎨
⎪⎪⎩

0 if x < 0,

1 if x ≥ 0,

F (n+1)(x) = (F ∗ F (n))(x) for all n ≥ 0.

These F (n) (nth fold convolution of F with itself) are the distribution functions of the
renewal times:

� F (0)(⋅) = distribution function of the random variable = 0 a.s.,

� F (1)(⋅) = F (⋅) = distribution function of W1 = S1,

� F (2)(⋅) = (F ∗ F )(⋅) = distribution function of W1 +W2 = S2, and so on.

Therefore
P(Sn ≤ x) = F

(n)(x).
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De�nition 4.1.5 The number of renewals N(t) in the interval [0, t] is de�ned as

N(t) = inf{n ∶ Sn > t}.

Remark 4.1.6 N(0) ≥ 1 (N(0) = 1, except if there are several simultaneous renewals in
t = 0.)

We have
{N(t) ≤ k} = {Sk > t}.

Indeed, the event {N(t) ≤ k} is equivalent to the event that before time t, we have at
most k renewals, that is, at most S0, S1, . . . , Sk−1, which is {Sk > t}.
We therefore have

P(N(t) ≤ k) = P(Sk > t) = 1 − F (k)(t),

and by calculating the F (n)(⋅), we know the distribution of Sn and N(t).

De�nition 4.1.7 The renewal function of the renewal process is the expected number of
renewals in the interval [0, t]:

R(t) = E[N(t)],

= ∑
k≥0

F (k)(t),

The last equality is true because

E[N(t)] = ∑
k≥0

P(N(t) > k),

= ∑
k≥0

1 −P(N(t) ≤ k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1−F (k)(t)

,

= ∑
k≥0

F (k)(t).

The renewal function plays an important role in the study of renewal processes. Before
showing this, we will �rst examine di�erent possible behaviours of the renewal process
depending on the behaviour of F (⋅).
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Behaviour in function of F (0).

� If F (0) = 0: then P(W = 0) = 0, therefore the intervals of time between two renewals
cannot be of zero length:

� If 0 < F (0) < 1: then 0 < P(W = 0) < 1, therefore we can have times where several
renewals take place:

� If F (0) = 1: then all the renewal intervals have length zero, therefore P(Sn = 0) = 1
for all n. This case is not interesting, since an in�nity number of renewals take place
at time 0.

Assumption (A): From now on, we will always suppose that F (0) < 1, that is, we cannot
have in�nitely many renewals at one time.

Behaviour in function of F (∞).

F (∞) = lim
x→∞F (x).

� If F (∞) = 1: then P(Wi < ∞) = 1 for all i, therefore all the renewal intervals are of
�nite length.

� If F (∞) < 1: then P(Wi = ∞) > 0 for all i, therefore Wk = +∞ for some k, so that
the next renewal comes after an in�nite time. Therefore, in this case, the renewal
process is �dead�, since no more renewals will ever occur.
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De�nition 4.1.8 We say that a renewal process is

� recurrent if F (∞) = 1,

� transient if F (∞) < 1.

Let us return to the renewal function R(t). We will show that, under Assumption (A),
the renewal function R(t) is always �nite for 0 ≤ t < ∞, that is, that we cannot have an
in�nite number of renewals in a �nite time:

Proposition 4.1.9 If F (0) < 1, then R(t) < ∞ for all �nite t ≥ 0.

Proof. We will construct a (�nite) bound for R(t).
Since F (0) < 1, and F is right continuous, there is some b > 0 such that F (b) < 1 (that is,
P(W > b) > 0). We have

⎧⎪⎪
⎨
⎪⎪⎩

S0 = 0,

Sn = Sn−1 +Wn for all n ≥ 1.

We construct a new renewal process by taking:

W̃n =

⎧⎪⎪
⎨
⎪⎪⎩

0 if Wn ≤ b,

b if Wn > b.

