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General comments

These notes are here to help follow the course; they do not replace it. The material presented in class
is the material eligible for the exam. The notes will evolve as the course progresses, and updates
will be posted on Moodle. If you have any comments/find any errors or typos/have suggestions for
improving the notes, please send me an email at: [duncan.bleich@epfl.ch.
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1 Preliminaries

Before diving into the main topics of this course, we will first review some basic notions and results of
probability theory; however, proofs of these concepts are not provided. In these notes, we consistently
use both A C B and A C B to indicate that A is a subset of B, where A could be equal to B. We
would use instead A C B to emphasize that A is a proper or strict subset of B, meaning A C B
but A # B. This section will be somewhat basic, as it primarily presents definitions and results.
However, the subsequent sections will not be as dry, hopefully offering more intuitive explanations.

1.1 Probability spaces

Definition 1.1. Let 2 be a nonempty set. A o-field F on Q is a collection of subsets of Q, F C P(Q),
that satisfy

(i) D € F,
(ii) if Ae F, then A € F, and

(iii) if A; € F is a countable sequence of sets, then U;A; € F.

Definition 1.2. A measurable space, is a pair (2, F), with Q a nonempty set and F a o-field on
Q.

Theorem 1.3. Elementary properties of o-fields. Let Q) be a nonempty set and F a o-field on
Q. We have:

1. Qe F.

If A,B € F, then ANB € F.

If A B e F, then A\Be€ F.

If A1, As, ... € F, then (5, Ai € F.

If A; 1 A (ie., Ai C Aixq and A:=lim; o A; = U;>14,;), then A € F.

S & e

If A; | A (i.e., A; D Ai+1 and A :=1lim;_,oc A; = ﬂizlAi); then A € F.

Definition 1.4. Let Q be a nonempty set and A C P(Q) be a collection of subsets of Q). The o-field
generated by A, defined by

o(A):= (] F

ACF

with F a o-field on ), is the smallest o-field containing A. Note that to define o(A), we used the
fact that if F;,i € I are o-fields, then N;c1F; is one too. This follows easily from Definition [1.1]

Definition 1.5. Let (Q, F) be a measurable space. A measure is a nonnegative countably additive
set function; that is, a function p: F — R with

(i) p(A) > (@) =0 for all A€ F, and
(ii) if A; € F, i €N, is a countable sequence of disjoint sets, then
/~L( U Ai) = ZM(Ai)-
i€N €N
1



If n(2) = 1, we say that p is a probability measure. We will usually denote probability measures
by P. The triplet (2, F,P) is called a probability space.

Theorem 1.6. Let p be a measure on (Q,F) and assume that the sets we mention are in F. We
have the following properties:

(i) monotonicity: If A C B, then u(A) < p(B).
(ii) subadditivity: If A C ;5 Ai, then p(A) < 325, u(4i).
(iii) continuity from below: If A; 1+ A, then u(A;) T u(A).

(iv) continuity from above: If A; | A and p(Ay) < oo, then u(4;) 1 p(A).

Remark 1.7. Note that in a probability space (Q, F,P), the condition u(A;) = P(A1) < oo is
automatically fulfilled, since P(A1) < P(Q) =1 by monotonicity.

1.2 Random variables

Definition 1.8. A real-valued function X : Q — R defined on the probability space (2, F,P) is said
to be a random wvariable if for every B € B we have X Y(B) = {w € Q : X(w) € B}, where B
denotes the Borel sets. In case we want to stress the o-field we are referring to, we will say that X is
F-measurable or write X € F.

Definition 1.9. A random wvariable X is discrete if there is a finite or countable set of distinct
values {x1,x2,...} C R such that p; :==P(X =2;) >0 fori>1and ) o, pi=1. IfP(X =x) =0,
for all x € R, the random variable X is called continuous. In case X has a probability density
function fx(x), that is

P(X € B) = /fo(x) dx

for all B € B, then it is necessarily continuous; however there exist continuous random variables
which do not have probability densities.

Definition 1.10. Given a probability space (2, F,P) and a random variable X, we have that X
induces a probability measure on (R, B) called the law or distribution of X. This probability measure,
usually denoted by ux or Px, is defined as follows:

px(A) = vpx (A) = P(X 7' (4)).

We can easily check that (R,B,Px) is a probability space.

Definition 1.11. Typically, we describe the distribution of a random variable X by giving its distribution
function, Fx(z) = P(X < z). We will often write {X < x} instead of {w € Q : X(w) < z} for
clarity.

Theorem 1.12. Any distribution function F has the following properties:
(i) F is nondecreasing.

(#) limy_y_ o F(z) =0 and lim,_,o F(x) = 1.



(i11) F is right continuous, i.e., limy , F(y) = F(x).
() If F(z—) = limy1, F(y), then F(xz—) = P(X < z).
(v) P(X =x)=F(x) — F(z—).

Theorem 1.13. If X, X5, ... are random variables, then so are

sup X, i%f X, limsup X, 1imninf X,

1.3 Independence, conditional probability and independence

Definition 1.14. We say that the o-fields Fi,...,Fn, n € N, are independent if whenever A; € F;
forie{l,...n}, we have

P(() A) =] P4)
i=1 i=1
Definition 1.15. We say that the random variables X1, ..., X, n € N, are independent if whenever

B; € B forie{l,...n}, we have

n

P( ﬁ{XZ- € B;}) = [[P(X; € By).

i=1

Definition 1.16. We say that the sets Ai,...,A,, n € N, are independent if whenever I C
{1,...,n}, we have

P(()A) = [P0,

i€l i€l

Remark 1.17. An infinite collection of objects (o-fields, random variables, or sets) is said to be
independent if every finite subcollection is.

Theorem 1.18. If the random variables X andY are independent, then the o-fields o(X) and o(Y)
are also independent. Moreover, if X € F andY € G, with F and G independent, then X andY are
independent.

Definition 1.19. Given a probability space (0, F,P) and an event B € F of nonzero probability, the
conditional probability of event A € F given B is defined by

P(A|B) = P(ﬁ(;f )

Lemma 1.20. Law of Total Probabilities. Given a probability space (0, F,P), a partition of Q
into events Ay, ... Ay and any event B, we have

N
P(B) = ) P(AJP(A| A))

In case P(4;) = 0, we can give P(B|A;) any value in [0,1] and the above formula still holds. It will
also hold for countable partitions.



Remark 1.21. As a reminder, we say that the events Aq,..., Ay € F form a partition of Q if they
are disjoint and such that Q = UN| A;. The case of countable partitions is defined analogously.

Lemma 1.22. Given events Ay, ..., An, a simple induction argument gives
N
P( () Ai) = P(A1)P(Az | A))P(A3| Ay N Ay) .. . P(Ax | AN A2 N .. N Ay _a).
i=1

Definition 1.23. Two events A and B are said to be conditionally independent given a third
event C if

P(ANB|C) =P(A|C)P(B|C).

Definition 1.24. Two random variables X and Y are said to be conditionally independent given
a third random variable Z if

P(X € A,Y € B|Z)=P(X € A| Z)P(Y € B| Z)

forall A,B € B.

1.4 Expectation

Given a probability space (2, F,P) and a random variable X > 0, we define its expected value to be
E[X] = fQ XdP, which will always make sense but may be infinite. To get the general case, define the
positive part of x as 7 = max(0, z) and the negative part of x as = = min(0, —z), respectively.
We say that E[X] exists and set E[X] = E[X "] — E[X ], whenever the subtraction makes sense, i.e.,
when E[X ] < oo or E[X ] < .

Theorem 1.25. Suppose X, Y >0 or E|X|,E|Y]| < oo, we have
1. E[X + Y] = E[X] + E[Y]
2. ElaX +b] = aE[X] + b, for any real numbers a,b.
3. If X > Y, then E[X] > E[Y].

Theorem 1.26. Jensen’s inequality. Suppose p is convex, that is,
Ap(x) + (1= Ne(y) 2 oAz + (1= N)y)
for all X € [0,1] and z,y € R. Then
Elp(X)] = »(E[X])

provided both expectations exist, i.e., E|X|, Elp(X)| < oo.

Theorem 1.27. Hélder’s inequality. If p,q € [1,00] with 1/p+1/q =1, then
BIXY ] < [[X][p]Y]lq

where || X ||, = (B|X|")7 forr € [1,00) and || X||oo = inf{M : P(|X| > M) = 0}.



Remark 1.28. Before we state the next result, note that we will often write
E[X;A] = / XdP
A

when integrating over a subset A C ).

Theorem 1.29. Markov’s inequality. Suppose ¢ : R — R has ¢ > 0, let A € B and iq =
inf{p(y) : y € A}. We have

iAP(X € A) < E[p(X); X € A] < E[p(X)].

Should you wish to gain a deeper understanding of the notions previously mentioned, I strongly
recommend reading the book Introduction d la théorie des probabilités [I] by R. Dalang and D.
Conus. In case French is not your forte, the first chapter of the book Probability : Theory and
Ezamples [2] by R.Durrett is a good alternative. Both are available in digital formats for free online.
We now give two special cases before moving on to the last part of the section.

Statement 1.30. If X is a discrete random variable taking values in {x1,22,...} CR, then

E[X] = Z%‘P(X =1z;)

if X is integrable, i.e., if Y, |x;|P(X = x;) < oo. Moreover, for h : R — R, we have that E[h(X)] =
Yo h(@)P(X = ;) if Do, |h(z)|P(X = ;) < o0.

Statement 1.31. If X has a probability density function fx(x), then

E[X] = /OO xfx(x)dx

— 00

if BIX| = [7_|z|fx(z)dz < co. Note that fx > 0. Similarly, for h : R — R, we have E[h(X)] =
Joo @) fx (@)da if BIM(X)| = [7 |h(@)| fa(x)da < oo

1.5 Conditional expectation

Definition 1.32. Conditional expectation. Let (X,Y) be a random vector in R x R™, for some
m > 1, such that E|X| < oo. Then E[X | Y] is the integrable random variable of the form o(Y'), where
@ :R™ — R is such that for all bounded functions h : R™ — R, we have

E(E[X |Y]-h(Y)) = E[X - h(Y).

IfE[X?] < oo, then E[X | Y] = ¢(Y) is such that
E[(X — ¢(Y))?] SE[(X —¢(Y))?]

for all ¢y : R™ — R.

Remark 1.33. If we take the function h =1 in the above definition of E[X|Y], we obtain
E(E[X|Y]) = E[X].

In words, the expectation of the conditional expectation of X given'Y is the "unconditional” expectation
of X. Moreover, conditional expectation is unique almost surely, meaning that any two versions of
the same conditional expectation differ only on a set of probability zero.
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We now give some formulas, for E[X|Y], in both the discrete and continuous case.

Discrete case: Let (X,Y) be a discrete random vector with E|X| < co. We proceed in two steps:

(a) St EX|Y =y]:=> aP(X =z|Y =y)=P(Y =y) - > 2P(X =2,V =y), if PY =y) >
0.

(b) Define the function ¢ : R™ — R by ¢(y) = E[X |Y = y], for y such that P(Y = y) > 0, then
EX|Y] = ¢(Y)

Continuous case: Similarly, consider a continuous random vector (X,Y") taking values in R x R™,
with E|X| < co. Additionally, assume that the random vector (XY') has a joint probability density
function given by fx y : R x R™ — R, meaning

P(XEA,YEB):/dx/dy fX,Y('r7y)7
A B

for all A C R, B C R™. Before going further, note that we will sometimes write

/dxl/ dxg.../ dxy, f(z1, ..., %)
Ay Ag A

n

instead of the usual

// flze, ... zp)dey ... doy,
Ay An

for clarity. This notation may initially appear superfluous; however, it is essential for ensuring accurate
integration over the appropriate sets, thereby avoiding potential confusion. Now recall that the
marginal density of Y is given by

fY(y):/RfX,Y(x,y)dx.

As done in the discrete case, we proceed in two steps:
(a) Set
R fr(y)

Where, fxy(z,y)- fy(y)~! is the conditional density of X given Y = y.

dz, for fy(y) > 0.

(b) Define the function ¢(y) = E[X |Y = y] for y € R™ such that fy(y) > 0, then E[X|Y] = ¢(Y).

If we have a function h : R x R™ — R, we can generalize the previous case by setting

B Y)Y = = [ #le P

for fy(y) > 0. If we set ¥(y) = E[h(X,Y)|Y = y], then E[A(X,Y)|Y] = ¢(Y).

Proposition 1.34. Properties of conditional expectation. Let (X,Y,Z) be a discrete (or
continuous) random vector defined on a probability space, and let f : R — R be a bounded function.

6



(A) Linearity: For all o, € R, E[aY + 8Z| X] = aE[Y|X]| + BE[Z|X].

(B) Monotonicity: IfY < Z, then E[Y|X] < E[Z|X].

(C) Iteration: E(E[Z|X,Y]|X) =E[Z|X].

(D) EIY £(X)|X] = E[Y|X]f(X)

(E) If X and Y are independent, then E[Y|X] = E[Y].

(F) If Y = f(X), then E[Y|X] =Y

(G) Jensen’s inequality: If g : R — R is a convex function and E|g(Y)| < oo, then g(E[Y]X]) <

Elg(Y)[X].

Initially, we will denote the use of properties (A),(B), ..., (G) explicitly, but as the course progresses,
we will phase out this systematic notation..

Statement 1.35. Using the notation ¢(y) = E[X|Y = y| and referring to Remark [1.33, we can
formulate the law of total probability in the discrete case:

E[X] =E[p(Y)]
=Y eW)P(Y =
=) E[X|Y =yP(Y =y).

The continuous case is derived in a similar manner:

E

(Y

ey
Rm™

/MEXIY—yfy()

Remark 1.36. Conditional probabilities are a special case of conditional expectation. For a given
event G, we have

P(GY) = E[lg|Y]

with

R

Recall that P(G) = E[l¢], as E[lg] =1-P(lg =1)+0-P(1g =0) =P(G).






2 Martingales

2.1 Definitions and examples

Before we delve into the definitions, let us first consider a motivating scenario: Imagine a player
engaged in a sequence of fair games of chance. At each stage of the game, the expected reward, given
all previously observed outcomes, is zero. Let S,, denote the cumulative gain (or loss) after n games.
A natural question to ask is whether the player can ensure a positive expected reward upon exiting
the game. Specifically, is there a random time 7, not predetermined, such that E[S;] > 0 ? Here, we
can think of the random time 7 as a strategic decision point—the player plans to exit the game when
certain known conditions are met, although it is not known when these conditions will occur.

Martingales provide a powerful framework for analyzing this scenario. They allow us to understand
the dynamics of gains and losses under fair game assumptions and can help us assess strategies that
involve exiting at a random time 7.

