
Solutions 7 April 21, 2021

Exercise 1. A fair die is thrown repeatedly. Let Xn denote the sum of the first n throws.
Find

lim
n→∞

P(Xn is a multiple of 13).

Solution. Let [i] be the set of numbers for the which the remainder of their division by 13 is
equal to i, i = 0, · · · 12. If Xn ∈ [i], Xn has equal probabilities to belong to [i+ 1], · · · , [i+ 6]
where [13] = [0], [14] = [1], · · · . So the transition matrix corresponding to Xn and the states
[0], · · · [12] is given by

P =
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
This matrix is doubly stochastic and so it has a uniform stationary distribution π = ( 1

13 , · · · ,
1
13).

So we get
lim
n→∞

P(Xn is a multiple of 13) = lim
n→∞

P(Xn ∈ [0]) = π[0] = 1
13 .

Exercise 2. In each of the following cases determine whether the stochastic matrix P , which
you may assume is irreducible, is reversible:

(a) (
1− p p
q 1− q

)

(b)  0 p 1− p
1− p 0 p
p 1− p 0


(c) I = {0, 1, · · · , N} and pij = 0 if |j − i| ≥ 2

(d) I = {0, 1, 2, · · · } and p01 = 1, pi,i+1 = p, pi,i−1 = 1− p for i ≥ 1

(e) pij = pji for all i, j in the state space S.
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Solution. (a) Since the matrix is irreducible, we have that p, q > 0. The chain is reversible
if and only if it has a stationary distribution π = (π1, π2) verifying the detailed balance
equations π1P12 = π2P21. Since π1+π2 = 1, we get the solution π1 = 1

1+ p
q

and π2 = p/q
1+p/q .

(b) We need to find π verifying

π1p = π2(1− p), π1(1− p) = π3p, π2p = π3(1− p), π1 + π2 + π3 = 1.

We have a solution for this system of equations given by

π1 = 1
1 + p/(1− p) + (1− p) + p2/(1− p) , π2 = p/(1− p)

1 + p/(1− p) + (1− p) + p2/(1− p) ,

π3 = 1− p+ p2/(1− p)
1 + p/(1− p) + (1− p) + p2/(1− p) ,

and so the chain is reversible whenever p = 1/2.

(c) Write for any i ≤ N qi = Pi,i−1, ri = Pi,i, pi = Pi,i+1. The chain is again reversible since
we can find a solution for the system of equations

πipi = πi+1qi+1 =⇒ πi+1 = π0

∏i
j=0 pj

πi+1
j=1qj

.

(d) The detailed balance equations in this case are given by

π0 = (1− p)π1, πip = (1− p)πi+1, i ≥ 1.

From this we get πi =
(

p
1−p

)i
. We need that

∑
j πj = 1 so we need that πi → 0 as i→∞.

We deduce that we have a solution for the system (and thus the chain is reversible) as
long as p < 1− p which is equivalent to p < 1

2 .

(e) In this case the matrix is doubly stochastic and so it has a uniform stationary distribution
(πi = πj ∀i, j ∈ S). The detailed balance equations are clearly satisfied in this case and
so the chain is reversible.

Exercise 3. Two particles X and Y perform independent random walks on the graph shown
in the diagram. So for example, a particle at A jumps to B,C or D with equal probability 1

3 .
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Find the probability that X and Y ever meet at a vertex in the following cases:

(a) X starts at A and Y starts at B

(b) X starts at A and Y starts at E.

For I = B,D, let MI denote the expected time, when both X and Y start at I, until they
are once again both at I. Show that 9MD = 16MB.

Solution. (a) From the graph, it is easy to see that both A and B have period 2, that means,
starting from A (resp. B), we can only return to A (resp. B) in an even number of steps.
Suppose that X and Y meet at C without loss of generality, after k steps. Then there’s
a path of length k + 1 starting from A and returning to A, and a path of length k + 2
starting from B and returning to B. Since k+ 1 and k+ 2 cannot be both even numbers,
this is a contradiction with the 2-periodicity of A and B. We deduce that X and Y will
never meet in this case and so the probability of them meeting is 0.

