
Exercise Set 7 April 21, 2021

Exercise 1. A fair die is thrown repeatedly. Let Xn denote the sum of the first n throws.
Find

lim
n→∞

P(Xn is a multiple of 13).

Exercise 2. In each of the following cases determine whether the stochastic matrix P , which
you may assume is irreducible, is reversible:

(a) (
1− p p
q 1− q

)

(b)  0 p 1− p
1− p 0 p
p 1− p 0


(c) I = {0, 1, · · · , N} and pij = 0 if |j − i| ≥ 2

(d) I = {0, 1, 2, · · · } and p01 = 1, pi,i+1 = p, pi,i−1 = 1− p for i ≥ 1

(e) pij = pji for all i, j in the state space S.

Exercise 3. Two particles X and Y perform independent random walks on the graph shown
in the diagram. So for example, a particle at A jumps to B,C or D with equal probability 1

3 .
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Find the probability that X and Y ever meet at a vertex in the following cases:

(a) X starts at A and Y starts at B

(b) X starts at A and Y starts at E.

For I = B,D, let MI denote the expected time, when both X and Y start at I, until they
are once again both at I. Show that 9MD = 16MB.

Exercise 4. A professor has N umbrellas. He walks to the office in the morning and walks
home in the evening. If it is raining he likes to carry an umbrella and if it is fine he does
not. Suppose that it rains on each journey with probability p, independently of past weather.
What is the long-run proportion of journeys on which the professor gets wet?

Exercise 5 (Countable exponential races). Let I be a countable space and let Tk, k ∈ I,
be independent exponential random variables with Tk ∼ Exp(qk) with 0 < q :=

∑
k∈I qk <∞.

Set T = infkTk. Let K be the random variable with values in I that is equal to k whenever
T = Tk and Tj > Tk for j 6= k. Show that T and K are independent with T ∼ Exp(q) and
P(K = k) = qk/q. Deduce that P(K = k for some k) = 1.

Exercise 6 (General construction of Markov processes). Let us consider a countable
state space E and an array of positive numbers (λi,j)i,j∈E;i 6=j with

∑
j∈E;j 6=i λi,j < ∞ for all

i ∈ E. We recursively define a continuous time stochastic process (X(t))t≥0 on E starting at
i0 ∈ E as follows:

(i). Define T0 = 0 and set X(T0) = i0 ∈ E;

(ii). For n ∈ N: suppose we know Tn−1 and X(Tn−1) = in−1. Independently of the
previous steps, generate independent exponential random variables E1, E2, . . . with
Ej ∼ Exp(λin−1,j). Define Tn = Tn−1 + infj∈NEj and in = argminj∈EEj , that is,
the (random) index of the exponential variable that is the smallest. Then put

X(t) =
{
in−1 for t ∈ [Tn−1, Tn)
in for t = Tn.

a) What is the distribution of the time between the jumps of the process (X(t))t≥0?

b) Let P̂ij be the probability

P̂ij = P(X(Tn) = j | X(Tn−1 = i)).

Find the matrix P̂ = (P̂ij)i,j∈E .

c) Show that (X(t))t≥0 is a homogeneous Markov process.

Definition (The Q-matrix).
One way of thinking about the evolution of the Markov process (X(t))t≥0 is in terms of its
Q-matrix, which is known as the generator of the process. A matrix Q = (qij)i,j∈E is a
Q-matrix if it satisfies

(i). −∞ < qii ≤ 0 for all i ∈ E;
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(ii). 0 ≤ qij <∞ for all i 6= j;

(iii).
∑
j∈E qij = 0 for all i ∈ E.

The Q-matrix of the Markov process (X(t))t≥0 as constructed above is given by qii =
−
∑
j 6=i λi,j for i ∈ E, and qij = λij for j 6= i.

Exercise 7. In a population of size N , a rumor is begun by a single individual who tells
it to everyone he meets; they in turn pass the rumor to everyone they meet, once a person
has passed the rumor to somebody he exits the system. Assume that each individual meets
another randomly with exponential rate 1/N . Let X(t), t ≥ 0 be the number in E =
{1, . . . , N} of people who know the rumor at time t.

a) Draw a graph to visualize the chain. Write down the Q-matrix of the chain.

b) How long does it take in average until everyone knows the rumor if X(0) = 1?

Exercise 8 (Poisson process). For i ∈ N, let Ei be independent copies of an exponential
random variable of parameter λ. We let Tn := E1 + · · ·+ En and

N(t) :=
∞∑
n=1

1{Tn≤t}, t ≥ 0.

The process (N(t))t≥0 is called a homogeneous Poisson process with intensity λ. Let T0 = 0
and we say that T1, T2, T3, . . . are the successive arrival times of the Poisson process, and En
the intervals Tn − Tn−1.

(i). Show that Tn follows an Erlang law with parameters n and λ having density:

fTn(t) = λn

(n− 1)! t
n−1 e−λt 1{t>0}.

(ii). Show that, ∀t > 0, N(t) follows a Poisson law with parameter λt, i.e.

P(N(t) = k) = e−λt
(λt)k

k! , k = 0, 1, 2, . . . .
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