We will discover that for a 'reasonable’ 7,E[S;] = 0. Should E[S;] > 0, then 7 would represent a
strategy that, under typical circumstances, most people would choose to avoid.

Definition 2.1. Let (X,,)n>1 be a sequence of random variables. A sequence (Sy)n>1 of random
variables is a martingale relative to (X,,)n>1 if for alln >1

(a) E[[Sa]] < o0,
(b) E[Sns1]X1,..., Xpn] = Sy

Remark 2.2. If (S,)n>1 s a martingale relative to (Xp)n>1, then Sy, is a function of Xy,...,X,.
Indeed, by point (b) of the definition above, Sy, = ¥ (X1, ..., X,) where ¥y (z1, ..., 2,) = E[Spi1| X1
Xlyeony Xn = Tp).

Remark 2.3. Often, S, = X,.

It is useful to think of (Xi,...,X,,) as the accumulated information or history up to stage n. In a
gambling context, this historical record may encompass more than just the sequence of past fortunes;
it could, for example, include the outcomes of plays in which the player did not bet.

Returning to our motivating example, let .S,, represent the player’s wealth at time n. While we do
not assign a specific meaning to (Xi,...,X,), it encompasses everything observed up to time n.
Condition (b) of Definition reflects one interpretation of a fair game, stipulating that the player’s
expected wealth in the next play, given all previous observations, should equal his current wealth:
E[Sp+1|X1,...,Xpn] = Sp. Let us now consider a more concrete situation.

The ”double or nothing” strategy: The rules of the game are straightforward: With a probability
of 1/2, the player doubles his bet; conversely, with the same probability, he loses his initial bet.
Therefore, if the player bets x francs, the potential profit or loss can be expressed as follows:

Profit = 4 © ,W?th proabﬂ?t:y 1/2 .
-z , with probability 1/2

Strategy: Bet 1 franc, then 2,4, ...,2™ until I win a bet, then leave the game. The total gain, given
I lose at games 1 to n and finally win at game n + 1, is:

—1-2-22_  —9orTlyon—1.

The strategy effectively ’'guarantees’ a profit of 1. At first glance, this might seem like a viable
approach. While the guaranteed profits are modest—arguably negligible—they are still profits. This

9



raises the question: Why aren’t people flocking to casinos to capitalize on this strategy? The following
discussion will address this question.

Let T be the number of games played up to the first win. It is easy to see that

and therefore

P(T < o0) =P( | J{T = Z Z%

where the first equality arises from the fact that the sets {T' = n} are disjoint. If we now look at L :=
the amount lost up to time T — 1, we find that

:ZE[L|T:n}-P(T:n)

fZIEL|T*n P(T = n)

—Zl+2+ +2"7%) . 27"

n—1 _
= E —+oo ,since ——— ——

From this, we can deduce that this strategy will usually lead to bankruptcy. To better understand
martingales, let’s examine the following four examples.

Example 2.4. Let (X,)n>1 be independent and identically distributed (i.i.d.) random variables with
E[X1] = 0 (includes E[|X1|] < o0). Define S,, = X1 + ...+ X, forn > 1. Then (Sp)n>1 is a
martingale relative to (X,)n>1-

Proof. We prove both (a) and (b) of Definition [2.1]
(a)

i.1.d.
E[|Sul] = B[|X1 + ... + Xo|] <E[|X2] + ...+ Xn|] 2 nE[|X:1]] < 00

E[Sni1| X1, ., Xn] = E[Xns1+ 80| X1, .., X,]
2 E[Xp1 | X1, Xa] B[S, | X1, X

27 E[Xp41] + Sn = Sn

Example 2.5. Let (X,)n>1 be ii.d. with E[X1] = 0 and 0* = E[X}] < oo. Define Z, =
(Z?:l Xi)2 —no? =52 —no?. Then (Z,)n>1 is a martingale relative to (X,,)n>1-

10



Proof. (a) We have

E[|Z,|] < E[S?] + no? © ZXl + no?

(;) no? +no? = 2no? < .

The equalities marked by (%) hold true because the variables X,, are i.i.d. with a mean of 0.

(b)

E[Zpi1 | X1, ..., X,]

E[(Xpi1450)" = (n+1)0% | X1,..., X,)]

=  E[X2,,+2X,118,+ 52— (n+1)o’n| Xq,...,X,]

D OEX2, | Xy, X))+ 2E[ X1 S0 | X, X

+E[S?| X1,..., X, —E[(n+ 1)o? | X1,..., X —n]

—~

E),(D),(F

B 52 4 98, E[Xn] + 2 — (n+ 1)0?

= Zn

Example 2.6. Likelihood ratio: Let ( n)n>1 be i.i.d. random variables and fy, f1 be two bounded
positive density functions (f; >0, [, fi(x)dx = 1). Define

o~ X)) A T
" fO(Xl)fO(Xn) H?:1 fO( i)

Statement 2.7. If the common density of the X,, is fo, then (Ry)n>1 is a martingale relative to
(Xn)n21

Proof. (a) We write Eq to indicate that we take the expectation with respect to the common density
function fy.

Eol |Bal] = Eo[Ry] = Eo [%;E i]

Hl 1 Nl Hfo (z;)dzy .. .dz,

R Hz 1f0 i=1

= fi(wy) ... fi(wp)dey ... dxy,
R'Vl

=1<

11



Xn
Eo[Rp+1|X1,..., Xu] = Eo |:Rn [{&n1) | X1, -7Xn:|
fo(Xnt1)
(D) [ f1(Xn41) }
= R, -E X, X,
o)
[ f1(X
® R g, fi( n+1):|
L fo(Xn+1)
i.%.d. I X
Gid) p g A 1)]
fo(X1)
@ R, 1=R,
O
Example 2.8. Doob martingale: Consider arbitrary random variables X1, Xo, ... and an integrable

random variable X, i.e., E[|X|] < co. Define M,, = E[X | X1,...,X,] for eachn. Then, the sequence
(My)n>1 is a martingale relative to (Xp)n>1-

Proof. (a) Since the function x — |x| is convex, we can use Jensen’s inequality:
E[|M,|] = E([E[X | X1,...,X,]|)

()
< E(]E[|X|\X1,aXn])
~ E[IX]] < oo,

We noted in Remark that the last equality is valid.

(b)

E[Mpi1| X1, Xp] = E(EIX | X1, o, Xoia] [ X1y, X0)

DEx|x1,..., X,

:Mn

Lemma 2.9. If (S,)n>1 s a martingale relative to (X,,)n>1, then
(a) E[Snim | X1,..., Xn] = Sn, for alln,m > 1,
(b) E[S,] = E[S4], for alln > 1.

Proof. (a)

C
B[S | X1, Xn] QB[S | X1y X Xpma] | X0, Xo)

(;) H':‘:[Sn#*mfl |X13 s 7Xn]

= E[Sps1| X1, ..\ Xo]
()

= -

The equalities denoted by () hold by Definition

12



E[S,] = E(E[S, | X1]) < E[S)]

2.2 Supermartingales and submartingales

Definition 2.10. We say that (Sp)n>1 s a supermartingale relative to (X,)n>1 if
(a) E[|Sn]] < oo,

(b) E[Sp+1|X1,...,X,] < S, and

(c) Sp is a function of X1,...,X,.

Definition 2.11. We say that (Sp)n>1 s a submartingale relative to (X,,)n>1 if
(a”) E[[Sa]] < o0,

(b’) E[Sp+1|X1,...,X,] > S, and

(¢’) Sy is a function of X1,...,X,.

Remark 2.12. (1) For a martingale, Sp, = E[Sp41| X4, ..., Xn], s0 Sy is a function of X1,..., X,.
(2) If (Sp)n>1 is a supermartingale, then (—Sy)n>1 is a submartingale, and vice-versa.

(8) (Sn)n>1 is a martingale if and only if (Sp)n>1 is both a submartingale and a supermartingale.

Lemma 2.13. (a) Let (Sy)n>1 be a martingale relative to (X,)n>1. If ¢ : R — R is conver and
E[|©(Sn)|] < 0o for all n, then (¢(Sy))n>1 is a submartingale.

(b) Let (Sp)n>1 be a submartingale and ¢ : R — R a convex and nondecreasing function such that
E[|p(Sn)|] < 0o for all n. Then (¢(Sp))n>1 is a submartingale.

Proof. (a) Conditions (a’) and (¢’) of Definition are met by our assumptions. We only need to
check (b'):

(&)
Elp(Sni1) [ X1, Xn] = @(E[Snia1 [ X1, .0, Xn]) = ¢(Sn)

(b) Again, conditions (a’) and (¢’) are met by our assumptions. For (b’), we have

(@)
Elp(Snt1) | X1, ... Xn] > @(E[Snt1 | X1, .., Xn]) > 0(Sn).

The last inequality follows from E[S,+1 | X1,...,Xn] > S,, since S, is a submartingale and ¢ is
nondecreasing.
O

Remark 2.14. If (S,)n>1 is a supermartingale (resp. submartingale), then for m,n > 1:
E[Sntm | X1,..., Xn] < Sn (resp. > S,)
and

E[S,] < E[S1] (resp. > E[S1]).

13



2.3 Stopping times

Motivation: The concept of stopping times is motivated by scenarios such as a player choosing to
exit a sequence of games at a random time that is determined by the outcomes of previous games,
yet independent of future outcomes.

Definition 2.15. Let (X,,)n>1 be an observation sequence (real-valued). A stopping time T, relative
to (Xn)n>1, is a random variable taking values in NU {oo} such that for all k € N, there is By, C R¥
with

(T =k} ={(X1,....Xs) € Bi}.

Where {T = k} can be interpreted as the decision to stop at time k and By as a property of the

observations X1, ..., Xg.

Remark 2.16. From this point onward, we will write A € o(X1,...,Xy) to say that the event A is
determined by (X1,...,Xy), where 0(X1,..., X)) is the o-field generated by X1, ..., Xg. This o-field
represents the information available from observing the process up to time k. Moreover, while we did
not specify what type of sets B we are referring to in the definition, some might find it useful to
know that they belong to the Borel sets over RF, i.e., By, € BF.

Example 2.17. Let (X,)n>1 i N(0,1). At stage n, we observe X,,. Let T be the first time that
X, > 2. Then T is a stopping time.

Proof. For k =1, we have
{T=1}={X; >2} ={X; € By} € 0(X1),

where By = [2,00). If k > 2,

{T=k}={X1<2,X2<2,..., X 22} ={(X1,...,Xs) € By} € o(X1,..., Xi),

k—1 factors

with By = (—00,2) X ... X (—00,2) X[2, 00). O

Proposition 2.18. Some properties of stopping times.
(a) IfT is a stopping time, then {T < k},{T > k},{T < k} and {T > k} are events ino(X1,..., Xg).
(b)) If {T <k} €o(X1,...,Xk) for all k > 1, then T is a stopping time.

(¢) If S and T are stopping times, then SAT := min{S, T} and SVT := max{S,T} are also stopping
times.

(d) If T is deterministic, i.e., if there exists ko € N such that P(T = ko) = 1, then T is also a stopping
time.

(e) If T is a stopping time, then for k > 1, 1{T = k} is a function of (X1,...,X})

Remark 2.19. We will often write 1{A} instead of 1 4.

14



Proof. (a) First, observe that

k
{T<k}=|J{T =i} co(X1,..., Xp)

i=1

since {T' =i} € 0(X1,...,X;) Co(X1,..., X, ..., Xy) for i < k. We then immediately find that

{T<k}:{T§k71}GCT(Xl,...,Xk_l) CO’(Xl,...,Xk).

From this, using the properties of o-fields gives
{T>k}={T <k} e€o(Xy,...,Xx)
and
{T>k}={T<k}€co(X1,...,Xx).
(b) For all k > 1,
{T=k}={T<EkE}In{T<k-1}€o(Xy,...,Xp).
(c¢) Follows from (b) and the following observations

{SAT <k} ={S <k}u{T <k},
{SVT <k} ={S <k}n{T <k}
(d) For k # ko,
{T:k}:{(Xl,...,Xk)6@}60(X1,...,Xk).
For k = kg,

(T =ko} = {(X1,...,Xp,) ER*™} € 0(Xy,..., Xp,)-

(e) Since {T =k} = {(X1,...,Xx) € By} for some By C R, we have
Lir—py = 15, (X1, .., Xi)

where 1, : R¥ — R is defined by

1 if (z1,...,7) € By
0 otherwise

ﬂBk(xl,...,.’Ek) :{

2.4 Optional Stopping Theorem

The goal of this subsection is to prove the following theorem:

Theorem. Let (S,)n>1 be a martingale and T a stopping time relative to (X,,)n>1. Suppose
(a) P(T < >0) =1,

(b) E[|S7|] < o0 and

(c) lim, oo B[S, |T >n] - P(T > n) =0.

15



Then E[St] = E[S4].

To get there, we’ll first look at three important lemmas that need to be proved. But before we jump
into those, let us consider the following: Let (Sy),>1 be a martingale relative to (X,),>1. Then
E[S,] = E[S;] for all n > 1. If we decide in advance to play n games, then the game is fair. However,
could a clever player (who doesn’t cheat) do better ? If the player decides to stop at a random time
T, that is a stopping time. Would it be possible to have E[St] > E[S;] ?

Example 2.20. Let X,, be i.i.d. random variables with P(X; = +1) = 1/2 = P(X; = —1). Set
So=0and S, =X1+...+X,, forn>1. Then (Sp)n>1 i @ martingale relative to (X,)n>1 and we
have that E[S1] = 0. Define T =inf{n >1 : S, = 1}. We will see that P(T < c0) =1, so Sp =1
and E[St] =1 > 0 =E[S1]. The stopping time T allows us to be in a situation where E[St] > E[S1],
but there is a slight issue that we have overlooked until now: E[T] = co.

Let us now state and prove the lemmas we will need for the proof of Theorem [2:24]

Lemma 2.21. Let (S,,)n>1 be a martingale (resp. supermartingale) and T a stopping time relative
to (Xpn)n>1. We have

E[Sy - Lyp=py] = E[Sk - Lyp—py] (resp. <E[Sk - Lip—py])

form>k>1.
Proof.

([33)

E[Snlir=ry) = E(E[Snlir=y|X1,...,Xs])
= IE(IL{T:k} -E[Sy, |X1,...,Xk])
E9)
E[Sk - Lir—p)]
(resp. < E[Sk . ]]-{T:k}])

O

Lemma 2.22. Let W be a random variable such that E[|W|] < co. Let T be a stopping time relative
to (Xp)n>1 such that P(T < oo) = 1. Then

lim E[W - 17s,] =0

n—oo

and

lim E[W - 1r<,y] = E[W].

n—oo

Proof. We first prove the lemma for |W|.

