


Observations

Continuous time Markov Chains

Thomas Mountford

EPFL

April 12, 2021



Observations

Why Exponential

We will study stochastic processes indexed by continuous time
t ≥ 0, (Xt)≥0. We want that ror A an event depending on Xss ≥ t that

P(A|Xu 0 ≤ u ≤ t) = P(A|Xt = i) = Pi(At)

where At is the event A shifted leftwards by t temporally. That is if A is
based on Xt+u : u ≥ 0, then At is based on Xu : u ≥ 0. Let us consider a
Markov chain beginning at site i and let A = {Xu = i ≤ u ≤ t + s}. Let
τ = inf{u ≥ 0 Xu 6= i}. Then Pi(τ ≥ t + s|τ ≥ t) =

Pi(A|Xu = i 0 ≤ u ≤ t) = Pi(At) = Pi(τ ≥ s)

This gives
Pi(τ ≥ t + s) = Pi(τ ≥ t)Pi(τ ≥ s)
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This is the same as

log(Pi(τ ≥ t + s)) = log(Pi(τ ≥ t)) + log(Pi(τ ≥ s)).

which leads to the existence of a constant (depending on i , qi so that

∀t > 0 log(Pi(τ ≥ t)) = −qi t

That is, under Pi , τ is Exp(qi). This is with slight abuse of notation: qi
could be both 0 or ∞.
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Exponentials: A review.

If W is Exp(λ), then

• E (W ) = 1
λ

• density of W is λe−λx on x > 0.

• P(W ∈ (t, t + dt|W > t) = λdt + o(dt) Equally W − t
D
= W given

W > t.

The last property is called the memoryless property

Theorem
Let I be a countable set and for k ∈ I let Sk be independent Exp(qk) with∑

j qj <∞ random variables. If S = infk Sk , then
(i) S is achieved by a single Sk

(ii) P(S = Sk) = qk
q

where q =
∑

j qj
(iii) S is Exp(q) and
(iv) r.v. K on I defined by K = k iff S = Sk is independent of S.
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Proof
Let Ak be the even that Sk > Sj∀j 6= k . We integrate over the density for
Sk to obtain

P(Ak) =

∫ ∞
0

qke
−qk tP(Ak |Sk = t)dt

=

∫ ∞
0

qke
−qk t

∏
j 6=k

e−qj tdt =

=

∫ ∞
0

qk
∏
j

e−qj tdt =
qk
q

Note that as
∑

k
qk
q

= 1 all other possibilities have probability zero. It
remains to give the distribution of S and show independence of K . This
amounts to showing that ∀t > 0,

P(K = k , S > t) = P(K = k)P(S > t) =
qk
q
P(S > t) =

qk
q
e−qt

But S > t is exactly the event Sj > t for each j which has probability
e−qt . But given that this occurs the Sj − tare all independent Exp(qj) and
so P(K = k |S > t) is qk

q
by the first part
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Explosions

Theorem
Let Skk ≥ 1 be independent Exp(λk) r.v.s.
If
∑

k
1
λk
<∞, then

∑
Sk <∞

If
∑

k
1
λk

=∞, then
∑

Sk =∞ a.s
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Poisson processes

In the book a Poisson process is a Markov process on N . It is derived
from a given sequence of i.i.d. Exp(λ) random variables Sk . The
parameter λ is calledthe rate of the process. Typically (but not always)
the process starts from 0. If X0 = i , then for all t ≥ 0,

Xt = i + sup{k : S1 + S2 · · ·+ Sk ≤ t.}

Note that a Poisson process starting at i is just a Poisson process starting
at 0 with i added to it.

Theorem
For (Xs)s≥0 and t > 0, given Xu 0 ≤ u ≤ t,

(Ys)s≥0 ≡ (Xt+s)s≥0

is a rate λ Poisson process starting at Xt .
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Proof

We suppose (only to fix notation) that X0 = 0 and that X (t) = i . Given
Xu0 ≤ u ≤ t, we know the values of S1, S2, · · · Si and that Si+1 > t. The
variables Sk : k > i + 1 are independent of Xu0 ≤ u ≤ t. Let is write for
k ≥ 1

• S̃k = Sk+i for k > 1

• S̃1 = Si+1 − t

Then we have that conditional upon Xu 0 ≤ u ≤ t the variables S̃ are
i.i.d. Exp(λ) and

Xt+r = i + sup{k : S̃1 + S̃2 · · ·+ S̃k ≤ r
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We will see that it is typically hard to calculate for a Markov chain
Pij(t) ≡ P(Xt = j |X0 = i). However the Poisson process is special in that
this is doable. We need only treat i = 0. The event that Xt < j is simply
the event that

S1 + S2 · · ·+ Sj > t

for Si i.i.d. Exp(λ). As is well known (and easily shown) the law of
S1 + S2 · · ·+ Sj is a Gamma distribution with parameter j and λ. So r.v.
S1 + S2 · · ·+ Sj has density

1

(j − 1)!
λjs j−1e−λs

So P(S1 + S2 · · ·+ Sj > t) =
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∫ ∞
t

1

(j − 1)!
λjs j−1e−λsds.