(b) Writing G for the graph in the picture, we let G′ := G×G having vertices v1× v2 for any
vertices v1, v2 ∈ G and (u1, u2) is connected to (v1, v2) if there’s an edge between u1 and
v1 as well as between u2 and v2 in G.
So we can see the random walk as one particle (X,Y ) moving on the graph G′. The
communication class of (A,E) is irreducible (by definition) and finite, hence the random
walk will reach all the states this class with probability 1. In particular, (C,C) belongs
to this class and so with probability 1 the two particles will meet at point C.

As seen in the previous exercise sheet, the stationary distribution of the random walk on the
graph is of the form πi = di∑

j
dj

for a vertex i in the graph where di indicates the degree
(number of neighbors) of i. In our case, (D,D) has degree 9 (since D has degree 3) and
(B,B) has degree 16 since B has degree 4.
Write G′′ for the subgraph consisting of the communication class of (D,D) (that contains
also (B,B)). So starting from (D,D), we need on average

MD = 1
π(D,D)

=
∑
j∈G′′ dj

9

3



to return to (D,D). Similarly, the expected time to return to (B,B) starting from (B,B) is
given by

MB = 1
π(B,B)

=
∑
j∈G′′ dj

16 .

So we deduce that 9MD = 16MB.

Exercise 4. A professor has N umbrellas. He walks to the office in the morning and walks
home in the evening. If it is raining he likes to carry an umbrella and if it is fine he does
not. Suppose that it rains on each journey with probability p, independently of past weather.
What is the long-run proportion of journeys on which the professor gets wet?

Solution. We start by writing the transition matrix corresponding to the number of umbrellas
at home after one day (2 journeys).
If he has 0 umbrellas at home, the probability that it stays 0 after 1 day is the probability
that it doesn’t rain on his way home from work, that is 1−p, otherwise he wil have 1 umbrella
at home at the end of the day (with probability p).
Fix i ∈ {1, · · · , N − 1} and suppose that he has i umbrellas at home at the begining of the
day. The probability that the number of umbrellas becomes i− 1 at the end of the day is the
probabiity that it rains on his way to the office and it doesn’t rain on his way home, that is
p(1− p). So the transition matrix on states 0, · · · , N is given by

P =


1− p p 0 0 0 · · ·
p(1− p) p2 + (1− p)2 (1− p)p 0 0 · · ·

0 p(1− p) p2 + (1− p)2 (1− p)p 0 · · ·
... . . . . . . . . . . . . . . .
0 0 0 0 p(1− p) p2 + (1− p)


We need to find the stationary distribution of the chain verifying πP = π. This gives us the
following sstem of equations

π0(1− p) + π1p(1− p) = π0

π0 + π1(p2 + (1− p)2) + π2p(1− p) = π1

πi(1− p)p+ πi+1(p2 + (1− p)2) + πi+2p(1− p) = πi+1, 1 ≤ i ≤ N − 1
πN−1p(1− p) + πN (p2 + (1− p)) = πN .

We get from the first equation that π1 = π0
1−p . Using this, we get from the second equation

that π2 = π1. Using this, we get finally that π1 = π2 = · · · = πN = π0
1−p . Since

∑N
j=0 πj = 1,

we finally get
π0 = 1

1 + N
1−p

, πi = 1
1− p+N

, 1 ≤ i ≤ N.

If the professor has 0 umbrellas at home, he will get wet if it rains on his way to the office,
which has probability p. If he has N umbrellas at home, he will get wet if it doesn’t rain
on his way to the office and it rains on the way back home (this happens with probability
(1 − p)p). So on the long run, the proportion of journeys on which the professor gets wet is
given by

π0p+ πNp(1− p) = 2p
1 + N

1−p
.
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Exercise 5 (Countable exponential races). Let I be a countable space and let Tk, k ∈ I,
be independent exponential random variables with Tk ∼ Exp(qk) with 0 < q :=

∑
k∈I qk <∞.

Set T = infk Tk. Let K be the random variable with values in I that is equal to k whenever
T = Tk and Tj > Tk for j 6= k. Show that T and K are independent with T ∼ Exp(q) and
P(K = k) = qk/q. Deduce that P(K = k for some k) = 1.