NE

E[W] - Lir<ny] = ) E[W]- Lir=p]

~
Il

1

I
NE

E[|W]||T = k|P(T = k)

k=1

— > E[|W||T =kP(T =k) asn — oo
k=1

=E[[W]] <o0

by the law of total probability (|1.35]) and using the fact that we are dealing with a monotone increasing
sequence. Therefore

16



n—oo

and
Jim B[|W| - Lizsm] = lim E[[W](1 - Liz<n))]
—E[|W|] - lim E[[W]- Liren)
=E[|W]] - E[|W[]
—0.

Now, to get the result for W, observe that
0 <|EW - Lipsny]l SE[W]|- Lipsny] =0, as n — oo.
So limy, 00 E[W - 1y75p1] = 0 and as a consequence
Tim E[W - Lircy] = lim EIW - (1= Lisy)]
—E[W] — lm E[W - Lirsny)
= E[W].

Lemma 2.23. Let T be a stopping time relative to (X, )n>1. Then
E[Stan] = E[S1].
Proof.

9)

)
e

E[Sq] E[Sy]

= ZE[STL . ]l{T:k}] + E[Sn : ]l{T>n}]
1

=~
Il

¥
[l

M=

.21))
E[Sk . ]]-{T:k}] + E[Sn : ]l{T>n}]

e
Il
_

M=

E[ST ’ IL{Tzk}] + E[Sn : 1{T>n}]

E
Il

1

E[ST : ]l{Tgn}] + E[Sn ) ]l{T>n}]

= E[Stan - Lir<n}] + E[STAn - Lirsny]
]E[ST/\TL]'

We are now ready to prove the optional stopping theorem:

Theorem 2.24. Let (S,)n>1 be a martingale and T' a stopping time relative to (Xp)n>1. Suppose
(a) P(T < >0) =1,

(b) E[|ST|] < 00 and

(c) lim,, o E[S, | T >n]-P(T > n) =0.

17



Then E[St] = E[S4].

Proof. For all n € N,

E[S7] = E[S7-1{r<n] +E[ST - 1{rsny]
E[Stan - (1 = Lyrsny)] + E[ST - Lipsn}]

€23)
E[S)] = B[Sy - Lzon] + E[ST - Lirom].
By assumption (c), we have

E[Sn - Lirsny] = E[Sn | T > n]P(T >n) = 0

as n — oo. We can apply Lemma to St since we assume (a) and have E[|S7|] < oo by
assumption (b). This gives

E[ST . ]l{T>n}] — 0

as n — oo. Taking

E[St] = E[S1] — E[Sy - L{r>ny] + E[ST - Lipsny]

and letting n go to infinity gives the desired result. O

Remark 2.25. IfP(T = ko) = 1, then E[St] = E[Sk,] = E[S1] and the assumptions also hold.
Remark 2.26. If P(T = o00) > 0, then St = Se on {T = oo}, which is not defined here.

Remark 2.27. E[St] has a meaning by assumption (b).

Example 2.28. Let (X,,),>1 be i.i.d. random variables with P(X; = —1) =1/2 =P(X; = +1). The
martingale (Sp)n>0 relative to (X, )n>1 defined by So =0, S, = X1+ ...+ X, forn >1 is called a
simple random walk (r.w.) on Z.

Fix positive integers a and b. What is the probability that the random walk visits —a before b ?

Let T=T_ o, =inf{neN: S, =—a or S, =b}. T is a stopping time since

(T =k} ={S1 ¢ {—a,b},...,Su_1 ¢ {—a,b}, Sk € {—a,b}} € o(X1,..., Xp).

We now check the assumptions of Theorem [2:24]

(a) Consider the event
(Xi=1,X0=1,...,Xopp =1}
and notice that no matter where the random walk starts in the interval, we have that
P(X1=1,....,Xo1p=1) =27 <P(T < a+0)
since
{Xi=1,...,. Xopp =1} c{T < a+b}.
Therefore, the probability of not leaving [—a, b] in (a + b) units of time is such that
P(T>a+b)=1—P(T <a+b)<1—27F0)

18



Now, it is relatively easy to see that the events
{Not leaving [—a,b] in 2(a + b) time units.}
and

{Not leaving the interval [—a,b] during the first (a + b) units of time, and again, starting from

where we ended up at time (a+b), stay in [—a,b] during the remaining (a +b) time units.}

are the same. As one would expect, we have

P(T > 2(a+b)) = E[L{r>2(a+b)}]

=E[1{r>@+t)} - L{r>2(atb)}]

= E(E[L{r>(at0)} - Lirs2atn)} | X1s- -+ Xats])
=E(Lirs(atn)) - Ellrsag@iny | Xis- - Xays])
= ElLgrs (s P(T > 2(a+0) | Xy, ..., Xopp)
< I[‘3[]1~{T>(a+b ] (1—27(e+0)

< (1—9-(ath)2,

We can repeat this process and find that
P(T > k(a+ b)) < (1 —27(aFb))k
for k> 1. Now, since (1 —27(@+?)) < 1, letting k — oo gives
0<P(T=00)<0

which concludes the verification of assumption (a).

(b) By definition of T, St € {—a,b}, which implies |Sp| < max{a,b}. Condition (b) follows
immediately:

E[|S7|] < E[max{a, b}] = max{a, b} < co.

(c) Since |Sy| < max{a,b} on {T > n}, we have
Tim (B[S, | T > n]- BT > n)| = lim_ [E[S, - L7

< li_>m max{a, b} - P(T > n)
=0

as P(T < c0) = 1.

Now that we have checked the assumptions of the optional stopping theorem, we conclude that
E[St] = E[S;] = E[X;] = 0.

But we can go even further. By definition of the expectation and using the fact that St € {—a,b}, we
get

E[S7] = —a-P(Sp = a) + b-P(Sy = b) = 0.

Let p_qp =P(Sp = —a) =1 —-P(Sp =b). We can write the previous equation with p_
19



—ap—qpb + b(l - p—a,b) = 0.

From this, we find that the probability of the random walk visiting —a before b is given by

b
a+b

P—ab =

As a direct consequence, we have that the probability of visiting b before —a is b/(a + b).

Example 2.29. Keeping the notations we used in the example above, we now want to learn more
about the first visit to b. To do so, define the stopping time T, = inf{n > 0: S, = b} with b > 0.
Notice that

{STfa,b = b} = {Tb ST o, Ty < OO}

and

— T, =T_ .
T}Sn> OO}CU{b a,b}

aeN

In particular,

aeN

:P(U{Tb <T o T <oo}>

aeN

P(T}, < o0) =P <U {(Ty =T o} N{T, < oo}>

“ Jim P(Ty < Too, Ty < o)
a— 00
= lim P(Sy_,, =b)

a— 0o -

— lim % —1
a—oco q + b

where (x) is justified by the fact that {T, < T_,, Tp < oo} is an increasing sequence of events in
a € N. We now want to determine E[T,]. Let (Y,,) = (52 —n) be the martingale defined in Ezample
. Let’s apply Theorem to (Ys,) and T :=T_, . We check the hypotheses:

(a) We already know P(T < oc0) = 1.
(b) We first observe that

E[|Yr|] = E[|S3 — 7] < E[S3] + E[T] < max(a®,}") + E[T],

so the only thing left to verify is wether E[T] < oco. To do so, let us first recall the following
results:

Lemma 2.30. If X > 0 is a random variable, then
EX]< 14> P(X > k).
k=1

Moreover, if P(X € N) = 1, we have

E[X] = iP(X > k).
k=1
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Proof. To get the first result, simply notice that X < 1+ Zzozl I{x>k) and take the expectation.
For the second result, we can write X = Y7, Lyx>y} since we assumed P(X € N) = 1 and again
taking the expectation gives the desired equality. O

From this, we have
T = T
El— | <1 Pl— >k
) <t (2
> T
<1+ Pl—>k—-1
<1430 (g > ho)

=1+ P(T > (k—1)(a+b))
k=1
oo

<14+) (1 —27@0yh=l o o,
k=1

So E[T] < oo and this concludes the check of (b).
(c) We first split the starting term in two:

E[Y, - Lirsny] = E[(S7 = n) - Lizsny]
=E[Sh - Lrsny] —E[n- Lirsnyl.
Now, since S2 < max(a?,b®) on the set {T > n}, we get
E[S? - 1{r>ny] < max(a®,b%) - P(T >n) — 0
as n — 00, since P(T' < 0o) = 1. For the second term, we have
thanks to Lemma [2.22]
All three conditions hold, so we can apply Theorem [2:24] and we get
E[S? —T] = E[Yr] = E[1] = E[S} — 1] = E[X} — 1] = 0.
Therefore,
E[T] = E[S7]
=a’P(Sr_,, = —a) + b*P(Sr_,, = b)

=a

a+b a+b

a+b
a+b

Ifa=0b, E[T_, 4] = a® is the mean time it takes to move a steps from the starting point. From this,
we can actually calculate E[Tp] using what we have done until now.

I
=)
>
7N
Q
4
o~

For all a € N*, we have that Ty, > T_q 3. Indeed, there are only two possible situations, either we visit
—a first, which means T_,, < Ty, or we visit b first and in this case have T_,, = Ty,. From this and
what we saw earlier, we get

E[Ty] > E[T_,4) = ab

for all a € N. In particular, E[T}] > sup,cy ab = 400 since b > 1. So E[T] = oo for all b # 0.
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2.5 Optional Stopping Theorems for supermartingales

Before giving the optional stopping time theorems for supermartingales, we first look at two very
useful results.

Theorem 2.31. Doob’s decomposition theorem. Let (Sy)n>1 be a supermartingale relative to
(Xn)n>1. There exists a martingale (My,)n>1 and a process (Ap)n>1 such that

(1) n— A, is nondecreasing (P(A, < Ant1))=1,

(2) A1 =0,

(8) Apt1 is a function of (X1,...,Xy) (Ay is predictable) and

(4) Sp =M, — A,.

Proof. See Problem Set 4. O

Lemma 2.32. Let (S,,) be a supermartingale and T a stopping time relative to (X,,). Then
E[STan] < E[S1] , foralln > 1.
Proof. Let S, = M,, — A,, be the Doob decomposition of (S,,). We have
Stan = Mran — Aran,
S)
E[S7a] = E[Mr,] ~ E[Arna] < EMry,) B B = B[S,

where the inequality comes from the fact that Ara, > 0 and the last equality is a consequence from
one of our assumptions, A; = 0. O

Lemma 2.33. Let (S,,) be a supermartingale and ¢ : R — R a concave and nondecreasing function
such that E[|¢(Sy)|] < oo for all n. Then (¢(Sy)) is a supermartingale.

Proof. We check the conditions of Definition [2.10)

(a) : We know by assumption that E[|o(S,)|] < oc.

(b) : The function ¢ is concave by assumption, meaning —¢ is convex. Property (G) of conditional
expectation gives

]E[_W(Sn-ﬁ-l) ‘Xla LR aXn] Z _@(E[Sn-i-l |X17 cee 7Xn])
From this, we get
E[@(Sn+l> |X1a s aXn] < @(E[Sn-i-l |X17 s aXn]) < @(Sn)

The last inequality follows from E[S,, 11 | X1, ..., X,] < S, since S,, is a supermartingale and ¢

is nondecreasing.

(c) : Since (S,) is a supermartingale, S, is a function of X7, ..., X,,, meaning ¢(S,) is too.

Theorem 2.34. Let (S,,) be a supermartingale and T a stopping time relative to (X,,). Suppose that
P(T < o0) = 1 and there is a random variable W > 0 with E[W] < oo and Span, > =W, for all

Remark 2.35. We often use this theorem when (S,) is nonnegative and take W = 0.
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Proof. Fix b> 0, and S% :=min(b,S,) n > 1. Then we know that (S%) is also a supermartingale, as
the function z — min(b, x) is concave and nondecreasing, meaning we can apply Lemma- Using
(x1)

Lemma [2.32| now gives

E[S7] > E[STnn]
[—W, b], we have
E[S7]]

|E[ST/\n SH
S%) - Lirsny]l

=E :
]1{T>n}] —0

E[S%/\n] -

for n > 1. Noticing that S?, S?

(S5
<E[(b+ W)
(x2)

as n — oo by Lemma - applied to (b + W). Therefore E[S%.,, ] — E[S}] as n — oo. Letting

E[S}] > E[ST].

n — oo in (x1) gives
As b /* +oo, we have both S% ~ S, and Sb  Sr, applying the monotone convergence theorem
E[ST] (x3)
O

[S1] and lim E[S}] =

gives us
lim E[S}] = E
n). Suppose

Combining (x2) and (x3) gives the desired result: E[S;] > E[Sr]

Proposition 2.36. Let (S,) be a supermartingale and T a stopping time relative to (
that P(S,, > 0) =1 for allm € N*. Then E[S1] > E[St - 1{1<00}]

if T < oo,

St
if T =00

Remark 2.37. By definition
St Lrcoy = {0

[ST ’ ]]-{Tgnﬂ :

Proof. We first observe that
1) S5n,2>0
S1] = E[Stan] = E[Stan - Liz<ny]

forn < T,

0
forn>T

On {T < oo}:
St lipepy =
T H{T<n} {ST
The function n — St - 1i7<,} is nondecreasing and it converges to St = St - 1{7<o0}. Moreover

St - L{r<ooy = St on {T < oo}
St Lyr<ny =0= 57" Lirceey

On {T = oo}:

In both cases,
St Lir<ny /ST LiT<o0}

The monotone convergence theorem and our first observation give the desired result
[S7 - Lircoey] = lim E[S7an - Lir<ny] <E[S)]
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Theorem 2.38. Let (S,,) be a supermartingale and U, T be two stopping times relative to (X,).
Suppose there is N € N such that P(1 < U <T < N) =1, then E[St] < E[Sy].

Proof. Step 1: Fix k < N. For k <n < N,
E[Spt1- H{T >n} -1{U =k} = E(E[SnH H{T >n} - 1{U =k} | Xq,... ,Xn])
=E(I{T > n} - 1{U =k} - E[Sp41 | X1, ... ,Xn])
<E[(I{T > n} - 1{U =k} - S,.].

