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General comments

These notes are here to help follow the course; they do not replace it. The material presented in class
is the material eligible for the exam. The notes will evolve as the course progresses, and updates
will be posted on Moodle. If you have any comments/find any errors or typos/have suggestions for
improving the notes, please send me an email at: duncan.bleich@epfl.ch.
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1 Preliminaries

Before diving into the main topics of this course, we will first review some basic notions and results of
probability theory; however, proofs of these concepts are not provided. In these notes, we consistently
use both A ⊂ B and A ⊆ B to indicate that A is a subset of B, where A could be equal to B. We
would use instead A ⊊ B to emphasize that A is a proper or strict subset of B, meaning A ⊂ B
but A ̸= B. This section will be somewhat basic, as it primarily presents definitions and results.
However, the subsequent sections will not be as dry, hopefully offering more intuitive explanations.

1.1 Probability spaces

Definition 1.1. Let Ω be a nonempty set. A σ-field F on Ω is a collection of subsets of Ω, F ⊂ P(Ω),
that satisfy

(i) ∅ ∈ F ,

(ii) if A ∈ F , then Ac ∈ F , and

(iii) if Ai ∈ F is a countable sequence of sets, then ∪iAi ∈ F .

Definition 1.2. A measurable space, is a pair (Ω,F), with Ω a nonempty set and F a σ-field on
Ω.

Theorem 1.3. Elementary properties of σ-fields. Let Ω be a nonempty set and F a σ-field on
Ω. We have:

1. Ω ∈ F .

2. If A,B ∈ F , then A ∩B ∈ F .

3. If A,B ∈ F , then A \B ∈ F .

4. If A1, A2, . . . ∈ F , then
⋂

i≥1Ai ∈ F .

5. If Ai ↑ A (i.e., Ai ⊂ Ai+1 and A := limi→∞Ai = ∪i≥1Ai), then A ∈ F .

6. If Ai ↓ A (i.e., Ai ⊃ Ai+1 and A := limi→∞Ai = ∩i≥1Ai), then A ∈ F .

Definition 1.4. Let Ω be a nonempty set and A ⊂ P(Ω) be a collection of subsets of Ω. The σ-field
generated by A, defined by

σ(A) :=
⋂

A⊂F
F

with F a σ-field on Ω, is the smallest σ-field containing A. Note that to define σ(A), we used the
fact that if Fi, i ∈ I are σ-fields, then ∩i∈IFi is one too. This follows easily from Definition 1.1.

Definition 1.5. Let (Ω,F) be a measurable space. A measure is a nonnegative countably additive
set function; that is, a function µ : F → R with

(i) µ(A) ≥ µ(∅) = 0 for all A ∈ F , and

(ii) if Ai ∈ F , i ∈ N, is a countable sequence of disjoint sets, then

µ
( ⋃
i∈N

Ai

)
=
∑
i∈N

µ(Ai).
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If µ(Ω) = 1, we say that µ is a probability measure. We will usually denote probability measures
by P. The triplet (Ω,F ,P) is called a probability space.

Theorem 1.6. Let µ be a measure on (Ω,F) and assume that the sets we mention are in F . We
have the following properties:

(i) monotonicity: If A ⊂ B, then µ(A) ≤ µ(B).

(ii) subadditivity: If A ⊂
⋃

i≥1Ai, then µ(A) ≤
∑

i≥1 µ(Ai).

(iii) continuity from below: If Ai ↑ A, then µ(Ai) ↑ µ(A).

(iv) continuity from above: If Ai ↓ A and µ(A1) <∞, then µ(Ai) ↓ µ(A).

Remark 1.7. Note that in a probability space (Ω,F ,P), the condition µ(A1) = P(A1) < ∞ is
automatically fulfilled, since P(A1) ≤ P(Ω) = 1 by monotonicity.

1.2 Random variables

Definition 1.8. A real-valued function X : Ω → R defined on the probability space (Ω,F ,P) is said
to be a random variable if for every B ∈ B we have X−1(B) = {ω ∈ Ω : X(ω) ∈ B}, where B
denotes the Borel sets. In case we want to stress the σ-field we are referring to, we will say that X is
F-measurable or write X ∈ F .

Definition 1.9. A random variable X is discrete if there is a finite or countable set of distinct
values {x1, x2, . . .} ⊂ R such that pi := P(X = xi) > 0 for i ≥ 1 and

∑
i≥1 pi = 1. If P(X = x) = 0,

for all x ∈ R, the random variable X is called continuous. In case X has a probability density
function fX(x), that is

P(X ∈ B) =

∫
B

fX(x) dx

for all B ∈ B, then it is necessarily continuous; however there exist continuous random variables
which do not have probability densities.

Definition 1.10. Given a probability space (Ω,F ,P) and a random variable X, we have that X
induces a probability measure on (R,B) called the law or distribution of X. This probability measure,
usually denoted by µX or PX , is defined as follows:

µX(A) = vpX(A) = P(X−1(A)).

We can easily check that (R,B,PX) is a probability space.

Definition 1.11. Typically, we describe the distribution of a random variable X by giving its distribution
function, FX(x) = P(X ≤ x). We will often write {X ≤ x} instead of {ω ∈ Ω : X(ω) ≤ x} for
clarity.

Theorem 1.12. Any distribution function F has the following properties:

(i) F is nondecreasing.

(ii) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.
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(iii) F is right continuous, i.e., limy↓x F (y) = F (x).