We then have a renewal process

⎧⎪⎪
⎨
⎪⎪⎩

S̃0 = 0,

S̃n = S̃n−1 + W̃n for all n ≥ 1,

such that for all n, t,

⎧⎪⎪
⎨
⎪⎪⎩

Sn ≥ S̃n,

N(t) ≤ Ñ(t).

This implies that
R(t) = E[N(t)] ≤ E[Ñ(t)],

and E[Ñ(t)] < ∞ because

E[Ñ(t)] ≤ (
t

b
+ 1)E[Y ]

where Y is the number of instantaneous renewals (W̃i = 0) between two non-instantaneous
renewals (W̃i = b), so Y ∼ Geom(F (b)) and E[Y ] = 1/(1 −F (b)) < ∞ because F (b) < 1. ◻
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Example 4.1.10 Suppose F (t) = 1−e−λt. Then the renewal process is actually a Poisson
process with an arrival at time 0. Hence, R(t) = 1 + λt for all t ≥ 0.

Proposition 4.1.11 Under Assumption (A), R(t) is right continuous, and non-decreasing.
Furthermore, if f ∶ R+ → R+ is bounded and null outside a �nite interval, we have

∞

∫
0

f(u)dR(u) = E [
∞
∑
n=0

f(Sn)] < ∞.

Proof. The function N(t) is increasing and right-continuous (by de�nition), therefore
R(t) in particular is also increasing.
In order to show that R(t) is right-continuous, let (tn) ↘ t, n ≥ 0. We have

N(tn) ↘ N(t) (N(t) right-continuous)

N(t) ≤ N(t0) for all n ≥ 0 (N(t) increasing).

Since E[N(t0)] = R(t0) < ∞, we have, by the theorem of dominated convergence,

lim
n→∞R(tn) = lim

n→∞E[N(tn)],

= E[N(t)],

= R(t).

Therefore R(t) is right-continuous.
Next, if f is bounded by C and vanishes outside [0, t],then

∑
n≥0

f(Sn) ≤ CN(t), and E [
∞
∑
n=0

f(Sn)] ≤ CR(t) < ∞.

To prove
∞
∫
0

f(u)dR(u) = E [∑
∞
n=0 f(Sn)], we observe the following:

� For f = 1{(s,t]}, we have:

E[∑
n≥0

f(Sn)] = E[N(t) −N(s)],

= R(t) −R(s),

=

∞

∫
0

1{(s,t]}(u)dR(u) → ok.

� It is therefore also true for all step functions (or simple functions, that is,
functions that are linear combinations of �nitely many indicator functions) since
the expectation of a sum is the sum of the expectations, and the integral of a sum
is the sum of the integrals.

69



� It is therefore also true for an arbitrary f ≥ 0, taking f as the limit of an increasing
sequence (fn) of step functions, then applying the monotone convergence theorem.

◻

Remark 4.1.12 From here, we have for all renewal processes:

R(0) ≥ 1,

therefore, when we calculate
∞
∫
0

f(u)dR(u), we must not forget the term R(0)f(0) which

is to be added to the integral over (0,∞).

Example 4.1.13 Let X be a discrete-time Markov chain, and let j be a �xed state. Let
S1, S2,. . . be the successive step numbers at which state j is visited. If X0 = j, then the
times S1, S2 − S1, S3 − S2, . . . , between returns in j are independent and identically
distributed, hence {Sn} forms a renewal process (this fact will be used later to prove an
important result about Markov chain using the theory of renewal processes). Consider the
renewal function R(⋅) for this process. Since the number of visits to j during [0, t] is

∑n≤t 1{Xn=j}, we have

R(t) = Ej [∑
n≤t
1{Xn=j}] = ∑

n≤t
(P n)jj,

where P n is the n-step probability transition matrix. Note that in this case, all the Sn are
integer-valued, so R(⋅) is a step function whose jumps are restricted to the times 0,1,2,. . . .

Remark 4.1.14 We have previously de�ned the convolution F ∗G between two distribu-
tion functions F and G. We now de�ne the convolution F ∗ g where F is a distribution
function, and g is any non-negative function de�ned on R+ which is bounded over any
�nite interval:

(F ∗ g)(t) = ∫
t

0
g(t − u)dF (u).

