

FINAL EXAM

Spring Semester

17 August 2020

Length of the exam : 3h00 (from 16h15 to 19h15)

Attempt all the questions

First write your name, given names and section :

Name : _____ Given Name : _____

Section : _____

Exercice	Points
1	
2	
3	
4	
Total points :	

1)

- a) For a Markov chain on $\mathcal{N} = \{1, 2, 3, \dots\}$ $q_{i, i+1} = q_i = i^2$. Is the chain explosive? Justify.
- b) An irreducible discrete time Markov chain on $I = \{1, 2, 3, 4\}$ has invariant distribution $(1/4, 1/8, 3/8, 1/4)$. Give the expected number of visits to state 3 by the Markov chain starting at 1, before returning to 1. If we replace the assumption of irreducibility by that of aperiodicity, is the result still true?
- c) Give an example of a continuous time Markov chain $(X_t)_{t \geq 0}$ with an invariant distribution π which is not invariant for the jump chain.
- d) For a discrete time Markov chain, if state i leads to state j and i has period 1, must j also have period 1? Justify or provide a common example.
- e) A continuous time Markov chain on $I = \{1, 2, 3\}$ evolves as follows: $\forall i \in I$ while in state i , the chain waits an exponential time of mean $i + 1$ and then selects a 'new' site (which could be i) uniformly among I (so all sites have probability $1/3$ of being selected). The chain restarts at the new site and the waiting and jumping begins again. All waiting times and states are conditionally independent. Give Q for the Markov chain.
- f) Give an example of a finite state irreducible nonreversible Markov chain.
- g) A Poisson process of rate 1, $(X_t)_{t \geq 0}$, with $X_0 = 0$ has $X_2 = 4$. What is the conditional probability that $X_1 = 4$? How does this change if the rate is changed to 3.
- h) For two independent exponential r.v.s. X, Y of parameter λ and μ respectively, let $U = \min\{X, Y\}$ $V = \max\{X, Y\}$. What is the law of U ? Are U and $V - U$ independant?
- i) Let λ be a probability on $I = \{1, 2, \dots, N\}$. Let transition probability P satisfy $P_{ij} = \lambda_j \forall i, j$. Give a necessary and sufficient condition for the chain to be irreducible. With this condition is it aperiodic? Reversible with respect to λ ?

2)

Consider a discrete time Markov chain with transition matrix on $I = \{1, 2, 3, 4, 5\}$

$$P = \begin{pmatrix} 1/4 & 0 & 1/2 & 1/4 & 0 \\ 1/4 & 0 & 1/2 & 0 & 1/4 \\ 1/4 & 1/4 & 1/4 & 0 & 1/4 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- a) Find the probability of reaching 4 starting from 2 for the Markov chain.
- b) Let $h(x) = E(\sum_{n=0}^{\infty} I_{X_n=1} \mid X_0 = x)$
Calculate $h(2)$
- c) For an irreducible Markov chain on (finite or countable) state space I , let i and j be distinct sites and define

$$h(x) = E\left(\sum_{n=0}^{T_j} I_{X_n=i} \mid X_0 = x\right)$$

where $T_j = \inf\{n \geq 0 : X_n = j\}$

 - (i) Show $h(x) < \infty \quad \forall x \in I$. Is this so if the chain is no longer irreducible?
 - (ii) Give a characterization (via a system of equations) for h without proof.

3)

Consider a Markov chain X on $\mathcal{N} = \{1, 2, 3, \dots\}$

$$\text{with } P_{i \rightarrow i+1} = \left(\frac{i}{i+1}\right)^2 \quad P_{i \rightarrow 1} = 1 - \left(\frac{i}{i+1}\right)^2$$

- a) Show the chain is irreducible. Is it periodic?
- b) Show the chain is positive recurrent and give the stationary distribution π . Is the chain reversible for π ?
- c) What can you say about the number of times that the chain has visited 5 by time 10^6 if $X_1 = 1$.
- d) If we change $P_{i \rightarrow i+1}$ to $\left(\frac{i}{i+1}\right)^\alpha$ and $P_{i \rightarrow 1} = 1 - \left(\frac{i}{i+1}\right)^\alpha$, where $\alpha > 0$, for which α is the chain recurrent, for which does it have an invariant distribution?

4)

Let $(N_t)_{t \geq 0}$ be a rate λ Poisson process starting at 0.

Let $\{K_i\}_{i=1}$ be *i.i.d.* Bernoulli(p) *r.v.s* (independant of N). If the jump times of N are at $\{0 < t_1 < t_2 \dots\} = T$,

let $V = \{t_i : K_i = 1\}$

and let $(N^1)_{t \geq 0}$ be the process on $\mathcal{N} \cup \{0\}$ that start at 0 and jumps (by 1) at times in V

Define $(N^2_t)_{t \geq 0}$ by $N^2_t = N_t - N^1_t$

- a) What are distributions of N^1 and N^2 Are they independant ?
- b) Using part a) show that if e_1, e_2, \dots are *i.i.d.* $\mathcal{E}xp(\lambda)$ and $K_1, K_2 \dots$ are *i.i.d.* Bernoulli (p) then $\sum_{i=1}^{M_1} e_i$ is $\mathcal{E}xp(\lambda p)$ for $M_1 = \inf\{n \geq 1 : K_n = 1\}$. If $M_2 = \inf\{n \geq 1 : K_n = 0\}$ are $\sum_{i=1}^{M_1} e_i$ and $\sum_{i=1}^{M_2} e_i$ independent ?
- c) For $N(t)$ consider $S_i = t_{3i}$ for $i = 1, 2 \dots$ where again t_i are jump times of N . What is the asymptotic distribution of $S_{j(t)+1} - S_{j(t)}$ as $t \rightarrow \infty$ where $j(t) = \max\{j : S_j \leq t\}$