(iv) If F (x−) = limy↑xF (y), then F (x−) = P (X < x).

(v) P(X = x) = F (x)− F (x−).

Theorem 1.13. If X1, X2, . . . are random variables, then so are

sup
n

Xn inf
n
Xn lim sup

n
Xn lim inf

n
Xn.

1.3 Independence, conditional probability and independence

Definition 1.14. We say that the σ-fields F1, . . . ,Fn, n ∈ N, are independent if whenever Ai ∈ Fi

for i ∈ {1, . . . n}, we have

P
( n⋂
i=1

Ai

)
=

n∏
i=1

P(Ai).

Definition 1.15. We say that the random variables X1, . . . , Xn, n ∈ N, are independent if whenever
Bi ∈ B for i ∈ {1, . . . n}, we have

P
( n⋂
i=1

{Xi ∈ Bi}
)
=

n∏
i=1

P(Xi ∈ Bi).

Definition 1.16. We say that the sets A1, . . . , An, n ∈ N, are independent if whenever I ⊂
{1, . . . , n}, we have

P
(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai).

Remark 1.17. An infinite collection of objects (σ-fields, random variables, or sets) is said to be
independent if every finite subcollection is.

Theorem 1.18. If the random variables X and Y are independent, then the σ-fields σ(X) and σ(Y )
are also independent. Moreover, if X ∈ F and Y ∈ G, with F and G independent, then X and Y are
independent.

Definition 1.19. Given a probability space (Ω,F ,P) and an event B ∈ F of nonzero probability, the
conditional probability of event A ∈ F given B is defined by

P(A |B) :=
P(A ∩B)

P(B)
.

Lemma 1.20. Law of Total Probabilities. Given a probability space (Ω,F ,P), a partition of Ω
into events A1, . . . AN and any event B, we have

P(B) =

N∑
i=1

P(Ai)P(A |Ai).

In case P(Ai) = 0, we can give P(B|Ai) any value in [0, 1] and the above formula still holds. It will
also hold for countable partitions.
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Remark 1.21. As a reminder, we say that the events A1, . . . , AN ∈ F form a partition of Ω if they
are disjoint and such that Ω = ∪N

i=1Ai. The case of countable partitions is defined analogously.

Lemma 1.22. Given events A1, . . . , AN , a simple induction argument gives

P
( N⋂
i=1

Ai

)
= P(A1)P(A2 |A1)P(A3 |A1 ∩A2) . . .P(AN |A1 ∩A2 ∩ . . . ∩AN−1).

Definition 1.23. Two events A and B are said to be conditionally independent given a third
event C if

P(A ∩B |C) = P(A |C)P(B |C).

Definition 1.24. Two random variables X and Y are said to be conditionally independent given
a third random variable Z if

P(X ∈ A, Y ∈ B |Z) = P(X ∈ A |Z)P(Y ∈ B |Z)

for all A,B ∈ B.

1.4 Expectation

Given a probability space (Ω,F ,P) and a random variable X ≥ 0, we define its expected value to be
E[X] =

∫
Ω
XdP, which will always make sense but may be infinite. To get the general case, define the

positive part of x as x+ = max(0, x) and the negative part of x as x− = min(0,−x), respectively.
We say that E[X] exists and set E[X] = E[X+]− E[X−], whenever the subtraction makes sense, i.e.,
when E[X+] <∞ or E[X−] <∞.

Theorem 1.25. Suppose X,Y ≥ 0 or E|X|,E|Y | <∞, we have

1. E[X + Y ] = E[X] + E[Y ]

2. E[aX + b] = aE[X] + b, for any real numbers a, b.

3. If X ≥ Y , then E[X] ≥ E[Y ].

Theorem 1.26. Jensen’s inequality. Suppose φ is convex, that is,

λφ(x) + (1− λ)φ(y) ≥ φ(λx+ (1− λ)y)

for all λ ∈ [0, 1] and x, y ∈ R. Then

E[φ(X)] ≥ φ(E[X])

provided both expectations exist, i.e., E|X|, E|φ(X)| <∞.

Theorem 1.27. Hölder’s inequality. If p, q ∈ [1,∞] with 1/p+ 1/q = 1, then

E|XY | ≤ ||X||p||Y ||q

where ||X||r = (E|X|r)1/r for r ∈ [1,∞) and ||X||∞ = inf{M : P(|X| > M) = 0}.
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Remark 1.28. Before we state the next result, note that we will often write

E[X;A] =

∫
A

XdP

when integrating over a subset A ⊂ Ω.

Theorem 1.29. Markov’s inequality. Suppose φ : R → R has φ ≥ 0, let A ∈ B and iA =
inf{φ(y) : y ∈ A}. We have

iAP(X ∈ A) ≤ E[φ(X);X ∈ A] ≤ E[φ(X)].

Should you wish to gain a deeper understanding of the notions previously mentioned, I strongly
recommend reading the book Introduction à la théorie des probabilités [1] by R. Dalang and D.
Conus. In case French is not your forte, the first chapter of the book Probability : Theory and
Examples [2] by R.Durrett is a good alternative. Both are available in digital formats for free online.
We now give two special cases before moving on to the last part of the section.

Statement 1.30. If X is a discrete random variable taking values in {x1, x2, . . .} ⊂ R, then

E[X] =
∑
i

xiP(X = xi)

if X is integrable, i.e., if
∑

i |xi|P(X = xi) < ∞. Moreover, for h : R → R, we have that E[h(X)] =∑
i h(xi)P(X = xi) if

∑
i |h(xi)|P(X = xi) <∞.

