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Why Exponential
We will study stochastic processes indexed by continuous time
t > 0,(X:)>0. We want that ror A an event depending on X;s > t that
PAX, 0<u<t)=PAX: =1i)=Pi(A)

where A; is the event A shifted leftwards by t temporally. That is if A is
based on X;,,: u >0, then A; is based on X, : u > 0. Let us consider a
Markov chain beginning at site i and let A= {X, =i <u<t+s}. Let
T=inf{lu>0X,#i}. ThenPi(r >t+s|t>1t)=

P,(A|Xu =i0<u< t) = ]P),(At) = ]P),'(T > S)

This gives
P,‘(T Z t+ S) = P;(T Z t)Pi(T Z S)
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This is the same as
log(Pi(T > t +5)) = log(Pi(T > t)) + log(Pi(T > s)).
which leads to the existence of a constant (depending on i, g; so that
vVt > 0 log(Pi(r > t)) = —q;t

That is, under IP;, 7 is Exp(q;). This is with slight abuse of notation: g;
could be both 0 or co.
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Exponentials: A review.

If Wis Exp(A), then

)1
* E(W)=3
® density of W is Ae ™ on x > 0.

o P(W € (t,t+dt|W > t) = \dt + o(dt) Equally W — t 2 W given
W > t.

The last property is called the memoryless property

Theorem

Let | be a countable set and for k € | let S be independent Exp(qx) with
ZJ. q; < oo random variables. If S = inf, Sy, then

(i) S is achieved by a single Sy

(ii) P(S = S¢) = % where g =3, q;

(i) S is Exp(q) and

(iv) rv. K on | defined by K = k iff S = Sy is independent of S.
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Proof
Let Ax be the even that S, > S5;Vj # k. We integrate over the density for
S, to obtain

P(A) = / Gk P(Adl Sk = t)dt
0

oo
- / gee [ [e7"dt =
0

j#k

0 i q

Note that as >, %k = 1 all other possibilities have probability zero. It
remains to give the distribution of S and show independence of K. This

amounts to showing that Vt > 0,

P(K=kS>t)=P(K=kP(S>1t)= %P(S > t) = %e—qf

But S > t is exactly the event S; > t for each j which has probability
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Explosions

Theorem

Let Syk > 1 be independent Exp(Ai) r.v.s.
/ka)\_lk < 00, then " 5, < o0

If 4 % = 00, then 35 S = 00 a.s
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Poisson processes

In the book a Poisson process is a Markov process on N. It is derived
from a given sequence of i.i.d. Exp(A) random variables S;. The
parameter )\ is calledthe rate of the process. Typically (but not always)
the process starts from 0. If Xy =/, then for all t > 0,

Xt:f+SUp{k251+52"'+5k§t.}

Note that a Poisson process starting at i/ is just a Poisson process starting
at 0 with / added to it.

Theorem
For (Xs)s>0 and t > 0, given X, 0 < u < t,

( YS)SZO = (Xt—'rs)sZO

is a rate A Poisson process starting at X;.
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Proof

We suppose (only to fix notation) that Xo = 0 and that X(t) = /. Given
X,0 < u <t, we know the values of 51, 5;,,---5; and that 5,1 > t. The
variables S, : k > i + 1 are independent of X,0 < u < t. Let is write for
k>1

'gk:5k+;fork>l
°* S =St

Then we have that conditional upon X, 0 < u < t the variables S are
i.i.d. Exp(A) and

Xt+,:i+sup{k:§1+§2---+§k§r
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We will see that it is typically hard to calculate for a Markov chain
P;i(t) = P(X; = j|Xo = i). However the Poisson process is special in that
this is doable. We need only treat i = 0. The event that X; < j is simply
the event that

51+52"‘+5j> t

for S; i.i.d. Exp(A). As is well known (and easily shown) the law of
S1+5,---+ S is a Gamma distribution with parameter j and A. So r.v.
S51+ S ---+ 5 has density

1
G-
So P(Sy+ S+ S > t) =

)\‘[S_[flef)\s
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o0 1 ..
= N le M,
| oo

This via a succession of integration by parts becomes

1 o
e My Ate M N e

G-t
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So Pyi(t) = P(X(t)=j)=P(S1+ S+ S5+ Sj1>t) -
P(Si+S+5>t)=
)\JtJe At
_/'

Equally if X(0) = 0, then X(t) has the law of a Poisson(\t)
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3 EQUIVALENT CONDITIONS

We give three equivalent conditions for a cadlag process (X;)>o with
initial value 0 on the positive integers to be a rate \ Poisson process.