(Lebesgue-Stieltje integral). Note that if F (0) is the distribution of a degenerate random
variable equal to 0 a.s., that is, if F (0)(x) = 1{x≥0} is the Heaviside step function, then
(F (0) ∗ g)(t) = g(t) for all t. This comes from the fact that dF (0)(u) = δ(u)du where δ(⋅)
is the Dirac delta function. It is also because, since F (0)(⋅) has point mass at zero,

∫
t

0
g(t − u)dF (0)(u) = g(t)F (0)(0) + ∫(0,t]

g(t − u)dF (0)(u) = g(t).
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4.2 Renewal equations

A renewal equation is an equation of the form:

f(t) = g(t) + (F ∗ f)(t), (⋆)

where

� f(t) is the unknown function,

� F (t) is the distribution function of a non-negative random variable,

� g(t) is a given function, bounded on all �nite intervals, and such that g(t) = 0 if
t < 0.

This equation will arise when studying properties of regenerative processes. These are
stochastic processes Z which are such that every time a certain phenomenon occurs, the
future of Z after that time becomes a probabilistic replica of the future after time 0. Such
times (usually random) are called regeneration times of Z. For example, if Z is a Markov
chain and if j is a �xed state, then every time at which state j is entered is a regeneration
time for Z starting at j.

Theorem 4.2.1 The renewal equation (⋆) has the unique solution given by

f(t) = (R ∗ g)(t),

where R(t) is the renewal function of the renewal process associated with F (⋅),

R(t) = ∑
n≥0

F (n)(t).

This theorem will be very useful in future: often, the computation of quantities related to
renewal processes will reduce to the resolution of an equation of type (⋆). This theorem
provides us with the unique solution.

Proof. We �rst show that R ∗ g is a solution:

(R ∗ g)(t) = ∑
n≥0

(F (n) ∗ g)(t),

= g(t) + ∑
n≥1

(F ∗ F (n−1) ∗ g)(t) (F (0)(t) = 1{t≥0}),

= g(t) + (F ∗ ∑
n≥0

(F (n) ∗ g))(t),

= g(t) + (F ∗ (R ∗ g))(t).

We now show the uniqueness of the solution: if f1(t) and f2(t) are both solutions of (⋆),
then

f1(t) = g(t) + (F ∗ f1)(t)

f2(t) = g(t) + (F ∗ f2)(t).
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Take h(t) = f1(t) − f2(t). We then have:

h(t) = (F ∗ h)(t),

= (F ∗ (F ∗ h))(t),

= . . .

⇒ h(t) = (F (n) ∗ h)(t) for all n,

⇒ h(t) = lim
n→∞(F (n) ∗ h)(t).

Since R(t) < ∞ for all t, the general term of the series R(t) = ∑n≥0F
(n)(t) goes to 0 for

all t therefore

lim
n→∞(F (n) ∗ h)(t) = 0,

⇒ h(t) = 0 for all t,

which shows uniqueness. ◻

4.3 Transient renewal processes

In the transient case (F (∞) < 1), Wn = ∞ for some n ≥ 0 with probability one, which
stops the arrival of renewals times.

Example 4.3.1 The renewal process formed by the times of successive entrances to a
�xed state j of a Markov process is transient if and only if j is transient.

The total number of renewals in [0,∞) then follows a geometric distribution with success
probability 1 − F (∞), and in particular,

Theorem 4.3.2 In the case of transient renewal processes,

lim
t→∞R(t) =

1

1 − F (∞)

Proof.

lim
t→∞F

(k)(t) = lim
t→∞P(Sk ≤ t),

= P(Sk < ∞),

= P(W1 + ⋅ ⋅ ⋅ +Wk < ∞),

= P(W1 < ∞, . . . ,Wk < ∞),

= P(W1 < ∞)P(W2 < ∞) . . .P(Wk < ∞),

= F (∞)k.
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Therefore,

lim
t→∞R(t) = lim

t→∞∑
k≥0

F (k)(t),

= ∑
k≥0

lim
t→∞F

(k)(t), (⋆)

= ∑
k≥0

F (∞)k,

=
1

1 − F (∞)
(geometric series).