Solution. We have K = k if Tk < Tj for all j 6= k. By the total probability formula, we have

P(K = k and T ≥ t) =P(Tk ≥ t and Tj > Tk for all j 6= k)

=
∫ ∞
t

qke
−qks P(Tj > s for all j 6= k)ds

=
∫ ∞
t

qke
−qks

∏
j 6=k

e−qjsds

=
∫ ∞
t

qke
−qsds = qk

q
e−qt.

Hence we have that P(K = k for some k) = 1 and T andK have the claimed joint distribution.

Exercise 6 (General construction of Markov processes). Let us consider a countable
state space E and an array of positive numbers (λi,j)i,j∈E;i 6=j with

∑
j∈E;j 6=i λi,j < ∞ for all

i ∈ E. We recursively define a continuous time stochastic process (X(t))t≥0 on E starting at
i0 ∈ E as follows:

(i). Define T0 = 0 and set X(T0) = i0 ∈ E;

(ii). For n ∈ N: suppose we know Tn−1 and X(Tn−1) = in−1. Independently of the
previous steps, generate independent exponential random variables E1, E2, . . . with
Ej ∼ Exp(λin−1,j). Define Tn = Tn−1 + infj∈NEj and in = argminj∈EEj , that is,
the (random) index of the exponential variable that is the smallest. Then put

X(t) =
{
in−1 for t ∈ [Tn−1, Tn)
in for t = Tn.

a) What is the distribution of the time between the jumps of the process (X(t))t≥0?

b) Let P̂ij be the probability

P̂ij = P(X(Tn) = j | X(Tn−1 = i)).

Find the matrix P̂ = (P̂ij)i,j∈E .

c) Show that (X(t))t≥0 is a homogeneous Markov process.

Solution. a) We are looking for the distribution of the waiting time between two jumps,
i.e. the distribution of Sn = Tn − Tn−1, by definition this is defined as

Sn = inf
j∈N

Ej .

According to exercise 1, we have that Sn ∼ Exp(
∑∞
j=1 λin−1,j).
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b) We know by a) that the waiting time between two jumps of the process is a n exponential
random variable arising as the minimum of an countable exponential race. The first
exercise gives us additionally that

P̂ij = P(X(Tn) = j | X(Tn−1) = i) = λi,j∑
k 6=i λi,k

.

c) We have to show that (X(t))t≥0 is a Markov process, that is

P(Xt = j | {Xr, r ≤ s,Xs = i}) = P(Xt = j | Xs = i).

Since we condition on {Xr, r ≤ s,Xs = i}, there exists a time m (depending on ω) such
that {Xr, r ≤ s,Xs = i} = {(Xr)r<s, Tm−1 < s < Tm and Xs = i}. First, note that by
construction the process before time Tm−1 is irrelevant for determining this probability:

P(Xt = j | {Xr, r ≤ s and Tm−1 < s < Tm and Xs = i})
= P(Xt = j | {Xr, Tm−1 ≤ r ≤ s and Tm > s and Xs = i}).

Then memorylessness property of the exponential random variables implies that for
Sm = Tm − Tm−1

Sm ∼ Sm − (s− Tm−1) ∼ Exp(
∞∑
j=1

λi,j),

i.e. knowing that the exponential rate exceeds s − Tm−1 is irrelevant for determining
the current transitions probabilities. Moreover, since XTm−1 = Xs by definition of Tm−1
and Tm, {Xs = i} is the only relevant information for the next evolution of the process
based on information contained in {Xr, Tm−1 ≤ r ≤ s and Tm > s and Xs = i}. Thus

P(Xt = j | {Xr, Tm−1 ≤ r ≤ s and Tm > s and Xs = i}) = P(Xt = j | Xs = i)

this finishes the proof.

Definition (The Q-matrix). One way of thinking about the evolution of the Markov process
(X(t))t≥0 is in terms of its Q-matrix, which is known as the generator of the process. A matrix
Q = (qij)i,j∈E is a Q-matrix if it satisfies

(i). −∞ < qii ≤ 0 for all i ∈ E;

(ii). 0 ≤ qij <∞ for all i 6= j;

(iii).
∑
j∈E qij = 0 for all i ∈ E.

The Q-matrix of the Markov process (X(t))t≥0 as constructed above is given by qii =
−
∑
j 6=i λi,j for i ∈ E, and qij = λij for j 6= i.