Statement 1.31. If X has a probability density function fX(x), then

E[X] =

∫ ∞

−∞
xfX(x)dx

if E|X| =
∫∞
−∞ |x|fX(x)dx < ∞. Note that fX ≥ 0. Similarly, for h : R → R, we have E[h(X)] =∫∞

−∞ h(x)fX(x)dx if E|h(X)| =
∫∞
−∞ |h(x)|fx(x)dx <∞.

1.5 Conditional expectation

Definition 1.32. Conditional expectation. Let (X,Y ) be a random vector in R× Rm, for some
m ≥ 1, such that E|X| <∞. Then E[X |Y ] is the integrable random variable of the form φ(Y ), where
φ : Rm → R is such that for all bounded functions h : Rm → R, we have

E
(
E[X |Y ] · h(Y )

)
= E[X · h(Y )].

If E[X2] <∞, then E[X |Y ] = φ(Y ) is such that

E[(X − φ(Y ))2] ≤ E[(X − ψ(Y ))2]

for all ψ : Rm → R.

Remark 1.33. If we take the function h ≡ 1 in the above definition of E[X|Y ], we obtain

E
(
E[X|Y ]

)
= E[X].

In words, the expectation of the conditional expectation of X given Y is the ”unconditional” expectation
of X. Moreover, conditional expectation is unique almost surely, meaning that any two versions of
the same conditional expectation differ only on a set of probability zero.
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We now give some formulas, for E[X|Y ], in both the discrete and continuous case.

Discrete case: Let (X,Y ) be a discrete random vector with E|X| <∞. We proceed in two steps:

(a) Set E[X |Y = y] :=
∑

x xP(X = x |Y = y) = P(Y = y)−1 ·
∑

x xP(X = x, Y = y), if P(Y = y) >
0.

(b) Define the function φ : Rm → R by φ(y) = E[X |Y = y], for y such that P(Y = y) > 0, then
E[X|Y ] = φ(Y )

Continuous case: Similarly, consider a continuous random vector (X,Y ) taking values in R× Rm,
with E|X| < ∞. Additionally, assume that the random vector (XY ) has a joint probability density
function given by fX,Y : R× Rm → R, meaning

P(X ∈ A, Y ∈ B) =

∫
A

dx

∫
B

dy fX,Y (x, y),

for all A ⊂ R, B ⊂ Rm. Before going further, note that we will sometimes write

∫
A1

dx1

∫
A2

dx2 . . .

∫
An

dxn f(x1, . . . , xn)

instead of the usual

∫
A1

. . .

∫
An

f(x1, . . . , xn)dx1 . . . dxn

for clarity. This notation may initially appear superfluous; however, it is essential for ensuring accurate
integration over the appropriate sets, thereby avoiding potential confusion. Now recall that the
marginal density of Y is given by

fY (y) =

∫
R
fX,Y (x, y)dx.

As done in the discrete case, we proceed in two steps:

(a) Set

E[X |Y = y] =

∫
R
x
fX,Y (x, y)

fY (y)
dx, for fy(y) > 0.

Where, fX,Y (x, y) · fY (y)−1 is the conditional density of X given Y = y.

(b) Define the function φ(y) = E[X |Y = y] for y ∈ Rm such that fY (y) > 0, then E[X|Y ] = φ(Y ).

If we have a function h : R× Rm → R, we can generalize the previous case by setting

E[h(X,Y ) |Y = y] =

∫
R
h(x, y)

fX,Y (x, y)

fY (y)
dx,

for fY (y) > 0. If we set ψ(y) = E[h(X,Y ) |Y = y], then E[h(X,Y ) |Y ] = ψ(Y ).

Proposition 1.34. Properties of conditional expectation. Let (X,Y, Z) be a discrete (or
continuous) random vector defined on a probability space, and let f : R → R be a bounded function.
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(A) Linearity: For all α, β ∈ R, E[αY + βZ |X] = αE[Y |X] + β E[Z|X].

(B) Monotonicity: If Y ≤ Z, then E[Y |X] ≤ E[Z|X].

(C) Iteration: E
(
E[Z |X,Y ] |X

)
= E[Z|X].

(D) E[Y f(X)|X] = E[Y |X]f(X)

(E) If X and Y are independent, then E[Y |X] = E[Y ].

(F) If Y = f(X), then E[Y |X] = Y .

(G) Jensen’s inequality: If g : R → R is a convex function and E|g(Y )| < ∞, then g(E[Y |X]) ≤
E[g(Y )|X].

Initially, we will denote the use of properties (A), (B), ..., (G) explicitly, but as the course progresses,
we will phase out this systematic notation..

Statement 1.35. Using the notation φ(y) = E[X |Y = y] and referring to Remark 1.33, we can
formulate the law of total probability in the discrete case:

E[X] = E[φ(Y )]

=
∑
y

φ(y)P(Y = y)

=
∑
y

E[X |Y = y]P(Y = y).

The continuous case is derived in a similar manner:

E[X] = E[φ(Y )]

=

∫
Rm

φ(y) fY (y)dy

=

∫
Rm

E[X |Y = y]fY (y)dy.

Remark 1.36. Conditional probabilities are a special case of conditional expectation. For a given
event G, we have

P(G|Y ) = E[1G |Y ]

with

1G(ω) =

{
1 if ω ∈ G

0 if ω /∈ G
.