Step 2: The function n +— E[STay, - 1{U = k}] is nonincreasing on [k, N]. Indeed,

E[Shn - 1{U = kY] = E[S7 - 1{T < n} - 1{U = k}] + E[Sn - 1{T > n} - 1{U = k}]
> E[Sy- 1{T < n} - 1{U = k}] + E[Sps1 - 1{T > n} - 1{U = k}]

= E[ST/\(n+1) ) ]lU:k]-

From this we get
E[Sk - Liy=i}] = E[Stak - Liv=t}] = E[STAN - Liv=s}] = E[ST - L{y=13],

where the first equality follows from T > U = k and the last from our assumption P(1 < U < T <
N)=1.

Step 3: Finally,

N N

E[Su] =Y E[Sk- Li—iy] = > _E[Sr- L] =E[S1 > _ L—wy] = E[ST].
k=1 k=1 k=1

Note that we have an analogous result for submartingales:

Theorem 2.39. Let (S,) be a submartingale and U, T be two stopping times relative to (X,,).
Suppose there is N € N such that P(1 < U <T < N) =1, then E[St] > E[Sy].

2.6 Martingales convergence theorems

Definition 2.40. We say that a sequence (Sy) of random variables converges in probability to a
random variable S if:

Ye>0, lim P(]S,—S|>¢)=0.
n—oo

We often write S, 2 S to say that the sequence S, converges in probability to S.

Definition 2.41. A sequence of random variables (Sy,) converges almost-surely to a random variable

S if:
P({weQ: nl;rr;o Sp(w) =Sw)}) =1.

. . a.s.
We write lim, oo Sy, = S a.s. or S, = S to denote almost-sure convergence.

Theorem 2.42. Monotone convergence theorem (MCT). If P(S, > 0) = 1 and P(S, <
Snt1) =1 for alln € N and S, %S, then

lim E[S,] = E[ lim S,] = E[S].

n—oo n—oo
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Theorem 2.43. Dominated convergence theorem (DCT). If S, — S a.s. and if there is a
random variable W > 0 such that E[W] < co and P(|Sn| < W) =1 for alln € N, then

lim E[S,] = E[ lim S,] = E[S].

n—oo n—oo

Proposition 2.44. Let (X,,) be a sequence of random variables and X a random variable. Define
An(e) ={|Xn — X| > €} and Bn(e) = | Anl(e).
n>m
(a) We have the following sufficient and necessary conditions for almost-sure convergence:

X, X < Ve>0, lim P(B,,(e)) =0 <= Ve >0, lim P(sup |X, — X|>¢€)=0.
m— oo m—o0

n>m

(b) If 327 | P(Ay(€) < oo for all € > 0, then X, “3 X.
(¢c) If X, “3 X, then X,, B X.

Remark 2.45. We often write {A} as a shorthand for {w € Q : w € A}. Here, for example, we
wrote {| X, — X| > €} instead of the more detailed expression {w € Q: |X,(w) — X(w)| > €}.

Proof. (a) Observe that

{lm X, =x}= () U ) {IXa— X <1/k}.

keN* NeNn>N

To see this, it can be useful to know that

lim X,(w) =X(w) < VkeN" INeN,n>N :|X,(v) - X(w)| < 1/k.

n—r oo

Therefore,

IP’(lim Xn:X):l — ]P’({ Tim Xn:X}C):O

n— oo n—oo

PEIN IP’( unu {\Xn—X\>1/k:}) = 0.

kEN* NeNn>N

Notice that U,>n{|X,, — X| > 1/k} = By(1/k) and define Cy = NyenBn(1/k). We have that
Ck C Cgy1 and our previous expression simplifies to P(Ugen+Cy) = 0. However, this holds if and
only if P(C%) = 0 for all k¥ € N*, which implies

0=P(C) =P( () Bn(1/k)) = lim P(Bx(1/k)),
NeN

since By+1(1/k) C By (1/k). From this we get

P( lim X, =X)=1 <= Vke N, lim P(By(1/k))=0. (1)
—00

n— oo

It remains to check that this is equivalent to

Ve >0, lim P(By(e) = 0. (2)
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Clearly, (2) = (1), so it remains to check (1) = (2). For e < €/, A,(¢') C Ay(€), so By (€') C
B (e). If

lim P(By(e)) =0

N—o00

then

lim P(By(€') =0

N—o00

and (1) = (2) follows.
(b) First note that P(Bn(€)) < 3,5 5 P(An(e)). Since 3577 | P(Ay(€)) < oo by assumption, we have

0< lim P(By(e) < lim > P(An(e) = 0.

N—o00
n>N

(¢) We have X, Py X if and only if Ve > 0, lim,,_, o0 P(A,(e)) =0. If X, — X a.s., then

0< nh_}n;o P(A,(e)) < lim P(B,(e)) =0.

n— oo

Proposition 2.46. Cauchy criterion for almost-sure convergence. Let (S,,) be a sequence of
random variables such that

Ve >0, lim P (sup |S; — S| > e) =0.
m—o0

>m
Then there exists a random variable S such that S,, — S a.s.

Proof. See Problem Set 5. O

Proposition 2.47. The Doob-Kolmogorov inequality. Let (S,) be a submartingale relative to
(Xn) such that P(S, > 0) =1 for alln € N. Then for all A > 0,

IP’( max SiZ)\> gw.
i=1,...,n A

Note that this result also holds if we have the strict inequality: max;—q ., S; > A.

.....

Proof. Set

T inf{k >0: Sp > A} Jf maxi—1 ., Si > A
T n Jfmaxi—y . Si <A

It is easy to see that T is a stopping time relative to (X,,). For k < n,

{T:k}:{sl <)\,...,Sk,1 <>\,Sk2>\}
which is determined by Xi,..., X;. For k = n, the set
{T=n}={S1 <\ ...,S-1 <)}

is determined by Xj,...,X,. By construction of T, we have that P(0 < T < n < n) =1. We can
therefore apply the optional stopping theorem for bounded stopping times (Theorem [2.39), which
gives

E[S,] > E[ST].
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Moreover, thanks to our assumption P(S,, > 0) = 1 and the fact that Sp > A on {max;—; ., > A},
we get the desired result

E[S,] > E[S7] > E | St - 1{ max SiZ)\}}ZE[AJl{‘maX SiZ)\}}:)\-P(max Siz)\).

=1,....,n =1,....n i=1,...,n

O
We now give a variant of the above inequality.
Proposition 2.48. Fixp > 1. IfE[|S;|P] < o0 fori=1,...,n, then
» \?
E { max |Si|p] < () “E[|Sn|P].
i=1,...,n p— 1
Proof. See Problem Set 6. O

Remark 2.49. A special case of the above inequality that might be useful to keep in mind is when
we take p = 2:

E {max Sf} <4-E[S?].

1=1,...,n
We are now ready to state and prove the main result of this subsection:

Theorem 2.50. Let (S,,) be a martingale relative to (X,,). Suppose that there is M < oo such that
E[Sp] < M
for all n € N. Then there is a random variable S such that lim, .. S, = S a.s.

Remark 2.51. Note that a martingale that satisfies the assumption in the above theorem is called
an L?-bounded martingale.

Proof. First observe that the function n — E[S2] is nondecreasing, as the square of a martingale is a
submartingale (Lemma [2.13) and we can then refer to Remark In addition:

E[Sr2L+m] = E[(Sm + Sn+m - Sm)Q]
= E[an] + 2E[Sm (Sn+m — Sm)] + E[(Sntm — Sm)Q]
= E[S?n} + E[(Sner - Sm)2}

E[Si(Sntm — Sm)] = E(E[Sm(sn_,_m —Sm) | X1, X )

E(SnE[(Sntm — Sm) | X1, ... Xm))
= E(Sm(E[Sntm|X1,... Xm] — §m))
E[Sm(Sm — Sm)]

= 0.
As m — E[S?] is nondecreasing and bounded by M, we can set

My = lim E[S%] < M.

m—r oo
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For m € N, define Y,, = S;,4n, — Sim. Then (Y,,) is a martingale relative to (Y,). Indeed,

ElYnt1 Y1, .. Yo =E(E[Yy1 | X1y ooy Xonan) | Y1, .., YY)
=E (E[Sm+(n+1) =S| X1, Xongn) |Y1,...,Yn)
=E (]E[Sm—',-(n—',-l) | X1, oo, Xongn] — E[Sm | X1, -+, Xt |Y17...,Yn)
=E[Sm+n — Sm | Y1,...Y,]
= E[Yn | Y1, 7Yn]
=Y,.

Applying the Doob-Kolmogorov inequality to the submartingale (Y,?) gives

1
IP’<_H113X |Yi|>e) }P’('max Yf>ez> §—2E[Yf]
i=1,...,n €

i=1,...,n

that is

P ( max [ = S| > e> < 6%E[(Smm — Sm)’] = i(E[Sﬁm} —E[S7.])-

i=m,....,m+n

‘We now want to let n — oo:

o0

{‘ max  |S; — S >e}:{sup|5¢—5m| >e}.
it} 1=m,...,m+n i>m

Therefore,
1 2
P _s;1p [Si — S| >€) < = (Mo —E[S3])-

Letting m — oo gives

1
0< lim P (sup |Si — S| > e) < (Mo — Mo) = 0.
m—r o0 i>m €
The desired result now follows from the Cauchy criterion for almost-sure convergence. O

Definition 2.52. Let (S,,) be a submartingale. For a < b, N € N*, let V,; n be the number of
couples (i,7) with 1 <i < j < N such that

Si<a, a<8;<b fori<k<j andb<S;.

Vab,N is the number of upcrossings of [a,b] between times 1 and N. Below is a graphic illustrating
an example of an upcrossing:
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Figure 1: Here is an example of an upcrossing of [a, b].

Remark 2.53. If f : N — R is nondecreasing, then there is at most one upcrossing of |a, ]
during {1,...,N}. A submartingale is a stochastic analogue of this, so there should not be too many
upcrossings of la,b] during {1,...,N}

Lemma 2.54. The upcrossings inequality: Keeping the notation introduced above, we have the
following inequality:

ElVann] < 3 (BI(Sy — a)4]  BI(Si — a)4]).

Proof. Set X,, = (S, —a)4. Since the function x — (z — a)4 is nondecreasing and convex, Lemma
ensures that (X,,) is also a submartingale. Set To =0 and for k=1,..., N :

If k£ is odd:

L if X; >0 for j € [Tp_y +1,N]
b min{j € [Ty—1 + 1,N], X; =0}  otherwise '
If k is even:
T — N if X; <b—aforje [Tp_1+1,N]
b min{j € [Ty—1 +1,N], X; >b—a} otherwise '

Lastly, set Ty4+1 = N.

Figure 2: Notice that in this particular example, N =Ty =T5 = ... =Ty = Tn41.
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The T}y are stopping times and are defined such that 1 < Ty < Tx11 < N. They are the right-
endpoints of an upcrossing or a downcrossing. If for some k < N, T, = N, then Ty 11 = N. We get,
applying the optional stopping theorem for bounded stopping times (Theorem [2.39),

E[XTk] < E[XTk+1]' (*)
Notice that
N
Xn—X1=) (Xn,, - Xn,) +Xr, - X3
k=1
= Z (XTk+1 - XTk) + Z (XTlc+1 - XTk) + X7, — Xy
k odd k even
> (b—a)Vaopn + Z (X1, — X1,) + X1, — X4,
k even

where the last inequality comes from the fact that for k odd (T}, Ty41) is an upcrossing and (X7, ,, —
X1,) > (b—a). Taking the expectation gives

E[Xy - X1] > (b~ EVaon] + Y (EXn,,] —ElXr,]) + (E[Xr,) - E[X])

k even

(*)
> (b — a)E[Vayb,N].

Going back to our definition of (X,,), we get the inequality we were looking for:

ElVasn] < 7= El(Sy — a)s — (51— a).].

Statement 2.55. Fatou’s lemma. Let X, > 0 a.s., then

E[liminf X,,] < liminf E[X,,].

n—oo n—oo

Theorem 2.56. A.s. convergence of submartingales. Let (S,) be a submartingale relative to
(Xn), such that sup, cy E[S;]] < 0co. Then there is a random variable S such that

S, X% S and E[|S|] < oco.

Proof. Fix a < b, N € Nand V,; n as before. Then

EVasv] < o Bl(Sy —a)1] < ;- (BISE] + Jal) <

1
b—a

(EZEE[S:] + |a\> < 0.

For N oo, we have

Vao,n / Vap

where V, ; is the number of upcrossings of [a, b] by (S,, : n € N). The monotone convergence theorem
gives
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. 1
E[Vap] = lim E[Vopn] < m(;ue%E[SfG] + |al)

and as a consequence P(V, ;, < co) = 1. Now consider the event

{liminf S, < a < b <limsupS,} = {V,p = 00}.

n—00 n—00

Therefore P(liminf,, o S, < a < b < limsup,,_, ., Sp) =0 and

P U {linrr_1>i£f5n<a<b<limsup5n} =0.

a<b n—oo

a,beQ

Equivalently, P(lim inf,,_,o Sy, < limsup,,_,o. Sn) = 0, meaning P(liminf,,_, o S, = limsup,,_, ., Sn) =
1. Therefore, (S,,) converges a.s. and S = lim,,_, o Sy, is the desired random variable.

A priori, S = +o0 is possible. We now want to exclude this possibility. Thanks to Fatou’s lemma,
we have

E[ST] = E[lim S;'] = E[liminf S;'] < liminf E[S;'] < sup E[S;"] < oo.

So E[ST] < 00, and since S,, = S;F — S, , we have E[S, | = E[S;'] — E[S,] < E[S;]] — E[S1] thanks to
Remark [2.14] Using Fatou’s lemma once again gives

E[S7] = Eflliminf S, ] < liminf E[S; ] < liminf E[S;"] — E[S;] < sup E[S;] — E[S]] < <.

Finally, E[|S|] = E[ST] + E[S™] < cc.

Theorem 2.57. L?-convergence of L?-bounded martingales. Let (S,) be a martingale relative
to (X,,) such that sup, ey E[S2] < oco. Then there is a random variable S such that

lim S, =S8 as and lim E[(S,— S)?] = lim ||S, — 5|2, =0.
n—oo

n— oo n—oo

Proof. We have already shown that there exists a random variable S such that lim, ., S, = S a.s.
It remains to prove lim,, o E[(S, — S)?] = 0. Using the variant of the Doob-Kolmogorov inequality
(Proposition [2.48)) with p = 2, we have

E[ max S?] <4-E[S?]. (%)
ie€{l,..n}

. . 2 2 . 2 . .
Noticing max;ecq1,.n} S; /" sup;en S asn — 00, i.e., (max;e1,... n} S )n is a sequence of nonnegative
random variables increasing to sup;cy S?, we can use the monotone convergence theorem:

21 _ w1 21 (MCT) .. 2
ERap S = BLER oy ST IR B, S

And now (x) gives

31



E[sup S7] < 4- lim E[S?] <4 -supE[S?] < oo,

ieN n—oo neN
where the last inequality holds by assumption.