This via a succession of integration by parts becomes

e−λt + λte−λt · · ·+ 1

(j − 1)!
λj−1t j−1e−λt
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So P0j(t) = P(X (t) = j) = P(S1 + S2 · · ·+ Sj + SJ+1 > t) -
P(S1 + S2 · · ·+ Sj > t) =

λjt j

j !
e−λt

Equally if X (0) = 0, then X (t) has the law of a Poisson(λt)
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3 EQUIVALENT CONDITIONS
We give three equivalent conditions for a cadlag process (Xt)t≥0 with
initial value 0 on the positive integers to be a rate λ Poisson process.

Theorem
For 0 < λ <∞, the following are the same
(i) (Xt)t≥0 is constructed via an .i.i.d sequence of Exp(λ) random
variables, as above.
(ii) (Xt)t≥0 has independent increments and as
h→ 0, P(Xt+h = Xt) = 1− λh + o(h) and
P(Xt+h = Xt + 1) = λh + o(h).
(iii) (Xt)t≥0 has stationary independent increments and the incremet of
each interval of length t is a Poisson(λt).

Here independent increments means that

∀n∀0 < t1 < t2 · · · < tn, (Xti − Xti−1
)

are independent. Stationary means that
∀s, t > 0,X (t + s)− X (t) = X (s)− X (0) in distribution.
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(i) is same as (iii)

In fact we already have (i)⇒ (iii) so it reamins to show that (iii) implies
(i). This is immediate, modulo a measure theory fact for cadlag processes.
Given property (iii), we know that for each n and each 0 < t1 < t2 · · · < tn

P (Xt1 = i1,Xt2 = i2 · · ·Xtn = in) =
n∏

j=1

P(Poisson(λ(tj − tj−1) = ij − ij−1)

This implies that our (iii) process has the same finite dimensional
distributions as (i). A basic result in measure theory for cadlag processes
asserts that therefore the laws ogf (iii) and (i) are identical.
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(ii) is same as (iii)

Firstly (iii) implies (ii): (iii) ensures independent increments and as h
becomes small the probabilities for Xt+h = Xt) or Xt+h = Xt) + 1 are
simply properties of Poisson(λh) random variables. It reamins to show
that (ii) implies that the increments are Poisson. Fix ti−1 < ti and divide
up [ti−1, ti ] into n equal intervals of length (ti − ti−1)/n. As n becomes
large h = (ti − ti−1)/n becomes small. By independent increments,
theevents X (ti−1 + i(ti − ti−1)/n) 6= X (ti−1 + (i − 1)(ti − ti−1)/n)i ≥ 1
are independent and have probability λh + o(h). So we have by usual
probability arguement

number i : X (ti−1 + i(ti − ti−1)/n) 6= X (ti−1 + (i − 1)(ti − ti−1)/n)

converges in distribution to a Poisson ( λ(ti − ti−1)). But the second
condition implies that with probability tending to one as n tends to infinity,
the above random variable is equal to X (ti)− X (ti−1). We are done.
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Three Theorems

Theorem
For 0 < λ1, λ2 <∞, let (Xi(t))t≥0 be independent Poisson processes of
rates λ1 and λ2 respectively. Then
• X (t) = X1(t) + X2(t) is a rate λ1 + λ2 Poisson process
• Given X (u)0 ≤ u ≤ t (that is knowing X (t)− X (0) = n and the

jump times 0 < t1 < t2 · · · tn < t, each jump time belongs to Xi with
probability λi

λ1+λ2
independently of the others.
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Three Theorems

Theorem
Let (X (t))t≥0 be a rate λ Poisson process and let Ij : j ≥ 1 be i.i.d.
Bernoulli (p) random variables independent of X (.) If 0 < t1 < t2 · · · are
the jump times of X and Y , Z are constructed via X and the Ij : j ≥ 1 by
Y (t) = |{j : tj ≤ t and Ij = 1}| and
Z (t) = |{j : tj ≤ t and Ij = 0}|, then
Y and Z are independent Poisson processes of rates λp and λ(1− p)
respectively.
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Three Theorems

Theorem
For (X (t))t≥0a rate λ Poisson process starting at 0 , then given that
X (t) = n, the jump times of X on (0, t) are i.i.d. U([0, 1]) random
variables ordered.
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