Recall that P(G) = E[1G], as E[1G] = 1 · P(1G = 1) + 0 · P(1G = 0) = P(G).
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2 Martingales

2.1 Definitions and examples

Before we delve into the definitions, let us first consider a motivating scenario: Imagine a player
engaged in a sequence of fair games of chance. At each stage of the game, the expected reward, given
all previously observed outcomes, is zero. Let Sn denote the cumulative gain (or loss) after n games.
A natural question to ask is whether the player can ensure a positive expected reward upon exiting
the game. Specifically, is there a random time τ , not predetermined, such that E[Sτ ] > 0 ? Here, we
can think of the random time τ as a strategic decision point—the player plans to exit the game when
certain known conditions are met, although it is not known when these conditions will occur.

Martingales provide a powerful framework for analyzing this scenario. They allow us to understand
the dynamics of gains and losses under fair game assumptions and can help us assess strategies that
involve exiting at a random time τ .

We will discover that for a ’reasonable’ τ,E[Sτ ] = 0. Should E[Sτ ] > 0, then τ would represent a
strategy that, under typical circumstances, most people would choose to avoid.

Definition 2.1. Let (Xn)n≥1 be a sequence of random variables. A sequence (Sn)n≥1 of random
variables is a martingale relative to (Xn)n≥1 if for all n ≥ 1

(a) E[ |Sn| ] <∞,

(b) E[Sn+1 |X1, . . . , Xn] = Sn.

Remark 2.2. If (Sn)n≥1 is a martingale relative to (Xn)n≥1, then Sn is a function of X1, . . . , Xn.
Indeed, by point (b) of the definition above, Sn = ψn(X1, . . . , Xn) where ψn(x1, . . . , xn) = E[Sn+1 |X1 =
x1, . . . , Xn = xn].

Remark 2.3. Often, Sn = Xn.

It is useful to think of (X1, . . . , Xn) as the accumulated information or history up to stage n. In a
gambling context, this historical record may encompass more than just the sequence of past fortunes;
it could, for example, include the outcomes of plays in which the player did not bet.

Returning to our motivating example, let Sn represent the player’s wealth at time n. While we do
not assign a specific meaning to (X1, . . . , Xn), it encompasses everything observed up to time n.
Condition (b) of Definition 2.1 reflects one interpretation of a fair game, stipulating that the player’s
expected wealth in the next play, given all previous observations, should equal his current wealth:
E[Sn+1|X1, . . . , Xn] = Sn. Let us now consider a more concrete situation.

The ”double or nothing” strategy: The rules of the game are straightforward: With a probability
of 1/2, the player doubles his bet; conversely, with the same probability, he loses his initial bet.
Therefore, if the player bets x francs, the potential profit or loss can be expressed as follows:

Profit =

{
x ,with proability 1/2

−x ,with probability 1/2
.

Strategy: Bet 1 franc, then 2, 4, . . . , 2n until I win a bet, then leave the game. The total gain, given
I lose at games 1 to n and finally win at game n+ 1, is:

−1− 2− 22 − . . .− 2n−1 + 2n = 1.

The strategy effectively ’guarantees’ a profit of 1. At first glance, this might seem like a viable
approach. While the guaranteed profits are modest—arguably negligible—they are still profits. This
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raises the question: Why aren’t people flocking to casinos to capitalize on this strategy? The following
discussion will address this question.

Let T be the number of games played up to the first win. It is easy to see that

P(T = 1) =
1

2
, P(T = 2) =

1

4
, . . . , P(T = n) =

1

2n
(1)

and therefore

P(T <∞) = P
( ∞⋃
n=1

{T = n}
)
=

∞∑
n=1

P(T = n) =

∞∑
n=1

1

2n
= 1

where the first equality arises from the fact that the sets {T = n} are disjoint. If we now look at L :=
the amount lost up to time T − 1, we find that

E[L] =
∞∑

n=1

E[L |T = n] · P(T = n)

=

∞∑
n=2

E[L |T = n] · P(T = n)

=
∑
n=2

(1 + 2 + . . .+ 2n−2) · 2−n

=
∑
n=2

2n−1 − 1

2n
= +∞ , since

2n−1 − 1

2n
n→∞−→ 1

2
.

From this, we can deduce that this strategy will usually lead to bankruptcy. To better understand
martingales, let’s examine the following four examples.

Example 2.4. Let (Xn)n≥1 be independent and identically distributed (i.i.d.) random variables with
E[X1] = 0 (includes E[ |X1| ] < ∞). Define Sn = X1 + . . . + Xn, for n ≥ 1. Then (Sn)n≥1 is a
martingale relative to (Xn)n≥1.

Proof. We prove both (a) and (b) of Definition 2.1.

(a)

E[ |Sn| ] = E[ |X1 + . . .+Xn| ] ≤ E[ |X1|+ . . .+ |Xn| ]
(i.i.d.)
= nE[ |X1| ] <∞

(b)

E[Sn+1 |X1, . . . , Xn] = E[Xn+1 + Sn |X1, . . . , Xn]

(A)
= E[Xn+1 |X1, . . . , Xn] + E[Sn |X1, . . . , Xn]

(E),(F )
= E[Xn+1] + Sn = Sn

Example 2.5. Let (Xn)n≥1 be i.i.d. with E[X1] = 0 and σ2 = E[X2
1 ] < ∞. Define Zn =(∑n

i=1Xi

)2 − nσ2 = S2
n − nσ2. Then (Zn)n≥1 is a martingale relative to (Xn)n≥1.
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Proof. (a) We have

E[ |Zn| ] ≤ E[S2
n] + nσ2 (∗)

= E[
n∑

i=1

X2
1 ] + nσ2

(∗)
= nσ2 + nσ2 = 2nσ2 <∞.