Exercise 7. In a population of size N , a rumor is begun by a single individual who tells
it to everyone he meets; they in turn pass the rumor to everyone they meet, once a person
has passed the rumor to somebody he exits the system. Assume that each individual meets
another randomly with exponential rate 1/N . Let X(t), t ≥ 0 be the number in E =
{1, . . . , N} of people who know the rumor at time t.
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a) Draw a graph to visualize the chain. Write down the Q-matrix of the chain.

b) How long does it take in average until everyone knows the rumor if X(0) = 1?

Solution. a) The Q-matrix has the form


−N−1

N
N−1
N 0 · · · 0

0 −N−2
N

N−2
N · · · 0

...
...

... . . . 0
0 0 0 − 1

N
1
N

0 0 0 0 0

 .

b) We need to compute E1(TN ) where TN = inf{t : X(TN ) = N}. Remark that TN is just
a sum of exponential random variables

TN =
N−1∑
i=1

Ei,

where Ei ∼ Exp(N−iN ), So that

E1(TN ) =
N−1∑
i=1

N

N − i
≈ N logN.

You could notice that this is exactly the continuous time version of the coupon’s collector
model.

Exercise 8. For i ∈ N, let Ei be independent copies of an exponential random variable of
parameter λ. We let Tn := E1 + · · ·+ En and

N(t) :=
∞∑
n=1

1{Tn≤t}, t ≥ 0.

The process (N(t))t≥0 is called a homogeneous Poisson process with intensity λ. Let T0 = 0
and we say that T1, T2, T3, . . . are the successive arrival times of the Poisson process, and En
the intervals Tn − Tn−1.

(i). Show that Tn follows an Erlang law with parameters n and λ having density:

fTn(t) = λn

(n− 1)! t
n−1 e−λt 1{t>0}.

(ii). Show that, ∀t > 0, N(t) follows a Poisson law with parameter λt, i.e.

P(N(t) = k) = e−λt
(λt)k

k! , k = 0, 1, 2, . . . .
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Solution. (i). We proceed by induction on n. For n = 1, T1 follows an exponential law
with parameter λ, which is equivalent to an Erlang law of parameter 1 and λ. Suppose
that Tn ∼ Erlang(n, λ). Remark that En+1 ∼ Exp(λ) is independent of Tn. For t > 0,
we have

FTn+1(t) = P(Tn+1 ≤ t) = P(Tn + En+1 ≤ t) =
∫ ∞

0
P(Tn + En+1 ≤ t | Tn = u)fTn(u)du

=
∫ t

0
P(En+1 ≤ t− u)fTn(u)du =

∫ t

0
FEn+1(t− u)fTn(u)du.

Implying that

fTn+1(t) = d

dt

∫ t

0
(1− e−λ(t−u))fTn(u)du

=
∫ t

0

(
(1− e−λ(t−u))fTn(u)

)′
du+ (1− e−λ(t−t))fTn(t)

=
∫ t

0
λe−λ(t−u) λn

(n− 1)! u
n−1 e−λudu

= λn+1

(n− 1)! e
−λt

∫ t

0
un−1du

= λn+1

n! tn e−λt.

(ii). By definition of (N(t))t≥0 and of the arrival times Ti, we know that

P(N(t) ≥ n) = P(Tn ≤ t) = FTn(t).

By (i), we have

FTn+1(t) =
∫ t

0
(1− e−λ(t−u))fTn(u)du = FTn(t)−

∫ t

0
e−λ(t−u) · λn

(n− 1)! u
n−1 e−λudu

= FTn(t)− λn

n! t
n e−λt

It is a recursive relation between FTn+1(t) and FTn(t). As FT1(t) = 1− e−λt, we get

FTn+1(t) = 1−
n∑
k=0

e−λt
(λt)k

k! , n ∈ N.

Using this result, we obtain the distribution of N(t) for a fixed t

P(N(t) = n) = P(N(t) ≥ n)− P(N(t) ≥ n+ 1)

=
n∑
k=0

e−λt
(λt)k

k! −
n−1∑
k=0

e−λt
(λt)k

k! = e−λt
(λt)n

n! .

that is N(t) ∼ Poi(λt).
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