(⋆) By dominated convergence, since F (k)(t) ≤ F (∞)k for all t and ∑k≥0F (∞)k < ∞. ◻

Theorem 4.3.3 If F (∞) < 1, then

lim
t→∞(R ∗ g)(t) = R(∞) g(∞)

provided that g(∞) = limt→∞ g(t) exists.

De�nition 4.3.4 The lifetime of a transient renewal process is the time of the last
renewal:

L =max{Sn ∶ Sn < ∞}

In the next theorem, we will calculate the distribution of L. Combined with the previous
theorem, the next theorem also shows that P(L < ∞) = 1. The proof of the theorem
provides a good example of the �renewal-theoretic reasoning� that will be used a couple
of times.

Theorem 4.3.5
P(L ≤ x) = (1 − F (∞))R(x).
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Proof. Let us write f(x) = P(L > x). We will show that f(⋅) satis�es a renewal equation,
and we will then obtain its expression using the theorem in the previous section.
In order to do this, as we often do in the context of renewal processes, we will condition
on the time S1 of the �rst renewal:

f(x) = P(L > x),

=

∞

∫
0

P(L > x ∣ S1 = u)dF (u).

We then distinguish three cases:

� Case 1: W1 = +∞ (→ u = ∞).

In this case,

L = S0 = 0,

⇒ P(L > x ∣ S1 = ∞) = 0.

� Case 2: x < u < ∞.

We have L ≥ u, and x < u, which implies that

P(L > x ∣ S1 = u) = 1.

� Case 3: 0 ≤ u ≤ x.

We �rest the clock� at time S1 = u, therefore we have a new renewal process S̃ of
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the same type as S (same function F ), which starts at the new time 0.

⇒ P(L > x ∣ S1 = u) = P(L̃ + u > x),

= P(L > x − u).

Therefore,

f(x) =

∞

∫
0

P(L > x ∣ S1 = u)dF (u),

=

∞

∫
x

P(L > x ∣ S1 = u)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1 (Case 2)

dF (u) +

x

∫
0

P(L > x ∣ S1 = u)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=f(x−u) (Case 3)

dF (u),

⇒ f(x) = (F (∞) − F (x)) + (F ∗ f)(x).

So, f(⋅) satis�es a renewal equation with g(x) = F (∞)−F (x) = P [x <W < ∞]. According
to the theorem in the previous section,

f(x) = (R ∗ g)(x),

=

x

∫
0

(F (∞) − F (x − u))dR(u),

= F (∞)

x

∫
0

dR(u) −

x

∫
0

F (x − u)dR(u),

= F (∞)R(x) − (R ∗ F )(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=R(x)−1 (⋆)

,

= 1 − (1 − F (∞))R(x),

⇒ P(L ≤ x) = (1 − F (∞))R(x).

◻

Remark 4.3.6 1. Justi�cation of (⋆):

(R ∗ F )(x) = ∑
n≥0

(F (n) ∗ F )(x) = ∑
n≥0

F (n+1)(x),

= ∑
n≥1

F (n)(x) = ∑
n≥0

F (n)(x) − F (0)(x),

= R(x) − 1 (F (0)(x) = 1{x≥0} = 1).
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2. First moment of L:

E[L] = E[L1{S1<∞}] (since S1 = ∞⇒ L = 0),

= E[(L + S1)1S1<∞], (⋆⋆)

= E[L]F (∞) + ∫
[0,∞)

udF (u),

⇒ E[L] =
1

1 − F (∞)

∞

∫
0

(F (∞) − F (u))du.