The equalities marked by (∗) hold true because the variables Xn are i.i.d. with a mean of 0.

(b)

E[Zn+1 |X1, . . . , Xn] = E[
(
Xn+1 + Sn

)2 − (n+ 1)σ2 |X1, . . . , Xn]

= E[X2
n+1 + 2Xn+1Sn + S2

n − (n+ 1)σ2n |X1, . . . , Xn]

(A)
= E[X2

n+1 |X1, . . . , Xn] + 2E[Xn+1Sn |X1, . . . , Xn]

+ E[S2
n |X1, . . . , Xn]− E[(n+ 1)σ2 |X1, . . . , X − n]

(E),(D),(F )
= E[X2

n+1] + 2SnE[Xn+1 |X1, . . . , Xn] + S2
n − (n+ 1)σ2

(E)
= σ2 + 2SnE[Xn+1] + S2

n − (n+ 1)σ2

= Zn

Example 2.6. Likelihood ratio: Let (Xn)n≥1 be i.i.d. random variables and f0, f1 be two bounded
positive density functions (fi > 0,

∫
R fi(x)dx = 1). Define

Rn =
f1(X1) . . . f1(Xn)

f0(X1) . . . f0(Xn)
=

∏n
i=1 f1(Xi)∏n
i=1 f0(Xi)

Statement 2.7. If the common density of the Xn is f0, then (Rn)n≥1 is a martingale relative to
(Xn)n≥1.

Proof. (a) We write E0 to indicate that we take the expectation with respect to the common density
function f0.

E0[ |Rn| ] = E0[Rn] = E0

[∏n
i=1 f1(Xi)∏n
i=1 f0(Xi)

]
=

∫
Rn

∏n
i=1 f1(xi)∏n
i=1 f0(xi)

·
n∏

i=1

f0(xi) dx1 . . . dxn

=

∫
Rn

f1(x1) . . . f1(xn)dx1 . . . dxn

= 1 <∞

11



(b)

E0[Rn+1 |X1, . . . , Xn] = E0

[
Rn · f1(Xn+1)

f0(Xn+1)
|X1, . . . , Xn

]
(D)
= Rn · E0

[
f1(Xn+1)

f0(Xn+1)
|X1, . . . , Xn

]
(E)
= Rn · E0

[
f1(Xn+1)

f0(Xn+1)

]
(i.i.d.)
= Rn · E0

[
f1(X1)

f0(X1)

]
(a)
= Rn · 1 = Rn

Example 2.8. Doob martingale: Consider arbitrary random variables X1, X2, . . . and an integrable
random variable X, i.e., E[|X|] <∞. Define Mn = E[X | X1, . . . , Xn] for each n. Then, the sequence
(Mn)n≥1 is a martingale relative to (Xn)n≥1.

Proof. (a) Since the function x 7→ |x| is convex, we can use Jensen’s inequality:

E[ |Mn| ] = E
(
|E[X |X1, . . . , Xn]|

)
(G)

≤ E
(
E[ |X| |X1, . . . , Xn]

)
= E[ |X| ] <∞.

We noted in Remark 1.33 that the last equality is valid.

(b)

E[Mn+1 |X1, . . . , Xn] = E
(
E[X |X1, . . . , Xn+1] |X1, . . . , Xn

)
(C)
= E[X |X1, . . . , Xn]

= Mn

.

Lemma 2.9. If (Sn)n≥1 is a martingale relative to (Xn)n≥1, then

(a) E[Sn+m |X1, . . . , Xn] = Sn, for all n,m ≥ 1,

(b) E[Sn] = E[S1], for all n ≥ 1.

Proof. (a)

E[Sn+m |X1, . . . , Xn]
(C)
= E

(
E[Sn+m |X1, . . . , Xn, . . . Xn+m−1] |X1, . . . , Xn

)
(∗)
= E[Sn+m−1 |X1, . . . , Xn]

= . . .

= E[Sn+1 |X1, . . . , Xn]

(∗)
= Sn.

The equalities denoted by (∗) hold by Definition 2.1.
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(b)

E[Sn] = E
(
E[Sn |X1]

) (a)
= E[S1]

2.2 Supermartingales and submartingales

Definition 2.10. We say that (Sn)n≥1 is a supermartingale relative to (Xn)n≥1 if

(a) E[ |Sn| ] <∞,

(b) E[Sn+1 |X1, . . . , Xn] ≤ Sn and

(c) Sn is a function of X1, . . . , Xn.

Definition 2.11. We say that (Sn)n≥1 is a submartingale relative to (Xn)n≥1 if

(a’) E[ |Sn| ] <∞,

(b’) E[Sn+1 |X1, . . . , Xn] ≥ Sn and

(c’) Sn is a function of X1, . . . , Xn.

Remark 2.12. (1) For a martingale, Sn = E[Sn+1 |X+, . . . , Xn], so Sn is a function of X1, . . . , Xn.

(2) If (Sn)n≥1 is a supermartingale, then (−Sn)n≥1 is a submartingale, and vice-versa.

(3) (Sn)n≥1 is a martingale if and only if (Sn)n≥1 is both a submartingale and a supermartingale.