Before we can conclude this proof, observe that

(Sn - S)Q = |Sn - S|2
< (19| + 151)?
< (25up|5i|)2
€N

=4sup S7 < .
ieN
Let W = 4sup;cn S?. We have E[W] < oo, (S, —S)? = 0 a.s. as n — oo and (S, — S)? < W for all
n € N and we can therefore apply the dominated convergence theorem

lim E[(S, — S)?] = E[ lim (S, — S)?] = E[0] =0,

n— oo n—oo

which concludes the proof. O

Remark 2.58. As a side note, to better understand the steps of this proof (as well as many others),
retracing the steps in reverse is often beneficial. Here, for example, we want to show that lim,, . E[(S,—
S)2] = 0, but we already know from a previous result that S, — S almost surely for some random
variable S. From this, we infer that (S, — S)?> — 0 almost surely, and we now just need to find a
way to show E[(S, — S)?] — 0 as n — oo. Multiple theorems and results could be helpful to show
this; the only thing left to do is to find which one fits our situation best. In this case, the monotone
convergence theorem won’t be of any help since we do not know whether the sequence is increasing in
n or not. Another possibility would be the bounded convergence theorem (essentially the dominated
convergence theorem but using a constant to bound the sequence of random variables), but again, it
seems quite difficult to find a constant that would bound our sequence (S, — S)? since we know so
little about it. Finally, we can try our luck with the dominated convergence theorem. In this particular
case, the random variable used as a bound comes out naturally, but most of the time, more work will
be needed to find a suitable one.
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3 Branching Processes

In probability theory, a branching process is a type of stochastic process, which is a collection of
random variables indexed by a set, typically the natural numbers or non-negative real numbers.
Originally, branching processes were developed to model populations where each individual in generation
n produces a random number of individuals in generation n + 1. This reproduction is often modeled
using a fixed probability distribution that is consistent across all individuals. We will primarily
consider branching processes in this context.

Branching processes are frequently employed to model biological reproduction scenarios. For example,
consider bacteria where each bacterium can produce 0, 1, or 2 offspring with certain probabilities
within a single time unit. Beyond biological applications, branching processes can also be used to
model other dynamic systems, such as the spread of surnames in genealogy or the propagation of
neutrons in a nuclear reactor.

Hypothesis A: The numbers of offspring from different individuals are independent and identically
distributed (i.i.d.) random variables, each following the distribution of a random variable Z. We will
write p; = P(Z = j) for j € N.

Remark 3.1. E[Z] is the expected number of offspring per individual. If E[Z] > 1, the population
should grow and in case E[Z] < 1, we would expect the population to decrease. If E[Z] = 1, what
happens ?

Our first objective will be to determine the extinction probability, i.e., the probability that there
is an n € N such that X,, = 0. Note that this implies X,,, = 0 for m > n. With this goal in mind, we
define the generating function of the random variable Z, denoted by gz(+), as follows:

gz(8) =P(Z =0)+sP(Z =1) +s*P(Z =2) +...

And we give some properties that follow immediately from the definition.
Proposition 3.2. (a) The series Z(;io p;s? converges uniformly on [—1,1];
(b) gz(s) = E[s”];

(¢c) If Z and Z' are two independent random variables taking values in N, then gzyz/(s) = gz(s) -
gZ’(S);

(d) If 32723 pj < oo, then gy (1) = E[Z], and if 3772, j%p;j < oo, then Var(Z) = gy (1) + E[Z] —
E[Z)%.

Proof. See Problem Set 7. O

Remark 3.3. Recall that the moment generating function of the random wvariable Z is given by
Mz(t) = Elet?], provided this expectation exists for t in some open neighborhood of zero. So, gz(s) =
Mz(Ins).

Let us now explore in more details the generating function of X,,, when we set Xy = 1. By definition,

X1 (5) = E[s™ 1] = E (E[s™ " | X,.]) = E[(Xa))],
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where ¥(j) = E[sX+1 | X,, = j]. Observe that

E[s¥"+1| X, = j] = E[s" 477 | X, = j

with Z* the number of offspring of individual ¢ of generation n. Noticing that {X,, = j} is determined
by the Z¥, where k < n, Hypothesis A gives

E[s*+ | X, = j] = Els” 2] = B[] ... E[s%] = (E[s"])’ = (92(9))",

as the event {X,, = j} is independent of the Z¥, k < n. Therefore,

Els | X,] = $(X) = (92(5) ™"

and

That is,

9Xni1 = 9%, °92 = (9x,_,°92) ° gz

2
= 9x,, 095

=9x, ° g(Zn)

n+1
g

The last equality follows from the fact that gx, = gz, since Xy = 1. This gives the following formula
for gx, :
9x, =9y =gz0920...047.
—_—

n times

Let’s return to our main objective: determining the extinction probability. Let F = J;2 {X,, =0} =
{ the population becomes extinct }. We want to find P(F). Observe that {X,, = 0} C {X,,4+1 = 0},
so P(F) = lim, o, P(X,, =0).

Theorem 3.4. Suppose Xog = 1 and Hypothesis A holds. Then P(F) is the smallest number o > 0
such that

a= Zaj pj = gz ().
§=0
Remark 3.5. (a) If the probability that an individual has no offspring is zero, i.e., po = P(Z =0) =
0, then 0 = gz(0) and P(F) = 0.

(b) Case of male descendants in the U.S.A (Lotka 1931 [3]). Statistical methods showed that

(5) = 0.482 — 0.041s
92\8) = "1 05595

So o = gz(a) gives a 2™ degree polynomial equation with two solutions: 1, which is always a solution,
and o = 0.86, which was interpreted as the probability of extinction of a family name.
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Proof. Recall P(F) = lim, . P(X,, = 0). Set a,,, = P(X,, = 0), we know that o = lim,, 00 v,y =
P(F) exists. Therefore,

an =P(X, = 0) = gx, (0) = g5 (0) = g2(95 " (0)) = g2(9x, ,(0)) = gz(cn_1).
If we now let n — oo, we get

o I _
a= lim ay = lim gz(an-1) = gz( lim 1) = gz(a),

where we used the continuity of gz in (x). Let us now prove the second part of the claim. Let 8 > 0
be another solution, i.e., 5 = gz(8). Since gz in nondecreasing on [0, 1] and 0 < 3, we have

92(0) < gz(B) = B.
Again,

95(0) = 92(92(0)) < 92(92(8)) = 92(8) = B.

(n)

Recall that «,, = g, ’(0). Repeating what we did above, we will eventually get

an = gx,(0) = 95" (0) < g5 (8) = 8.
Since this holds for all n € N, letting n — oo gives the desired result: a < . O

Hypothesis B:

(a) We will assume p; < 1 for all j and pg +p1 < 1. If po + p1 = 1, then p; = 0 for j > 2 and each
individual has 0 or 1 offspring, nothing interesting happens.

(b) E[Z] = 3272, jpj < oo

Proposition 3.6. Under Hypotheses A and B, we have
1. Eztinction probability =1 < E[Z] < 1.

2. Extinction probability =0 < py=P(Z =0)=0.

Proof. Follows from the fact that gz(1) = 1 and s — gz(s) is strictly convex and nondecreasing on
[0,1]. O

Let us now study the asymptotic behaviour of X,, as n — oco.

Lemma 3.7. Set m = E[Z], 0% = Var(Z) < oo. Then

E[X,] =m"
and
om"(m™ —1)
Var(X,) =47 " mZ “m » form# 1
no? , form=1
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Proof. First notice that

E[X,] = gk, (1) = (9x,_, 092) (1) = dx._, (9z(1)) - g5 (1) = g, (1) - m,

meaning E[X,,] = mE[X,,_1]. By iterating, we get the desired result: E[X,,] = m". For the second
part of the claim, we have

%11 (8) = 9, (92(5)) - g.(s)

and

9%01 (5) = 9%, (92(5)) - 9%(5) - 92 (s) + g'x, (92(5)) - 97 (5)
= g%, (92(5)) - 92(5)* + g, (92(s)) - 9% (s).
Recall point (d) of Proposition

g% (1) = Var(X,)) — E[X,)] + (E[X,])".

From this, we get

Var(X,4+1) = g;’(nﬂ(l) ot 2t D)

2
= g%, (92(1) - (97(1)" + gk, (97(1)) - g5 (1) + m"*' — m>"+)
=1 =m =1
= (Var(X,) — E[X,] + E[X,,)?) - m? + E[X,] - (0% — m +m?) + m" ! — m?(+D)
= Var(X,) -m? —m" T2 £ m?" 2 L m"e? —m"T 4T gt 22

= Var(X,,) - m? + m"o>.

Finally,

Var(X,, 1) = m"o® + m*Var(X,,)
=m"o® +m*(m" 'o® + m*Var(X,,))
= (m" +m" ™ o? + m*Var(X,_1)

= (m™ +m" 4+ mP)o? + m?O D Var(Xo)

=0
(n+1)0? Jifm=1
— 2n+1 _ n 3
u02 Jifm#1
m—1

We can now simply rewrite the case m # 1 and get

(n+1)o? Jdifm=1

Var(X, = nt+l(mn+l _q .

(Kni) = m (m Jo? itm£1
m2 —m

Theorem 3.8. Let S,, = m "X,,. Then (S,) is a martingale relative to (X,,). If m > 1, there exists
a random variable S such that S,, — S a.s. and E[(S,, — S)?] = 0 as n — oo.
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Proof. We first check E[|S,]|] is finite for all n > 1:

1
E[|S.|]] = E[S,] = —E[X,] =1 < 0.
mTL
For the second condition, we have
E[S, 41| X X, =E @p( X —LE[X X —1,...,X,]
n+1 1y---> n| — mn+1 IR n _mn+1 n+1 P nj-
Observe that
. 1 (Hyp. A n n
E[Xni1 | Xo = jnseo X1 = 1] PRV EZE 4427
= Jn E[Z]
= jn -m,

where Z}! is the number of offspring of individual % in the generation n. From this, we get

E[Xn+1 |X1, ce ,Xn] = an

and therefore

1 X,
-m-X,=—=25,.

mn+1 mn

E[Sn+1| X1,...,Xn] =

Now, suppose m > 1. We want to use the Martingale convergence theorem for L?-bounded martingales,
to do so, we first need to check that (S,,) is an L2-bounded martingale:

E[$2] = Var(S,) + (E[S,])*
= %Var(Xn) +1

o m"(m"—1)

+1 < o0.
-m

IN

m2

We can apply our theorem, which guarantees the existence of a random variable S such that S,, — S
a.s. and E[(S, — 9)?] — 0 as n — oo. O
Conclusions:

(a) If m < 1, then P(3n : X,, = 0) =1 (See Proposition [3.6).

(b) If m > 1, then for large n, X,, ~m™S.

First note that P(S > 0) = 1. If S > 0, the population grows exponentially. In case S = 0, we have
that m~"X,, — 0, the population ”grows” more slowly than n — m'™. In fact, we will show that

the population becomes extinct in this case. From this, we get that there is two possibilities for the
population of interest: ”either extinction or explosion”.

Remark 3.9. Since E[(S,, — 5)?] — 0, we have



Proposition 3.10. If m > 1.
(1) P(S = 0) = P({extinction}).

(2) Var(S|S >0)>0 : given S > 0 (no extinction), S is still random, it is not a constant.

Proof. We will only give a proof for (1). Clearly, {extinction} C {S = 0}, because S,, = m~"X,, — S
a.s., so P({extinction}) <P(S = 0).

To verify that this inequality holds as an equality, let ¢ = P(S = 0) and note that

(S=0} = {HILH;OSH:O}.

Now, observe that

=1
_ . ny () _
—IP(Q{nhmm X —O}Xl—k>
(%) 5
) : n v (1) _
= Iﬁl P (nhm m~ "X X, k)

Therefore,

That is: ¢ = gz(q). In addition, ¢ = P(S = 0) < 1 because Var(S) > 0. We know that s = gz(s)
has exactly two nonnegative solutions (when m > 1), namely 1 and P({extinction}), therefore ¢ =
P({extinction}).

O
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4 Brownian motion

Definition 4.1. A Brownian motion (BM) is a stochastic process (B : t € Ry) with two properties:
(a) For all s,t € Ry, we have
Biys — By ~ N(0,0°t),
with o > 0 a fized parameter.

(b) Forty <ty <tz < t4, the increments (B, — By,) and (B, — By,) are independent. The same
holds for increments over n € N nonoverlapping intervals.

Remark 4.2. 1. The law of By is not specified.
2. We will often write B(t) instead of By for clarity.

3. Unless stated otherwise, we will consider the case 0 = 1 and By = 0. We will designate this
specific instance as a standard Brownian motion. We have in this case By ~ N(0,t), t € R,.

We now want to find an expression for the joint probability distribution of (By,, By, .., B, ), where
0<t; <...<t,. Define

(,1) = = exp {21
T,t) = —— -expi—— ¢,
b V2ot P17 %
which is the probability density function of a A(0, ).
Proposition 4.3. Using the function p(z,t) defined above, we have

f(Btl)“_7Btn)(x1, v xn) = plar, t)p(ee — x1,ta —t1) . p(Tn — Tt tn — tne1)-

Proof. By property (b) of our definition, the probability density function of Y = (By, — By, B:, —
By,,..., B, — By, ,), where By = 0, is given by

9Wis - yn) = (Y1, tr — to)p(y2, t2 = 1) - P(Yn, tn — tn1).
Define T : R™ — R” by T(z1,...,z,) = (1,29 — T1,..., Ty — Tp—1). Then, T(B;,,...,B;,) =Y.
Recall that if Y = T'(X) with T bijective and C°, then

fx (@) = fy (T(x)) - |det(J)|

where J = (07T;/0x;) is the Jacobian matrix. In our case, the Jacobian matrix is of the form

1 0 0 0
-1 1 0 0

<
I
- o
\
—
-
o

meaning det(J) = 1. Therefore,

J(Bi, B, ) (1, Tn) =p(z1,t1)p(re — x1,ta —t1) ... p(Tp — Ty—1, by — tr_1).
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Lemma 4.4. Translation invariance. For s < t, the conditional law of By given Bs =y has the
following property:

P(Bi<z|Bs=y)=P(B; <z —y|Bs =0).

Proof. We know that the joint density of (Bs, By) is:

fly,z) = ply, s)p(x — y,t — s).