(⋆⋆) By doing the same as above, �resetting the clock at S1.�

4.4 Recurrent renewal processes

4.4.1 Renewal theorems

In the case of recurrent renewal processes (F (∞) = 1), R(t) tends towards in�nity when
t→∞. We will now examine how this convergence happens.

Theorem 4.4.1 (Fundamental Theorem) In the case of recurrent renewal processes,

(i) limt→∞
N(t)
t = 1

E[W ] a.s.,

(ii) limt→∞
R(t)
t = 1

E[W ] ,

where E[W ] =
∞
∫
0

udF (u) is the expected time between two renewals.

Note that almost sure convergence of a sequence {Xn} of random variables does not
necessarily imply convergence of the means (take for example P(Xn = 0) = 1−1/n2,P(Xn =
2n) = 1/n2 where Xn → 0 a.s. but E(Xn) does not converge to 0)! It does so only if the
sequence is uniformly integrable .

In order to prove this theorem, we will need the following lemma:

Lemma 4.4.2

E[SN(t)] = R(t)E[W ]

Remark 4.4.3

SN(t) =
N(t)
∑
i=1

Wi,
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is the time of the �rst renewal after time t. (N(0) ≥ 1, because we count a renewal at
time S0.)

Proof. We write f(t) = E[SN(t)]. We will show that f(⋅) satis�es a renewal equation. In
order to do this, we will as usual condition on S1, the time of the �rst renewal after 0:

f(t) = E[SN(t)],

=

∞

∫
0

E[SN(t) ∣ S1 = u]dF (u).

� Case 1: u > t.

We have

SN(t) = S1,

⇒ E[SN(t) ∣ S1 = u] = u.

� Case 2: u ≤ t.
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We �reset the clocks� to the renewal time u. We have a new renewal process which
is the same as the old one, but starts at the new time �0�, and

SN(t) = u + S̃N(t−u),

⇒ E[SN(t) ∣ S1 = u] = u + E[S̃N(t−u)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=E[SN(t−u)]

because i.i.d. renewal times
= u + f(t − u).

We therefore have:

f(t) =

∞

∫
t

udF (u) +

t

∫
0

(u + f(t − u))dF (u),

=

∞

∫
0

udF (u) +

t

∫
0

f(t − u)dF (u),

= E[W ] + (F ∗ f)(t).

Therefore, f(t) is the solution of a renewal equation, with g(t) = E[W ]. We then have

f(t) = (R ∗ g)(t),

= E[W ]

t

∫
0

dR(u),

= E[W ]R(t).

◻

Proof of the Fundamental Theorem. By the strong law of large numbers,

W1 +W2 + ⋅ ⋅ ⋅ +Wn

n

n→∞
Ð→ E[W ] a.s.

Since the renewal process is recurrent, we have N(t) → +∞ as t→∞ a.s., therefore

SN(t)
N(t)

=
W1 +W2 + ⋅ ⋅ ⋅ +WN(t)

N(t)

t→∞
Ð→ E[W ] a.s.

Furthermore, SN(t)−1 ≤ t ≤ SN(t) a.s., therefore, with probability one,

SN(t)−1

N(t)
≤

t

N(t)
≤

SN(t)
N(t)

N(t) − 1

N(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→1

SN(t)−1

N(t) − 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→E[W ]

≤
t

N(t)
≤

SN(t)
N(t)
²
→E[W ]
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By the sandwich theorem, we then have t
N(t) → E[W ] a.s., and

lim
t→∞

N(t)

t
=

1

E[W ]
a.s. (⋆)

This proves (i).
We will now show (ii), that is,

lim
t→∞

R(t)

t
= lim
t→∞E [

N(t)

t
] =

1

E[W ]
.

By Fatou's lemma,

lim inf
t→∞ E [

N(t)

t
] ≥ E [lim inf

t→∞
N(t)

t
] ,

=
1

E[W ]
(by (⋆)).