Lemma 2.13. (a) Let (Sn)n≥1 be a martingale relative to (Xn)n≥1. If φ : R → R is convex and
E[ |φ(Sn)| ] <∞ for all n, then (φ(Sn))n≥1 is a submartingale.

(b) Let (Sn)n≥1 be a submartingale and φ : R → R a convex and nondecreasing function such that
E[ |φ(Sn)| ] <∞ for all n. Then (φ(Sn))n≥1 is a submartingale.

Proof. (a) Conditions (a′) and (c′) of Definition 2.11 are met by our assumptions. We only need to
check (b′):

E[φ(Sn+1) |X1, . . . , Xn]
(G)

≥ φ(E[Sn+1 |X1, . . . , Xn]) = φ(Sn)

(b) Again, conditions (a′) and (c′) are met by our assumptions. For (b′), we have

E[φ(Sn+1) |X1, . . . Xn]
(G)

≥ φ(E[Sn+1 |X1, . . . , Xn]) ≥ φ(Sn).

The last inequality follows from E[Sn+1 |X1, . . . , Xn] ≥ Sn, since Sn is a submartingale and φ is
nondecreasing.

Remark 2.14. If (Sn)n≥1 is a supermartingale (resp. submartingale), then for m,n ≥ 1:

E[Sn+m |X1, . . . , Xn] ≤ Sn (resp. ≥ Sn)

and

E[Sn] ≤ E[S1] (resp. ≥ E[S1]).
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2.3 Stopping times

Motivation: The concept of stopping times is motivated by scenarios such as a player choosing to
exit a sequence of games at a random time that is determined by the outcomes of previous games,
yet independent of future outcomes.

Definition 2.15. Let (Xn)n≥1 be an observation sequence (real-valued). A stopping time T , relative
to (Xn)n≥1, is a random variable taking values in N∪ {∞} such that for all k ∈ N, there is Bk ⊂ Rk

with

{T = k} = {(X1, . . . , Xk) ∈ Bk}.

Where {T = k} can be interpreted as the decision to stop at time k and Bk as a property of the

observations X1, . . . , Xk.

Remark 2.16. From this point onward, we will write A ∈ σ(X1, . . . , Xk) to say that the event A is
determined by (X1, . . . , Xk), where σ(X1, . . . , Xk) is the σ-field generated by X1, . . . , Xk. This σ-field
represents the information available from observing the process up to time k. Moreover, while we did
not specify what type of sets Bk we are referring to in the definition, some might find it useful to
know that they belong to the Borel sets over Rk, i.e., Bk ∈ Bk.

Example 2.17. Let (Xn)n≥1
i.i.d.∼ N (0, 1). At stage n, we observe Xn. Let T be the first time that

Xn ≥ 2. Then T is a stopping time.

Proof. For k = 1, we have

{T = 1} = {X1 ≥ 2} = {X1 ∈ B1} ∈ σ(X1),

where B1 = [2,∞). If k ≥ 2,

{T = k} = {X1 < 2, X2 < 2, . . . , Xk ≥ 2} = {(X1, . . . , Xk) ∈ Bk} ∈ σ(X1, . . . , Xk),

with Bk =

k−1 factors︷ ︸︸ ︷
(−∞, 2)× . . .× (−∞, 2)×[2,∞).

Proposition 2.18. Some properties of stopping times.

(a) If T is a stopping time, then {T ≤ k}, {T > k}, {T < k} and {T ≥ k} are events in σ(X1, . . . , Xk).

(b) If {T ≤ k} ∈ σ(X1, . . . , Xk) for all k ≥ 1, then T is a stopping time.

(c) If S and T are stopping times, then S∧T := min{S, T} and S∨T := max{S, T} are also stopping
times.

(d) If T is deterministic, i.e., if there exists k0 ∈ N such that P(T = k0) = 1, then T is also a stopping
time.

(e) If T is a stopping time, then for k ≥ 1, 1{T = k} is a function of (X1, . . . , Xk)

Remark 2.19. We will often write 1{A} instead of 1A.
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Proof. (a) First, observe that

{T ≤ k} =

k⋃
i=1

{T = i} ∈ σ(X1, . . . , Xk)

since {T = i} ∈ σ(X1, . . . , Xi) ⊂ σ(X1, . . . , Xi, . . . , Xk) for i ≤ k. We then immediately find that

{T < k} = {T ≤ k − 1} ∈ σ(X1, . . . , Xk−1) ⊂ σ(X1, . . . , Xk).

From this, using the properties of σ-fields gives

{T > k} = {T ≤ k}c ∈ σ(X1, . . . , Xk)

and

{T ≥ k} = {T < k}c ∈ σ(X1, . . . , Xk).

(b) For all k ≥ 1,

{T = k} = {T ≤ k} ∩ {T ≤ k − 1}c ∈ σ(X1, . . . , Xk).

(c) Follows from (b) and the following observations

{S ∧ T ≤ k} = {S ≤ k} ∪ {T ≤ k},
{S ∨ T ≤ k} = {S ≤ k} ∩ {T ≤ k}.

(d) For k ̸= k0,

{T = k} = {(X1, . . . , Xk) ∈ ∅} ∈ σ(X1, . . . , Xk).

For k = k0,

{T = k0} = {(X1, . . . , Xk0
) ∈ Rk0} ∈ σ(X1, . . . , Xk0

).