The conditional density of B; given B, = y is:

f(y7 S) _ p(y’ S)p(l‘ -y, t— 5)

ft STNY) = - :px_y7t_8~
215, (@ ]9) f8.(y) p(y, s) ( )
It follows that
P(B,<z|B,=y) = / p(v =yt — 8)do
o z—y
(w=29) / p(u,t — s)du
—00
= PB;<z-y|Bs;=0).
O
Statement 4.5. Continuity of sample paths. Fiz w € Q. With probability one,
R+ — R
t— Bt((U)
18 continuous.
Theorem 4.6. Markov property. Fort; <...<t, <t,
P(Bt S J)|Bt1 = xl,...,Btn :J}n) :P(Bt S J)|Btn = l‘n)
Proof. See Problem Set 8. O

Proposition 4.7. The covariance of Bs and By is given by

Cov(Bs, Bt) = E[BsB] = s At.

Proof. Without loss of generality, suppose s < t. Using the independence of increments and the fact
that By follows a N (0,t) distribution, we have

E[B;By] = E [Bs((B: — Bs) + Bs)]
=E[B,(B; — B,)] + E[B?]
=E[B,] -E[B; — B,] + s
=0+s
=sAt.
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4.1 Probabilities of behaviors of Brownian motion

Our goal is now to derive expressions for the probabilities of behaviors defined by specified values at
particular times. Let 0 < t; < ... < t,, be specific time points and a;,b; € R such that a; < b;, with
i €{1,...,n}. The probability for By, to be in the interval [a;,b;] for all i € {1,...,n} is

b1 by
P(Btl S [al,bl],...,Btn S [an,bn]):/ dl’l/ d:Enp(l’l,tl)p(IQ*Z'l,tQ7751)
ay Qn
. p(-rn — Tp—1, tn - tnfl)-
tl tQ t3 t4

Figure 3: One example of a sample path that satisfies the constraints at times ¢1,to,t3 and t4.

Remark 4.8. Many interesting events are not of this kind, for example:

P(max Bu>a>:IP’ U B,>a}

ue0.] reQn(o,t]
Proposition 4.9. Reflection principle (Bachelier). For a > 0,

P < max B, > a) =2P(B; > a).
w€e[0,t]

The formal proof of the above proposition requires the use of the strong Markov property (Theorem
4.53]), which we have not yet introduced. Therefore, we will provide an informal explanation of the
result and indicate the points at which the strong Markov property would be applied in a rigorous
proof. Let

~ Jinf{a >0: B, = a} ,if{u>0:B,=a}#0
400 , otherwise '

Define

~ Bt ,ift<7'
B, = : .
a—(By—a) ,ift>r
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Intuitively, (Bt) is also a BM by symmetry. However, this is where one would need to use the strong
Markov property in order to get a rigorous justification. Consider the event

{max BUZa,Btza}:{max Buza,BtSa}.
uel0,t) u€[0,t]

Therefore,

]P’(max B, > a, Btza) :P(max BuZa, Bt§a>

u€l0,t] u€l0,t]

;P(max Buza,BtSa),
u€([0,t]

—~
N

where the equality marked by (%) follows form the fact that B; and B, are both BMs. From this, and
recalling that P(B; = a) = 0 for the equality denoted by (%), we get the desired result

P(max Bu>a) (;)]P’<max Bu>a,Bt>a>+P<max Bu>a,Bt<a>
u€|0,t] w€[0,t] w€[0,t]
= 2]P’<max B, > a, Bt>a)
u€|0,t]

Proposition 4.10. Fizx a # 0. We define the first hitting time of level a by

T inf{t >0: By =a} , i {t>0:By=a} #0
“ ) +oo , otherwise '

The probability density function of Ty is

fort>0.

Proof. Suppose a > 0. Then

{Tagt}:{maxBuZa}

u€0,t]

and from this




where we used the change of variable z = y+/f in (x). Finally,

= e 0= i (con (57) () - e ()

The case a < 0 can be treated analogously. O

Remark 4.11. (a) The stopping time T, is a.s. finite:

. 2 [ —y?
= <t)= - — -7 =
P(T, < o0) tlggo P(T, <t) t1i>oo T //\[ { } dy \/ﬂ/o exp{ 5 } dy = 1.

(b) The stopping time T, does not have a finite expectation:

E[Ta]:/Oootha(t)dt:/mt\/%fexp{;f}dtz/100\/‘;?\}%exp{;‘f}dt

[ {)e-

Proposition 4.12. The probability P(min,cjo 4 By, < 0| By = a), i.e., the probability of moving down
a units is given by

a2
P B, <0|By = = Ze du.
(s B <0180 =0) = =l w3 )

Proof. By symmetry and invariance under translation in space, we have

P(mln B, <OBO—a) :]P’(max B, >2a|B0—a>
u€[0,t] w€[0,t]

:P(max BuZa|Bo—O>
u€|0,t]

=P(T, < t| By = 0)

t 2
a _3/2 —a
= — u ex du.
\/27r/0 p{ 2u }

Proposition 4.13. As a direct consequence of Proposition[{.13, we get that the probability of visiting
zero, starting at By, = a, during [to,t1], for 0 < tg < t1, is

t1—to 2
a —a

P min B, <0|By, =a] =P min B, <0|By=a] = w3 % ex {}du
(ue[to t1] ‘ fo ) (u€[0,t1to] o | 0 ) \/277/0 P 2u

43



Proposition 4.14. Let 0 < to < t1. The probability o of visiting zero in the interval (tg,t1) is

2 t
=P(3t € (to,t1) B:=0| By =0) = — arccos (’/t0> )
1

Proof. First recall the following formula of total probability:

P(F) = /00 P(F|X =x) fx(z)dz

— 00

‘We have

o= / P(3t € (to,t2) : By = 0| Byy = a) [, (a) da

— 00

:2/ ]P’( min B, <O|Bt0—a> fB,,(a)da

u€E(to,t1)

t1—to a —a2
2/ da fp, (a / du\/—ﬂ_u_WQ eXp{Qu}

t1—to 2

1) et 11
d _3/2/ d — | =+

W\F/ uu ; a aexp 5 t0+u

3 \/> t1—to U

a (to +u)u
i /\/ (t1—to)/to dv

o s 0 ]. + U2

2 { t1 — 1o }
= — arctan —_— .
s to

We switched the integrals in (1), used the explicit antiderivative of a exp{—(a?/2)(1/to+1/u)} given

by
—a? 1+1 tou
e d 2 (L L
P12\t "4 totu

in (2) and did the change of variables u = ¢y v? in (3). It follows that

t
tan? (za> 19
2 to

:>t—1*1+tan <7Ta) -
to 27/ cos? ((arm)/2)

to TQ
= —zcos( )
t1 2

From this, we get the desired result

2 t
:P(Ete(to,tl)Btszo:O):Warccos( t0>
1
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Proposition 4.15. The arcsin law. Define Ly := sup{t < 1: B, = 0}, the time of the last visit to
0 before time 1. Then

P(L; < s) = 2 arcsin(v/s), s € [0,1].

™

Remark 4.16. Note that P(B; =0) =0, so P(L; < 1) =1.

Proof. First observe that
{L1 <s}={B;#0 forall t € [s,1]},

meaning

P(L; <s)=1-P(3te[s,1] : B,=0]| By =0)
2
=1— = arccos(v/s).
7r
Now recalling the following identity:

arccos(x) + arcsin(z) = g,

we find the desired result

P(L; <s)=1-— 2 (g - arcsin(\/g)) _2 arcsin(v/s).

s ™

Remark 4.17. The probability density function of L1 is given by:

fr(s) =2 =
S YN =

for s € (0,1). The density function of Ly has the following plot:

le (S)

0.2 0.4 0.6 0.8 1
So we would typically expect Ly to be near 0 or 1 and that it would be less likely for it to be near 1/2.

Remark 4.18. We will use the following notation: Py(...) =P(... | By = a).
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4.2 Three invariant properties of Brownian motion

Proposition 4.19. Scaling invariance. Let (B, t € Ry) be a standard BM. Fix a > 0 and define
B, = ﬁ_lBat. Then (Bt) 1s a standard BM.

Proof. We check the two defining properties:

(a)

_ . 1 1
Bt+s — By = %Ba(tJrs) - %Bas
1
= %(Bas-i-at - Bas)
1
= —=N(0,at
TN (0.t
= N(0,1).

(b) Let t1 < ta < t3 < t4. The increments

~ ~ 1
Bt4 - Bts = 7(Bat4 - Batg,)

B

and

By, — By, = —(Bat, — Bat,)

are independent as

11 <t <ty <ty <= at] < aty < aty < aty.

Proposition 4.20. Time inversion. Let (B;) be a standard BM and define B, = tBi if t >0
and By = 0. Then (B;) is a standard BM.

Proof. We check the two defining properties:
(a)

Biss — By = (t+ 8)Bij(14s) — sBuys
=1tB1/(t4s) — 5(B1/s — B1/(t+s))

1 1 1
:t/\/(o,)—s/\/<0,— )
t+s S t+ s
* 1 1 1
(Z)N<O,t2+52 (— >)
t+s s t+s

= N(0,%),

where () holds by independence.
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(b) Let t; <ty <t3 < t4 and recall that for a standard BM:

Cov(By, B,) = E[B,B,] = uAv.

To check independence, it suffices to show that the covariance is zero:

E [(Bt4 - Bt3) (Bt2 - Bn)} =K [(taB1je, — tsBiys,) (t2Bije, — t1Buyy,) ]
= t4toR[By /1, By, — tatiEB[By s, B1t,]
— t3to’[ By /1, B1yt,] + t3st1E[ By ¢, B1 4,

= tat ! tat ! tot 1+tt L
= lql2 t) 41t4 23t3 31t3

=0.

Remark 4.21. The continuity of t — Et(w) at t =0 is obvious. It is suggested by the fact that
. 1

BI(B)?] = PE[BY,) = - =1 =0

as t ™\, 0.

Proposition 4.22. Invariance under translation of time. Fiz h > 0, define B, = Byyn — By,
Then (By) is a standard BM.

Proof. We check the two defining properties:
(a)
Bt—i—s - Bs = (Bt+s+h - Bh) - (Bs+h - Bh)
= Bt+s+h - Bs+h
(0, )

(b) Let t; <ty < t3 < t4. The increments

Bi, — Biy = Biy+n — Bigyn

and

B, — Bty = Biy+h — Biy+n

are independent because t1 +h <ty + h <ts+ h <ty + h since t1 < to < t3 < t4.
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4.3 Some transformations of Brownian motion

Definition 4.23. A reflected Brownian motion is the process (X, t € Ry) defined by Xy = | By,
where (By) is a standard BM.

Proposition 4.24. The reflected BM has the Markov property. In addition, for 0 < s < t,
x| Xs=2)=p(y —x, t —s) +ply +z,t—s),

where y,z > 0 and where p(u,r) = (vV2rr) L exp{—u?/(2r)}.

Proof. Fix 0<t1 <ty <...<t, <tand z,...,z,,z>0. Then

P(Xy < 2| Xy, =an,..., Xy, =a1) = P(—2 < By < x| By, = +xy,..., By, = £11)
= P(—x < By < z| (B, = +xn, past) or (B;, = —x,, past))
@w P(—x < B; < x| By, = xy, past)
@ P(—x < B, <z|B, =z,)

= P(Xy < x| Xy, = 70),

where (1) follows by symmetry, (2) holds since a standard BM has the Markov property and lastly,
we can see in (3) that the "past” positions did not affect our calculation.

From this, we get that the conditional density of X; given X; = z, is:

dilP’(Xt <z|Xi, =xn) =p@—xpn, t —t,) —p(—x —zp, t —t,)(—1)
T

=p(@ —xn, t —t,) +p(x+ 20, t —ty),

which is exactly what we wanted. O

Definition 4.25. Absorbed Brownian motion. Let (B;) be a BM with By = a # 0. We define
the BM absorbed at 0 to be the process (Y, t € Ry) defined by

o _[B L ft=Ti=if{t=0:B, =0}
b 0 ,Z'ft>T0 -

Proposition 4.26. The BM absorbed at 0 has the Markov property. In addition, for 0 < s < t,

fvo(y|Ys) =ply—z,t—s)—ply+a,t—s),

with y,x > 0.
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Proof. We prove the case By =a > 0. Let 0 <t; <...<t, <tandy,xz,z; >0forie {1,...,n—1}.
We will check that

]P)()ft >y‘Y%n ::177}/;7,_1 :xn—la'-'ayﬂ :xl):P(}/t >y|Y“t‘n :$)

If x = 0, then both sides are equal to 0. If z > 0 and z; > 0 for ¢ € {1,...,n — 1}, so that the path
is possible, then we have

LHS:P(Yt>y| H[BIH]B >0Ytn:x,...,Yt1=x1>
ue|0,t,

:P<Bt>y, min B, >0|B;, =z, min B, >0,B;, |, = 2y_ 1,...,Bt1:x1>
w€[tn,t] ue[Ot]

past

—~
~—

= P(Bt>y, min B, > 0| By, :;E)
UE [tn,t]

—

2)
= P(Y;ﬁ >y|Y;5n =.'L‘),

where (1) follows from the Markov property applied to the BM (B;) and we can see in (2) that the
values of Y; at earlier times played no role.

Let us now compute (x) = P (B, > y, min, e[y, o By > 0] By, = z):

(%) = P(B < 2z — y, n%ax}Bu <2x|B, =x)
UE[tn,t
W P(Bi—, <2z —y, max B, <2x|By=x)
) u€[0,t—t,)
© P(B;_y, <x—y, max B, <xz|By=0)

uw€[0,t—t,]
= Po(Bi—t, <z —y) —Po(Bi—y, <z —v, fnax ]Bu > )
u€(0,t—t,

(3)
:PO Bt tn <x-— )_PO(Bt—tn>x+y)

n

Py

(
Po(Bi—t, <o —y) —Po(Bi—y, < —2—y)
( —y<Bit, <z—1Y)

p(u, t — t,)du,

where we used the translation of time property in (1) and of space in (2). The equality denoted by
(3) follows from the reflection principle. Finally, we get the desired density function

vyl Vi, =)= —(p(aj -y, t—t)(=1) = p(—7 —y, t_tn)(_l)) =p@—y, t—tn) —plx+y,t —tn).

Definition 4.27. A Brownian motion with drift is the process (Z;, t € Ry) defined by Z; =
By + upt, where (By) is a standard BM, and p # 0.

Proposition 4.28. For 0 <t <ty < t3 < t4, the increments

Zy, = Zty = By, — By + ulta —t3) 3 Zy, — Zy, = By, — By, + plta — 1)

4
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are independent. Therefore,

thz_Zt17Zt4_Zt3 (J}, y) = thz_Btl (‘T - M(tQ - tl))th4_Bt3 (y - H(t4 - t3)>'

Proof. Directly follows from Definition [£:27]

Proposition 4.29. A BM with drift has the Markov property.