It is then enough to show that

lim sup
t→∞

E [
N(t)

t
] ≤

1

E[W ]
(⋆⋆)

because we would then have

1

E[W ]
≤ lim inf

t→∞ E [
N(t)

t
] ≤ lim sup

t→∞
E [

N(t)

t
] ≤

1

E[W ]
,

Ô⇒ lim
t→∞E [

N(t)

t
] =

1

E[W ]
(and therefore we have (ii)).

To show (⋆⋆), we �xe a > 0, and we de�ne a new renewal process:

Yn =

⎧⎪⎪
⎨
⎪⎪⎩

Wn if Wn ≤ a,

0 otherwise.

Therefore we have the renewal process

⎧⎪⎪
⎨
⎪⎪⎩

S̃0 = 0,

S̃n+1 = S̃n + Yn+1.

It is clear that Sn ≥ S̃n and N(t) ≤ Ñ(t) a.s., therefore

lim sup
t→∞

E [
N(t)

t
] ≤ lim sup

t→∞
E [

Ñ(t)

t
] .

79



However, by the previous lemma,

E[Ñ(t)] =
E[S̃Ñ(t)]

E[Y ]
,

which implies that

lim sup
t→∞

E [
N(t)

t
] ≤ lim sup

t→∞
1

t

1

E[Y ]
E[S̃Ñ(t)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤t+a

,

≤ lim sup
t→∞

t + a

t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

1

E[Y ]
,

=
1

E[Y ]
.

Therefore,

lim sup
t→∞

E [
N(t)

t
] ≤

1

E[Y (a)]
for all a > 0.

Since E[Y (a)] →a→∞ E[W ] (exercise), we have shown the inequality (⋆⋆). ◻

De�nition 4.4.4 A function g ∶ R+ → R+ is directly Riemann-integrable (g ∈ D) if:

(i) g is bounded on all �nite intervals, and

(ii) if, for n ∈N and �xed h, we de�ne

mn(h) = min{g(x) ∶ x ∈ [(n − 1)h,nh]},

Mn(h) = max{g(x) ∶ x ∈ [(n − 1)h,nh]},

then we have:

♣ ∑
∞
n=1mn(h) converges absolutely for all h,

♣ ∑
∞
n=1Mn(h) converges absolutely for all h,

♣ limh→0∑
∞
n=1(Mn(h) −mn(h)) = 0.

We will now give one of the most important renewal theorems:

Theorem 4.4.5 (Key Renewal Theorem) For a recurrent renewal process, if the
function g is directly Riemann-integrable,

lim
t→∞(R ∗ g)(t) =

1

E[W ]

∞

∫
0

g(u)du.

(Proof: see Theorem 2.8 in Chapter 9 of Çinlar's book.)
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Corollary 4.4.6 (Blackwell's Theorem)

lim
t→∞(R(t + h) −R(t)) =

h

E[W ]
.

Proof. See exercise Serie 12. ◻

Remark 4.4.7 In the chapter on Markov chains, we gave the following result without
proving it:
In an irreducible Markov chain with recurrent states:

lim
n→∞P(Xn = j ∣X0 = j) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if the states are null recurrent,

πj > 0 if the states are positive recurrent.

In fact, this is a consequence of Blackwell's Theorem: in the Markov chain {Xn}, if we
start from state j, the intervals of time between two transitions through state j are i.i.d.:

Therefore, we have a recurrent renewal process {Sn ∶ n ≥ 0}, where Sn is the time of the
nth visit to state j,

⎧⎪⎪
⎨
⎪⎪⎩

S0 = 0,

Sn+1 = Sn +Wn+1,

where the Wi are i.i.d. and have the same distribution as the �rst return time Tj given
that the chain starts in j (E[W ] = E[Tj ∣X0 = j], see chapter on Markov chains).
For t ∈N, we consider the renewal function of this renewal process:

R(t) −R(t − 1) = E[N(t) −N(t − 1)],

= E[number of passages in j between t − 1 and t],

= E[1{X(t)=j}] (discrete time).
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Therefore, by Blackwell's Theorem,

lim
t→∞P(Xt = j ∣X0 = j) = lim

t→∞(R(t) −R(t − 1)),

=
1

E[W ]

=
1

E[Tj ∣X0 = j]
,

and consequently,

⎧⎪⎪
⎨
⎪⎪⎩

E[W ] = +∞⇒ lim = 0⇒ null recurrent null states,

E[W ] < ∞⇒ lim > 0⇒ positive recurrent states.