(e) Since {T = k} = {(X1, . . . , Xk) ∈ Bk} for some Bk ⊂ Rk, we have

1{T=k} = 1Bk
(X1, . . . , Xk)

where 1Bk
: Rk → R is defined by

1Bk
(x1, . . . , xk) =

{
1 if (x1, . . . , xk) ∈ Bk

0 otherwise
.

2.4 Optional Stopping Theorem

The goal of this subsection is to prove the following theorem:

Theorem. Let (Sn)n≥1 be a martingale and T a stopping time relative to (Xn)n≥1. Suppose

(a) P(T <∞) = 1,

(b) E[ |ST | ] <∞ and

(c) limn→∞ E[Sn |T > n] · P(T > n) = 0.
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Then E[ST ] = E[S1].

To get there, we’ll first look at three important lemmas that need to be proved. But before we jump
into those, let us consider the following: Let (Sn)n≥1 be a martingale relative to (Xn)n≥1. Then
E[Sn] = E[S1] for all n ≥ 1. If we decide in advance to play n games, then the game is fair. However,
could a clever player (who doesn’t cheat) do better ? If the player decides to stop at a random time
T , that is a stopping time. Would it be possible to have E[ST ] > E[S1] ?

Example 2.20. Let Xn be i.i.d. random variables with P(X1 = +1) = 1/2 = P(X1 = −1). Set
S0 = 0 and Sn = X1 + . . .+Xn for n ≥ 1. Then (Sn)n≥1 is a martingale relative to (Xn)n≥1 and we
have that E[S1] = 0. Define T = inf{n ≥ 1 : Sn = 1}. We will see that P(T < ∞) = 1, so ST = 1
and E[ST ] = 1 > 0 = E[S1]. The stopping time T allows us to be in a situation where E[ST ] > E[S1],
but there is a slight issue that we have overlooked until now: E[T ] = ∞.

Let us now state and prove the lemmas we will need for the proof of Theorem 2.24.

Lemma 2.21. Let (Sn)n≥1 be a martingale (resp. supermartingale) and T a stopping time relative
to (Xn)n≥1. We have

E[Sn · 1{T=k}] = E[Sk · 1{T=k}] (resp. ≤ E[Sk · 1{T=k}])

for n ≥ k ≥ 1.

Proof.

E[Sn1{T=k}]
(1.33)
= E

(
E[Sn1{T=k} |X1, . . . , Xk]

)
= E

(
1{T=k} · E[Sn |X1, . . . , Xk]

)
(2.9)
= E[Sk · 1{T=k}](

resp.
(2.14)

≤ E[Sk · 1{T=k}]
)

Lemma 2.22. Let W be a random variable such that E[ |W | ] <∞. Let T be a stopping time relative
to (Xn)n≥1 such that P(T <∞) = 1. Then

lim
n→∞

E[W · 1{T>n}] = 0

and

lim
n→∞

E[W · 1{T≤n}] = E[W ].

Proof. We first prove the lemma for |W |.

E[ |W | · 1{T≤n}] =

n∑
k=1

E[ |W | · 1{T=k}]

=

n∑
k=1

E[ |W | |T = k]P(T = k)

−→
∞∑
k=1

E[ |W | |T = k]P(T = k) as n→ ∞

= E[ |W | ] <∞

by the law of total probability (1.35) and using the fact that we are dealing with a monotone increasing
sequence. Therefore
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lim
n→∞

E[ |W | · 1{T≤n}] = E[ |W | ]

and

lim
n→∞

E[ |W | · 1{T>n}] = lim
n→∞

E[ |W |(1− 1{T≤n})]

= E[ |W | ]− lim
n→∞

E[ |W | · 1{T≤n}]

= E[ |W | ]− E[ |W | ]
= 0.

Now, to get the result for W , observe that

0 ≤ |E[W · 1{T>n}]| ≤ E[ |W | · 1{T>n}] → 0, as n→ ∞.

So limn→∞ E[W · 1{T>n}] = 0 and as a consequence

lim
n→∞

E[W · 1{T≤n}] = lim
n→∞

E[W · (1− 1{T>n})]

= E[W ]− lim
n→∞

E[W · 1{T>n}]

= E[W ].

Lemma 2.23. Let T be a stopping time relative to (Xn)n≥1. Then

E[ST∧n] = E[S1].

Proof.

E[S1]
(2.9)
= E[Sn]

=

n∑
k=1

E[Sn · 1{T=k}] + E[Sn · 1{T>n}]

(2.21)
=

n∑
k=1

E[Sk · 1{T=k}] + E[Sn · 1{T>n}]

=

n∑
k=1

E[ST · 1{T=k}] + E[Sn · 1{T>n}]

= E[ST · 1{T≤n}] + E[Sn · 1{T>n}]

= E[ST∧n · 1{T≤n}] + E[ST∧n · 1{T>n}]

= E[ST∧n].

We are now ready to prove the optional stopping theorem:

Theorem 2.24. Let (Sn)n≥1 be a martingale and T a stopping time relative to (Xn)n≥1. Suppose

(a) P(T <∞) = 1,

(b) E[ |ST | ] <∞ and

(c) limn→∞ E[Sn |T > n] · P(T > n) = 0.
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Then E[ST ] = E[S1].

Proof. For all n ∈ N,

E[ST ] = E[ST · 1{T≤n}] + E[ST · 1{T>n}]

= E[ST∧n · (1− 1{T>n})] + E[ST · 1{T>n}]

(2.23)
= E[S1]− E[Sn · 1{T>n}] + E[ST · 1{T>n}].