Proof. Fix 0<t; <...<t, <t. Then,

Po(Z; < x| Zi, = Xy Zsy, = 1)
= P(Zt — Ztn S xr _xn|Ztn — Ztn71 = Tn —xn_l,...,ZtQ — Zt1
Ypz, -7, <w—w)

Zy—Zy, <x—an|Zy, — Zo=1u,—0)

n

= IP’(
= P(Zt S X | Ztn = In),

where (x) is a consequence of Proposition

:xg—xl,Ztl—Zole—O)

O

Let us now study the time it takes for a standard BM to exit an interval. For a € R, we defined
T, = inf{¢t > 0 : B, = a}, the first time we hit the level a. We already saw that P(r, < o0) = 1.
If By € [a,b], a < band a,b € R, then Ty, = 74 A 7 is the first exit time of the interval [a,b]. Let
x € (a,b) and fix h > 0, small, so that [z — h,x + h] C (a,b). The BM starting at  must exit the

interval [z — h, z + h] before exiting [a, b]. By symmetry,

]P’x(BTI =T — h) =5 = P$(BTm—h,z+h

—h,z+h

Therefore,

=x+h).

PJ(BTa,b = b) :PI(BTa,b =b | BTth,zML =T = h) . PI(BTth,IJFh =T — h)

+Py(Br,, =b|Br,_, .., =2+ h)-Py

Let f(z) =Py(Tep =b), then

F(@) = 3o —h)+ 57w+ h).

(BTx—h,m+h =x+ h)

This implies that f is affine, i.e., of the form f(z) = ax + 8, a, 8 € R. If f € C?, write

0= %(f(z+h)+2f(z)+2f(xfh)>

and divide by h2

0

_Lf@+h) +2f(z)+ fx—h)

2 h?
Finally, letting h \ 0 gives
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1 11

confirming that f(x) = ax + B for some «, 8 € R. We have the following two constraints: f(a) = 1
and f(b) = 1. From this, we get

T—a

Proposition 4.30. For z € [a,b], we have
T—a
P.(Br,, =b) = —

Our next goal will be to determine E;[T, 3], = € [a,b], ie., find the mean exit time of [a,b]. As
defined above, we have T, = 7, A 7, with Eg[7,] = +00 = Ey[1]. Fix h > 0. We aim to first find
an expression for E;[Ty_p z1n] = Eo[T-p.p], where T_y, ;, = inf{u > 0 : |B,| = h}. By the scaling

invariance property, (B, = hBy/2u € Ry ) is also a standard BM. Therefore, T_j, ;, has the same
law as T, = inf{u > 0;|B,| = h}. By noticing that

Tfh,h =inf{u >0 : |Bu| =h}
=inf{u >0 : |hB,/p2| = h}
=inf{u > 0: By /2| = 1}
= inf{vh* >0 : |B,| = 1}
=h?inf{v >0 :|B,| =1}
=h*T_ 4,

we find EO[T—h,h} = EO[T—h,h} = hQEo[T_Ll] = h2 - Co, with Co = EO[T—LI] > 0. We will follow the
same reasoning used to determine P, (7, , = b) in order to derive an expression for E,[T, ], leaving
co as the only remaining unknown.

Fix h > 0 small. A Brownian motion (BM) starting from x must first exit the interval [z — h, x + h]
before it can exit the larger interval [a,b] D [x — h,z + h]. This first exit takes h%cq units of time.
Then, starting from either  — h or x + h, it must exit [a, b], so

N | =

1
Eu[Tap] = (coh® + Ep_p[Tus)) - 3t (coh® + Eogn[Tap)) -

Let g(x) = E;[T4,5). Then,

N | =

1
g(z) = (coh® + g(z — h)) - 3 + (coh® + g(z + h)) -
Expanding and rearranging gives
9 1
0=coh” + 5 (9(x — h) —2g(x) + g(z + h)) .
Dividing by h? yields

1 glz—h)—2g9(x)+g(z+h)
OZCO+§. h2 ?
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and taking the limit as h N\ 0 gives

1
0=co+ 59”(:5).

Hence, ¢"”(x) = —2c¢p, implying that g is a second-degree polynomial. Using the boundary conditions
g(a) = 0 = g(b), we find the explicit form

g(z) = co(b—z)(x — a).

Proposition 4.31. For x € [a, ),
E;[Tup) = (b—x)(x —a),

where we have used the fact that co = Eo[T-11] = 1.

We now consider a slightly more computationally involved problem. Specifically, we aim to compute
the probability that a BM with drift exits the interval [a, b] through the point b before reaching a. Let
Zy = By + pt, where p # 0 and (By) is a standard BM, so that (Z;) is a Brownian motion with drift
p. Define T, = inf{u >0 : Z, € {a,b}}. Our goal is to compute P,(Zr, , = b), the probability
that the process exits through b when started from z € [a, b].

Fix h > 0, small. During h? units of time, the BM moves about 4A units (B; ~ N(0,t)). The drift
contributes for ph? units, and ph? << h since we consider a small value of h. We must have

1

1
Po(Z1,,, = 0) = GPorunz+n(Zr,, = ) + SPoyunz—n(Zr, , = b).

Let f(x) =P,(Zr,, =b). We have

flz) = %f(m + ph® + h) + %f(:c + ph® = h)

and

0 :%[f(x+uh2+h) — f(z — ph? +h)]

F5[ gt =) < 26@) + S = (= )]

=c

Using the Taylor expansions:

o=;{f@ﬂw#+hrwh—mﬂ}+;ﬂ@ﬂw#+hﬁ—m—u#ﬂ}+§c

SO

0= < [f(z)2uh® + o(h*)] + %c.

1
2
Dividing by h? gives

c (h — uh?)?  o(h?)
(h — uh?) h? h2 "’

1
0=pf'(z)+ 3
and letting A \, 0 yields
1
0=pf'(@) + 31" @)

52



since

as h N\, 0.

Therefore,

f'(z) = e exp{-2pa},
f(x) = ¢1 exp{—2uz} + é.

Using the boundary conditions f(a) =0, f(b) = 1, we get

(2) = exp{—2ux} — exp{—2ua}
exp{—2ub} — exp{—2pa}"

Proposition 4.32. For a BM with drift u # 0,

exp{—2ux} — exp{—2pa}
exp{—2ub} — exp{—2pa}’

P.(Zr,, =0b) =

for z € [a,b].

Corollary 4.33. Let Z; = By + ut, i < 0 be a BM with drift and set M := Supycg, Zt- Form >0,
Po(M > m) = exp{2um}.

Therefore, Po(M = 4+00) =0 and

e -1
EO[M]_/ Po(M > m)dm = — > 0
0 2p
Proof. Set 7, =inf{t >0 : Z, = a}. By Proposition .32
exp{—2u -0} — exp{2ua 1 — exp{2ua
Po(r, < ) = SPA=20- 0} = exp{2pua) p{2pa} )

exp{—2ub} — exp{2ua}  exp{—2ub} — exp{2ua}

for —a < 0 < b with a,b > 0. Now suppose that

If we let a / +o0 in (%), we find

1-0

Po(M 2 b) = PQ(T}) < +OO) = m

= exp{2ub}.

It remains to be shown that (%) holds. First, notice that the map a — 7_, is nondecreasing. Indeed,
if a1 < ag, then (Z;) must hit level —a; before it can reach level —ag, so 7_,, < 7_4,. In particular,

lim 7, = sup 7_4.
a—+00 acRy
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For t > 0,

{ Sup T_q §t} = ﬂ{T_a §t}:{ inf Z, :foo}.

0,t
a€Ry aeN s€(0,]

From this and the fact that s — Zs(w) is continuous, we must have

Py sup 7—o <t :P()( inf Zs:—oo> = 0.
a€R4 s€[0,t]

Moreover, the event {sup,cg, - < t} is increasing in ¢, i.e., if #1 <o, then {sup,cp, 7o < t1} C
{supser, T-a < t2}. Therefore,

Py (Sup T q < —l—oo) =Py U { sup 7o < t} = lim Py (sup Tog < t) =0,
t>0;teN

a€Ry acRy t—o0;teN a€Ry
and Po(sup,cp, 7-o = +00) = 1. O

Let us now do a quick overview of the asymptotic behavior of ¢t +— Z;, with p < 0. Recall our
definition of a BM with drift Z; = B; + ut. Since E[B?] = t, B; has order of magnitude /%, i.e.
B; ~ v/t and for Z, we have:

(1) For t small (¢ ~ 0), vt >> t, meaning Z; behaves like B;.

(2) For t large (t — +00), vVt << t, so Z; behaves like ut.

4.4 Zero set of Brownian motion and its Hausdorff dimension

Definition 4.34. Let (B;,t € R}) be a standard BM. We call the set
Z(w) = {t € R+ . Bt(LU) = 0},

the zero set of the standard BM (By).

Proposition 4.35.

P, ( N {ate (0,n7") :Bt:()}> -1

neN*

Therefore, there exists a sequence (tn)nen such that tp, > tpy1 >0, lim, 4o tn, =0 and By, =0 for
all n.

Proof. Let n € N*. Then, for all m > n:
Po (3t € (0,n™") : By=0) >Py (3t e (m™,n"") : B,=0)

2 n
= — arccos — .
T m
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2
Py (3t € (0,n™ ") : B, = 0) > = arccos(0) = 1.
™

Set F,, = {3t € (0,n~ ') : By = 0}. Then, F,, O F,,;; and therefore:

Po ( N {Ht €(0,n") : B, = 0}> =Py ( N Fn> = Jim Po(Fn) =1,

neN* neN*

since Po(F,,) =1 for all n € N*. O

Before stating and proving the next result, let us recall a simple and useful fact:

Lemma 4.36. Let Y be a random variable. If E[Y] =0 and P(Y > 0) =1, then P(Y > 0) = 0.

Proof. For any n € N*, define
E, = {Y > nil} .

Since Y is nonnegative,

Y>Y -1g, >n g

n )

by definition of E,,. Taking the expectation gives

0=E[Y]>n"'P(E,) >0,

and therefore P(E,) = 0. From this, we get the desired result

0<P(Y > 0) =P (Upen-En) = lim P(E,) = 0.

n—roo

Remark 4.37. When the BM starts at o # 0, we can set 7o = inf{t > 0 : By = 0} and we already
know that P, (10 < +00) =1 (see Remark . From this and what we have seen above, there will
be an infinite number of visits to zero in the interval 19,0 + €|, for e > 0.

Proposition 4.38.

IP0<30 <to<t, :B; =0 forallte [to,tl]) —0.

Proof. For N € N, define

Fy = {aogto <t <N :B =0forallte [to,tl]}.

Then, since Fy C Fyy1 and UyenFn = {30 < t9 < t; : By = 0for all t € [tg,t1]}, we have
Po(UnenFn) = impy o0 Po(Fv) and it suffices to show Py(Fx) = 0 for all N € N to get the desired
result.

If Fiy occurs, then
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N ty
/ ]l{Bt:O}dtz/ Lodt =ty —ty > 0,
0

to

Set Y = fON 1{B; = 0}dt > 0. Thanks to Fubini’s theorem, we find
N N N
Eo[Y] = Eq / 1{B, = 0}dt :/ Eo[1{B; :O}]dt:/ Po(B; = 0) dt = 0.
0 0 0 T

Combining Ey[Y] = 0 and Py(Y > 0) = 1, we conclude Py(Y > 0) = 0. Finally, since {Y > 0} D Fy,
we get Po(Fy) =0 for all N € N. O

Remark 4.39. Fix N € N*. Define

Zn(w)={t € (0,N) : By(w) = 0}.

Then, Zn(w) is a closed set in (0, N), meaning Z5 (w) is an open set in (0, N) and

Z]cv(w) = U O;,

i=1

where Oy, 1 € N are disjoint open intervals. Then we have Zn(w) U ZS (w) = (0, N) and

]]-ZN(w) (t) + ]]-ch\j(w)(t) =1
fort € (0, N). Therefore,

N N
/ ]IZN(w)(t)dt + / ]IZIL;](M) (t)dt = N.
0 0

Since

N
/ ILZN(UJ) (t)dt =0,
0

we have that in some sense Zn(w) has length zero, and Z§;(w) has length N.

Our main goal now will be to find the Hausdorff dimension of Z(w), but before that, we have to go
over some definitions and results.

Definition 4.40. Fiz E C R.
(a) A family (U;, i € N) of intervals is a cover of E if E C U;enU;.

(b) Let L(U;) denote the length of U;, where L([a,b]) =b —a fora <b. Fixz é >0, (U;) is a d-cover
of E if it is a cover of E and L(U;) < for all i.

(¢) Fiz o > 0. Define
« E = 1 i f (L 7 )a
" ( ) 61\1?(1) (U;) aél—rclover ofE; (U)
Note that 0 < po(F) < 4o00.
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Lemma 4.41. (a) Fiz a > 0 and suppose that po(E) < +00. Then for > «a, pug(E) =0.
(b) Fiz o > 0 and suppose that po(E) > 0. Then for f < o, ug(E) = +00.

Proof. (a) Fix 8 > «a. Then,

B
< pg(E) = lim inf L(U;
0 < pp(E) o A 1( ( z))

= lim inf (L(Ui))ﬁia : (L(Uz‘))a

N0 O5(B) £

[0
< lim 67~ inf L(U;
—51{% Clgr(lE) i—l( (U)) ’

where we write Cs(E) to denote the fact that we take the infimum over the d-covers (U;) of E.
Fix §p > 0, we now have

oo

E) <67 lim inf L)) =8 ua(E).
us(E) < 00" lim inf, i_l( (U) = 00" a(E)

Since 8 > «, pa(F) < 400 and the above holds for all §y > 0, we have that pg(E) = 0.

(b) Suppose pq(E) > 0. Fix 8 < a. Suppose by contradiction that pg(E) < +00. By (a), we would
have p1o(E) = 0, which gives a contradiction. Hence, pug(E) = +o0.
O

From Lemma we conclude that there exists g such that if 8 > ag, then ug(E) = 0 and if
B < ag, then pug(E) = 4o00. The value piq,(E) can be 0, +00 or in (0, +00).

Definition 4.42. The value ag mentioned above is called the Hausdorff dimension of E.

The Hausdorff dimension of a set E in R? is defined similarly:

Definition 4.43. (a) For E C R%, (U;)ien is a d-cover of E if E C U;U;, and each U; is a ball with
radius €; > 0 and diam(U;) = 2¢; < 0.

(b) For a >0,

o0

to(E) = }{1}) Clélng) (dzam(Ui)) .