Theorem

For 0 < A\ < o0, the following are the same

(i) (X¢)t>0 is constructed via an .i.i.d sequence of Exp(\) random
variables, as above.

(ii) (Xt)t>0 has independent increments and as

h— 0, P(Xexn = X:) =1— Ah+ o(h) and

P(Xern = X + 1) = Ah + o(h).

(iii) (X¢)e>0 has stationary independent increments and the incremet of
each interval of length t is a Poisson(At).

Here independent increments means that
VnV0 <ty < tp- -+ < ty, (X — Xt_,)

are independent. Stationary means that
Vs, t >0, X(t+s) — X(t) = X(s) — X(0) in distribution.
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(i) is same as (iii)

In fact we already have (i) = (iii) so it reamins to show that (iii) implies
(i). This is immediate, modulo a measure theory fact for cadlag processes.
Given property (iii), we know that for each nandeach 0 < t; < t,--- < t,

P(Xey =i1,Xe, =+ Xy, = In) = H P(POisson()‘(tj - tjfl) =i — ij*l)
=1

This implies that our (iii) process has the same finite dimensional
distributions as (i). A basic result in measure theory for cadlag processes
asserts that therefore the laws ogf (iii) and (i) are identical.
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(i) is same as (iii)

Firstly (iii) implies (ii): (iii) ensures independent increments and as h
becomes small the probabilities for X, = X;) or Xepp = X;) + 1 are
simply properties of Poisson(\h) random variables. It reamins to show
that (ii) implies that the increments are Poisson. Fix t;_; < t; and divide
up [ti_1, t;] into n equal intervals of length (t; — t;_1)/n. As n becomes
large h = (t; — t;_1)/n becomes small. By independent increments,
theevents X(t,',l -+ i(t; — t,-,l)/n) # X(t,',l + (I — 1)(1’,‘ — t,-,l)/n)i >1
are independent and have probability Ah + o(h). So we have by usual
probability arguement

number / : X(t;_1 + i(t; — ti_1)/n) # X(ti_1 + (i — 1)(t; — t;i_1)/n)

converges in distribution to a Poisson ( A(t; — t;_1)). But the second
condition implies that with probability tending to one as n tends to infinity,
the above random variable is equal to X(t;) — X(t;_1). We are done.
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Three Theorems

Theorem
For 0 < Ap, Ay < 00, let (Xi(t))r>0 be independent Poisson processes of
rates A1 and X\, respectively. Then
o X(t) = Xi(t) + Xo(t) is a rate Ay + Ao Poisson process
e Given X(u)0 < u < t (that is knowing X(t) — X(0) = n and the
Jjump times 0 < t; < tp--- t, < t, each jump time belongs to X; with

probability /\1);"/\2 independently of the others.
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Three Theorems

Theorem

Let (X(t))e>0 be a rate A Poisson process and let I; : j > 1 be i.i.d.
Bernoulli (p) random variables independent of X(.) If0 < t; < tp--- are
the jump times of X and Y, Z are constructed via X and the l; : j > 1 by
Y(t)=|{j:t; <tandl =1} and

Z(t)=1|{j: t; <t and ;= 0}|, then

Y and Z are independent Poisson processes of rates Ap and (1 — p)
respectively.
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Three Theorems

Theorem

For (X(t)):>0a rate A Poisson process starting at 0 , then given that
X(t) = n, the jump times of X on (0, t) are i.i.d. U([0,1]) random
variables ordered.
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