4.4.2 Survival of a renewal process

De�nition 4.4.8 The survival of a recurrent renewal process at time t is the random
variable

Zt = SN(t) − t.

(Recall that SN(t) is the time of the �rst renewal after time t.)

We will study the asymptotic distribution of Zt as t →∞. Before doing so, we study the
distribution of Zt for any �nite t:

Theorem 4.4.9

P(Zt > x) =

t

∫
0

P(W > t − u + x)dR(u).

Proof. For any �xed t, we write f(t, x) = P(Zt > x). By the usual renewal conditioning
argument, we have

f(t, x) =

∞

∫
0

P(Zt > x ∣ S1 = u)dF (u).
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� If u > t:

Then SN(t) = S1 = u⇒ Zt = u − t, and

P(Zt > x ∣ S1 = u) = 1{u−t>x}.

� If u ≤ t: we reset the clock, and

P(Zt > x ∣ S1 = u) = P(Zt−u > x) = f(t − u,x).

Therefore,

f(t, x) =

∞

∫
t

1{u≥t+x} dF (u) +

t

∫
0

f(t − u,x)dF (u),

= P(W > t + x) + (F ∗ f(⋅, x))(t).

We have a renewal equation with g(t, x) = P(W > t + x), and therefore

f(t, x) = (R ∗ g(⋅, x))(t),

=

t

∫
0

g(t − u,x)dR(u).

◻

Proposition 4.4.10 (Asymptotic survival of a recurrent renewal process) If

V (x) ∶= lim
t→∞P(Zt ≤ x),

we have

V (x) =
1

E[W ]

x

∫
0

(1 − F (u))du.
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Note that this means that the density of the asymptotic survival is given by (1 −
F (x))/E[W ].

Proof. With g(t, x) = P(W > t + x) = 1 − F (t + x), by the previous theorem,

lim
t→∞P(Zt > x) = lim

t→∞(R ∗ g)(t),

=
1

E[W ]

∞

∫
0

g(u,x)du, (Key Renewal Theorem)

=
1

E[W ]

∞

∫
x

(1 − F (u))du.

This implies

V (x) = 1 − lim
t→∞P(Zt > x)

=
1

E[W ]

⎛

⎝
E[W ] −

∞

∫
x

(1 − F (u))du
⎞

⎠

=
1

E[W ]

⎛

⎝

∞

∫
0

(1 − F (u))du −

∞

∫
x

(1 − F (u))du
⎞

⎠
,

because E[W ] = ∫
∞

0 P(W > u)du. ◻

4.5 General renewal processes

De�nition 4.5.1 A general renewal process (also called delayed renewal process) is a
process {Ŝn ∶ n ∈N} such that

Ŝn+1 = Ŝn +Wn+1 for all n,

where:

� W1,W2, . . . are non-negative i.i.d. random variables with distribution function F (⋅),

� Ŝ0 is a non-negative random variable with distribution function G(⋅), independent
of the Wi.

It is therefore a renewal process, but one for which the �rst renewal Ŝ0 doesn't necessarily
come at time 0, but after a random time given by the distribution function G(⋅). There
are no new tools needed. In handling a general renewal process, �rst we condition the
event in question on the time Ŝ0 of �rst renewal, and then we use the fact that at time
Ŝ0 there starts an ordinary renewal process.
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Ŝn is still the time of the nth renewal. If N̂(t) is the number of renewals before t,

P(Ŝn ≤ t) = (G ∗ F (n))(t),
P(N̂(t) > k) = P(Ŝk ≤ t).