1=

(¢) dimy(F) = inf{a >0 : po(E) =0} =sup{a > 0 : p(E) = 400}

Remark 4.44. To show that dimy (E) < ag, it suffices, for each o > g and n € N*, to find a
(1/n)-cover (U") of E such that

lim inf (diam(Ui"))a —0.

Indeed,
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(o3
o(E) = lim inf (d' Ul-)
fa(E) lim, nf Z_ iam(Uy)
< lim  inf (diam(Ui))
n=rtoo Oy (E) 4

< . . . TL @ — )
S

Example 4.45. (a) Let d =2 and E = [0,1] x {0}. Define the sets

gro— | L L L
n.n 2n’ 2n

The sets U are balls of diameter n=t for the norm ||(z1,x2)|| = max(|z1|,|xa|). In order to
cover E, we need n balls with diameter n=t. Since

" a 1\“ s 400 a<l
Z (diam(U[‘)) =n <> =l "2 oo “
. n 0 ya>1

=1

suggesting dimy (E) = 1. In fact, it proves that dimy(E) < 1.

(b) Let d=2 and E = [0,1]?. Define

1] [j g1
Usz[Z,H]x[J,”], ije{0,...,n—1).
> n n n n

1

This time, we need n® balls with diameter n=! in order to cover E:

n N ) o )
Z (dmm(ij)) — n2 <) _ p2-a notee 400 Ja< ’
| " 0 yo > 2

ij=1
which suggests dimy (E) = 2 and ensures dimy (F) < 2.

(¢) Let C be the Cantor set. The Cantor set is defined inductively as follows. As a base case, we let

OO = [0, 1];
Cl = [07 1/3] J [2/3a 1]7
Cy:=1[0,1/9]U[2/9,1/3]U[2/3,7/9] U[8/9,1].
Forn € N, the set C,, is the union of 2™ disjoint closed interval of length 3~". To get C,+1 from

C,,, we remove the open middle third from each of the intervals in C,,. The Cantor set is defined
as

C:= Fj) Ch.

At stage n, there are 2™ intervals with length 3=" needed to cover the Cantor set,

o~ N o (1 noteo |00 a < [log(2)/log(3)]
; (dzam(Ui )) =2 <3> = exp{n[log(2) —log(3)]} "— {O o> [log(2)/ log(3)]

which suggests dimg(C) = log(2)/log(3) and ensures dimz(C) < log(2)/log(3).
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Theorem 4.46. Let (B;)i>0 be a standard BM. Then,

1

P, (w s dimy {t € Ry : By(w) = 0} = 2> -1

We will not prove this theorem in full; instead, we will prove the following result:

Proposition 4.47.

1
Py (w cdimy {t e Ry : Bi(w) =0} < 2> =1
To do so, we will need the two following lemmas.

Lemma 4.48. There exists 0 < ¢g < ¢1 < +00 and so > 0 such that for allt € [1,2] and 0 < s < s,

t
cov/'s < arccos (1 / ) < c1v/s.
t+s

Proof. Setting y = (t + s)/t, we get

t 1
arccos arccos [ —
(Vi) ()

Vs N
and it suffices to show that
()
arccos | —
lim — VY
y N1 Yy — 1
Applying B-H, we get
_ b b s
V1-1 2 -1
lim 1y = lim /L Yy
N\l 1 NIV y—1  y3/2
2y —1
O
Lemma 4.49. For I = [tg,t1] C [1,2], to < t1 and t; — tg small enough, we have
2
Po(Ft el : By =0) < —ci\/L(I).
™
Proof. Using the previous lemma,
2 to 2
PO(EIt S [to,tl} : By = 0) = — arccos — | < —c1V11 — o,
s to+ (t1 — to) s
provided t; — ty < sq. O
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Proof. of Proposition[{.47 Let Z(w) = {t € [1,2] : B;(w) = 0}. Define

1+1
n

t+1

1] , otherwise

Clearly, Z(w) C U, Up

7 meaning (U,

will show that ]P’(ua( ) =0) = 1. Since (

0,...,mn—1)is a n~!-cover of Z(w). Fix a > 271, We
) , we have

0< EO[M&(Z)]
n—1
< B lmint Y- (£01)
=0
L nd R
< liminf B 2 (L(Ui ))

n—1

= timint 35 [(207))']

n—1 @
= linrgicngEO [(i) WU # 0} +0°1{U} = @}]
zlinrr_1>i£fz< ) P, Hte[H—:L, Z:q :Btzo)

(2 1
< liminf —| -
< lmin Z(n) Va

1—a—(1/2)

= liminfn
n—o0

= liminfn'/2~* =0
n— o0

as o > 1/2. We used Fatou’s lemma (Lemma in (1) and Lemma in (2).

Finally, combining Eq[ia(Z)] = 0 and P(ua(Z) > 0) = 1, we get Po(pa(Z) = 0) = 1, which in turn
implies Py (dim#(Z) < 1/2) = 1. The only step left to do is extend this result to R..

Now, let Z(w) = {t € R} : B;(w) = 0}. We have just proved that
Po(a(Z N[1,2) = 0) =

for @ > 1/2. Similarly,

Po(pa(Zﬁ[n,n+1]) :0) =1 and Py (ua (Zm [n}rlﬂ) —0> =1

for all n > 1. Therefore,

el 2) = ({O}U ijl{zm (=13 }] 0|Utznimns) )
) (f0)) +Zua (20 (i 1])+§ua<zm[n,n+m

=0,

with probability one. The equality denoted by (x) follows from the fact that p, is a measure and all
sets involved are disjoint. O
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4.5 Continuity of sample paths

The objective of this subsection is to construct a random continuous function ¢ — By(w) satisfying
properties (a) and (b) of Definition To achieve this, we will follow Paul Lévy’s construction. The
idea is as follows:

Let (X,,) be a sequence of i.i.d. N'(0,1) random variables, and define Sp =0, S, = X; +...+ X,, for
n > 1. The process (S,,) is a Gaussian random walk on R. We view (S,,) as the restriction to N of a
BM (B;) on R, such that B, = S,, for all n € N. Thus, we have defined the BM at integer times,
but it remains to define B, for t € Ry \ N.

Step 1: Linear interpolation.

Define

B _ B, JifteN
Y\ Bu+(t—n)(Buy1 — By) Lifte(n,n+1), neN

and observe that we have the equality

B + B

B(l) ntl _ E[Bn+1/2 ‘ B, Bn+1]

n+1/2 = 9

as, given By, By 1, the law of B, 1/9 is N{(B, + Bny1)/2,1/4}. See Exercise 3 of Problem Set 8.

Step 2: Refine the time step.

Set
B® =BW =g, ,neN;
1 1
Bl =5 (B +BL) 4520 nel,

where (Zfll)7 n e N) are i.i.d. A(0,1), and independent of (X,,).

We then repeat these two steps. It remains to verify that the process defined in the limit is indeed
continuous and satisfies properties (a) and (b) of BM.

While this might seem confusing at first, it is the core principle behind the rigorous construction of
Brownian motion, which we now begin. Hopefully, the formal mathematical framework will clarify
the somewhat messy ideas introduced above. We restrict ourselves to the construction of the BM on
the interval [0, 1], the generalization to R, follows naturally and is given as an exercise, see Exercise
1 of Problem Set 13.

For n € N, let

k
Dp=14— k=0,1,...,2" %,

the dyadics of order n in [0,1]. The sets {D, }nen are increasing in n € N and D = UpenD,, is the
set of dyadics in [0, 1]. Moreover, the set D is countable and dense in [0, 1].

Let (Z4,d € D) be i.i.d. N(0,1) random variables. We begin by defining B, for ¢t € D. We start with
the base case n = 0: Set By = 0 and By = Z;. This defines B; for ¢t € D,.
For n > 1, we will define B; for t € D,, inductively, so that
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(i) forr < s <tin D,, By — B; ~ N(0,t — s) and is independent of B; — B;

(ii) for t € D,,, By is determined by the Z, with e € D,, and is therefore independent of Z;, where
feD\D,.

For the base case n = 0, properties (¢) and (i¢) hold. For n > 1, suppose, by induction, that
(Bt, t € Dy—1) has been defined in such a way that (i) and (éi) hold for n — 1. The goal is now to
define By, for t € D, \ D,,—1 using (B, t € D,,_1) so that (i) and (i¢) are satisfied.

For d € D, \ Dy,,—1, let

d,=d—2""; d;‘;:d—l—Q_",

so that d_,d" € D,,_;. Now, set

n»'n

1 1
Bd:§<Bd; +Bdt) +W2d, (*1)
and we define, for d € D,,,
B, Jif d € Dp_y
Byg=11 1 ) )
i(Bd:L +Bdi)+WZd ,lfdeDn\Dn_l

Now that we have defined (By, t € D,,), it remains to check that (i) and (ii) are satisfied. Observe
that

X, = %(de ~By;) NN<O’ 2"1“)

by induction and () for the case (n — 1), and

1

1
Xo = 2(n+1)/22d~./\/'(2n+1).

Property (i) for (n—1), ensures that X; and Xs are independent. Therefore, their sum and difference
are independent and A(0,27"). This observation follows from the fact that X;, Xy ~ N(0,2~(+1)
combined with

Cov(X7 + X2, X1 — Xo) = E[(X7 + X2)(X71 — X2)]

= E[X}] - E[X3]
=0.
Note that
X1+X2:Bdin; ; Xl*XQZij{*Bd. (*2)

Consequently, for d, f € D, \ D,,_1, d < f, the increments

By —Ba, Ba—B,- ; Bj+—By, By—B,-
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are independent. Indeed, we have just seen that the first two are independent. Same holds for the
second two. The remaining independencies are easy to check. Take the increments

Bdi_Bd and Bf_Bd;

for example. Using (x2), we see that the first is determined by (B, + — B,;-) and Z;, while the second
is determined by (B;+ — B;-) and Zy. Their independence then follows from (i), (i) for (n —1) and
the equivalence between ”pairwise independence” and ”"mutual independence” for Gaussians.

The family (By, t € D) we just defined satisfies the properties (i) and (i7). Property (i) holds as an
increment over a long interval can be expressed as the sum of increments over intervals of lengths
27", Property (i) holds by construction, in particular by (x1). We see immediately that (B¢, t € D)
has the properties (a) and (b) of a BM (Definition [4.1]).

The final step in our construction is to extend the family (By, t € D) to all of [0,1]. To achieve this,
we will introduce a new approach that may initially appear unrelated to what we have done until
now. However, the connection will soon become apparent, and we will see how this new perspective
simplifies the process. In particular, it will clarify both the extension from D to [0, 1] and the proof
of the continuity of sample paths.

Define Fy(t) =tZy, t € [0,1] for n = 0. For n > 1, let

2-(ntD/27, ift e D, \ D1
F.(t) =<0 Jift € Dy

linear (affine) , between consecutive elements of D,,

Each F, is a continuous function on [0, 1]. Define Bt(") = > o Fi(t). This function is continuous

and affine between consecutive elements of D,,. From the definition of the F},’s, we see that Bﬁ”’ =
S o Fi(t) =22 Fi(t) for t € D,.

Definition 4.50. Fort e D = U2 ,D,,, let
By =Y _Fi(t).
i=0
As mentioned above, B, = Bé") forte D,.

The next proposition will make the link between Definition and the construction used in (*1).

Proposition 4.51. Fort=d € D,, Bt = By, where By denotes the construction in (x1).

Proof. For n = 0, we only need to check for ¢t € {0,1}. If ¢t = 0, then By=0=By. Ift =1, then B; =
Fy(1) = Z; = B;. Now suppose that the result holds for (n — 1). Then, for ¢t € D, N D,,_1, we have
By = B, by induction. In case t = d € D,, \ D,,—1, we start by noticing that for i € {0,1,...,n — 1},
F; is affine on [d;,,d]. Therefore,

n»n

1
Fidy =" = (Fi(dy) + Fi(d})
> r =3 5( )
1
=2 gop,(dnwrgﬂ(di)
-3 n)



where the last inequality follows by induction. Finally, using the definition of F,,, we get the desired
result

n n—1

~ 1

B, =Y Fi(d) =3 Fi(d) + Fu(d) = 5(3% + Bd:) yo-()/2Z, _ g
i=0 =0

We now have all the necessary results to establish the continuity of the sample paths.

Proposition 4.52. The series of functions Y -, F,, converges uniformly on [0,1], with probability
one. Therefore,

oo
t By =Y Fu(t)
n=0

is a continuous function with probability one.

Proof. First notice that

sup |F, ()] <2702 sup 7).
te[0,1] teD,\D—n—1

Let ¢ > 0,

IP( sup |Zt2c\/ﬁ>sp<sup|zt|zcﬁ)

t€Dp\Dp—1 teDy

< > P12 = evn)

teD,

using the fact that for Z ~ N(0,1) and = > 0,
22
P(|Z] > z) < exp {—2} :

If log(2) — (¢?/2) < 0, i.e., ¢ > /2log(2), then

ZP( sup | Z] zc\/ﬁ> < oo.
n=0

tEDp\Dp 1

By the Borel-Cantelli lemma, there exists N(w) € N such that for n > N(w),

sup | Zi] < evn
teDp\Dp_1
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and

sup |F,(t)| < ey/n2- (D72,

te0,1]
Meaning
oo oo
Z sup |F.(t)| <c Z V2~ (/2 <o,
n=0 t€[0:1] n=0
Therefore, ZZOZO F,, converges normally, which implies uniform convergence on [0, 1]. O

We have just shown that
ts By=Y_ Fu(t), te[0,1]
n=0

is continuous with probability one. Moreover, since B, = B, for all t € D, the process (Bt, te D)
satisfies properties (a) and (b) of Brownian motion. As D is dense in [0, 1] and the mapping ¢ — B,
is continuous, it follows that the process (B, t € [0,1]) also satisfies properties (a) and (b). This
completes the construction of the continuous stochastic process ¢ — B, we set out to define.

4.6 The Strong Markov Property

This subsection presents a result that was not covered in the course. However, we state it without
proof, as it was mentioned earlier and will be needed for the final exercise of Problem Set 13.

Theorem 4.53. Strong Markov Property. For every almost surely finite stopping time T, the
process (Bryt — Br, t € Ry) is a standard Brownian motion independent of (B, t <T).

We have not formally defined what a stopping time for Brownian motion is, as doing so would take us
beyond the scope of this course. Intuitively, one can think of a stopping time T as a random variable
taking values in [0, c0] such that, for each ¢ € Ry, the event {T < t} is determined by (Bs, s < t).
For readers seeking a precise definition, we refer to Chapter 8 of Probability: Theory and Examples
by R. Durrett [2].
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