Indeed, for the �rst equality,

P(Ŝn ≤ t) = P(Ŝ0 +W1 + ⋅ ⋅ ⋅ +Wn ≤ t),

= (G ∗ F (n))(t)

(sum of independent random variables).

The renewal function takes the following form:

R̂(t) = E[N̂(t)],

= ∑
n≥0

(G ∗ F (n)(t)

= (G ∗R)(t).

4.6 Stationary processes

De�nition 4.6.1 Let {Sn ∶ n ∈ N} be a renewal process whose inter-renewal times Wi

have distribution function F (⋅). The stationary process {Ŝn ∶ n ∈ N} associated to {Sn}
is the general renewal process given by the Wi, for which the distribution of Ŝ0 is the
asymptotic survival distribution V (⋅) (G(x) = V (x)).

Intuitively, the stationary process corresponds to a renewal process that has been going
on for a long time before time t = 0. We will see that, as expected, the stationary process
veri�es properties which are only asymptotic for the associated renewal process.

Proposition 4.6.2 If {Ŝn} is a stationary process, then

(i) R̂(t) =
t

E[W ]
, and

(ii) P(Ẑt ≤ x) = V (x) for all t.
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Proof. (i)

R̂(t) = (V ∗R)(t) (see general renewal processes),

=

t

∫
0

V (t − u)dR(u),

=
1

E[W ]

t

∫
0

t−u

∫
0

(1 − F (v))dv dR(u),

=
1

E[W ]

t

∫
0

t

∫
u

(1 − F (s − u))dsdR(u),

=
1

E[W ]

t

∫
0

s

∫
0

(1 − F (s − u))dR(u)ds,

where the last equality is obtained by changing the way of integrating on the domain.
However,

s

∫
0

(1 − F (s − u))dR(u) = R(s) − F ∗R(s),

= 1 + F ∗R − F ∗R = 1.

This implies

R̂(t) =
1

E[W ]

t

∫
0

ds =
t

E[W ]
.

(ii) Let fx(t) = P(Ẑt > x). We have

fx(t) =

∞

∫
0

P(Ẑt > x ∣ Ŝ0 = u)dV (u).

� If u > t

Then Ẑt = u − t, so that
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P(Ẑt > x ∣ Ŝ0 = u) = 1{u>t+x}.

� If u ≤ t

We reset the clock to Ŝ0. If we start from Ŝ0, by independence, the stationary
process behaves afterwards like a normal renewal process, and therefore

P(Ẑt > x ∣ Ŝ0 = u) = P(Zt−u > x).

So, we have

fx(t) =

∞

∫
t+x

dV (u)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1−V (t+x)

+

t

∫
0

P(Zt−u > x)dV (u)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(⋆)

Here we do not have a renewal equation because (⋆) is not (V ∗ fx), and P(Zt−u > x) ≠
P(Ẑt−u > x) . . . . But we have already calculated P(Zt−u > x) in a previous section, and

P(Zt > x) = (R ∗ gx)(t),
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where gx(t) = 1 − F (x + t) = P(W > x + t). We therefore have

P(Ẑt > x) = 1 − V (t + x) +

t

∫
0

(R ∗ gx)(t − u)dV (u),

= 1 − V (t + x) + (V ∗R ∗ gx)(t),

= 1 − V (t + x) + (R̂ ∗ gx)(t),

= 1 − V (t + x) +
1

E[W ]

t

∫
0

gx(t − u)du, by (i),

= 1 − V (t + x) +
1

E[W ]

t

∫
0

(1 − F (x + t − u))du,

= 1 − V (t + x) +
1

E[W ]

x+t

∫
x

(1 − F (v))dv (v = x + t − u),

= 1 − V (t + x) + V (t + x) − V (x),

= 1 − V (x),

which shows that P(Ẑt ≤ x) = V (x). ◻

Example 4.6.3 The simplest stationary renewal process is the Poisson process. In this
case, the survival at time t, Zt, has exactly the same (exponential) distribution as the
inter-renewal times (exercise). This is actually the only renewal process satisfying this
property.
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