By assumption (c), we have

E[Sn · 1{T>n}] = E[Sn |T > n]P(T > n) → 0

as n → ∞. We can apply Lemma 2.22 to ST since we assume (a) and have E[ |ST | ] < ∞ by
assumption (b). This gives

E[ST · 1{T>n}] → 0

as n→ ∞. Taking

E[ST ] = E[S1]− E[Sn · 1{T>n}] + E[ST · 1{T>n}]

and letting n go to infinity gives the desired result.

Remark 2.25. If P(T = k0) = 1, then E[ST ] = E[Sk0 ] = E[S1] and the assumptions also hold.

Remark 2.26. If P(T = ∞) > 0, then ST = S∞ on {T = ∞}, which is not defined here.

Remark 2.27. E[ST ] has a meaning by assumption (b).

Example 2.28. Let (Xn)n≥1 be i.i.d. random variables with P(X1 = −1) = 1/2 = P(X1 = +1). The
martingale (Sn)n≥0 relative to (Xn)n≥1 defined by S0 = 0, Sn = X1 + . . .+Xn for n ≥ 1 is called a
simple random walk (r.w.) on Z.
Fix positive integers a and b. What is the probability that the random walk visits −a before b ?

Let T = T−a,b = inf{n ∈ N : Sn = −a or Sn = b}. T is a stopping time since

{T = k} = {S1 /∈ {−a, b}, . . . , Sk−1 /∈ {−a, b}, Sk ∈ {−a, b}} ∈ σ(X1, . . . , Xk).

We now check the assumptions of Theorem 2.24.

(a) Consider the event

{X1 = 1, X2 = 1, . . . , Xa+b = 1}

and notice that no matter where the random walk starts in the interval, we have that

P(X1 = 1, . . . , Xa+b = 1) = 2−(a+b) ≤ P(T ≤ a+ b)

since

{X1 = 1, . . . , Xa+b = 1} ⊂ {T ≤ a+ b}.

Therefore, the probability of not leaving [−a, b] in (a+ b) units of time is such that

P(T > a+ b) = 1− P(T ≤ a+ b) ≤ 1− 2−(a+b).
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Now, it is relatively easy to see that the events

{Not leaving [−a, b] in 2(a+ b) time units.}

and

{Not leaving the interval [−a, b] during the first (a+ b) units of time, and again, starting from

where we ended up at time (a+ b), stay in [−a, b] during the remaining (a+ b) time units.}

are the same. As one would expect, we have

P(T > 2(a+ b)) = E[1{T>2(a+b)}]

= E[1{T>(a+b)} · 1{T>2(a+b)}]

= E
(
E[1{T>(a+b)} · 1{T>2(a+b)} |X1, . . . , Xa+b]

)
= E

(
1{T>(a+b)} · E[1{T>2(a+b)} |X1, . . . , Xa+b]

)
= E[1{T>(a+b)} · P(T > 2(a+ b) |X1, . . . , Xa+b)]

≤ E[1{T>(a+b)}] · (1− 2−(a+b))

≤ (1− 2−(a+b))2.

We can repeat this process and find that

P(T > k(a+ b)) ≤ (1− 2−(a+b))k

for k ≥ 1. Now, since (1− 2−(a+b)) < 1, letting k → ∞ gives

0 ≤ P(T = ∞) ≤ 0

which concludes the verification of assumption (a).

(b) By definition of T , ST ∈ {−a, b}, which implies |ST | ≤ max{a, b}. Condition (b) follows
immediately:

E[ |ST | ] ≤ E[max{a, b}] = max{a, b} <∞.

(c) Since |Sn| ≤ max{a, b} on {T > n}, we have

lim
n→∞

|E[Sn |T > n] · P(T > n)| = lim
n→∞

|E[Sn · 1{T>n}]|

≤ lim
n→∞

E[ |Sn| · 1{T>n}]

≤ lim
n→∞

max{a, b} · P(T > n)

= 0

as P (T <∞) = 1.

Now that we have checked the assumptions of the optional stopping theorem, we conclude that

E[ST ] = E[S1] = E[X1] = 0.

But we can go even further. By definition of the expectation and using the fact that ST ∈ {−a, b}, we
get

E[ST ] = −a · P(ST = a) + b · P(ST = b) = 0.

Let p−a,b = P(ST = −a) = 1− P(ST = b). We can write the previous equation with p−a,b
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−ap−a,b + b(1− p−a,b) = 0.

From this, we find that the probability of the random walk visiting −a before b is given by

p−a,b =
b

a+ b
.

As a direct consequence, we have that the probability of visiting b before −a is b/(a+ b).

Example 2.29. Keeping the notations we used in the example above, we now want to learn more
about the first visit to b. To do so, define the stopping time Tb = inf{n ≥ 0 : Sn = b} with b > 0.
Notice that

{ST−a,b
= b} = {Tb ≤ T−a, Tb <∞}

and

{Tb <∞} ⊂
{

min
n∈{0,...,Tb}

Sn > −∞
}

⊂
⋃
a∈N

{Tb = T−a,b}.

In particular,

P(Tb <∞) = P

(⋃
a∈N

{Tb = T−a,b} ∩ {Tb <∞}

)

= P

(⋃
a∈N

{Tb ≤ T−a, Tb <∞}

)
(∗)
= lim

a→∞
P(Tb ≤ T−a, Tb <∞)

= lim
a→∞

P(ST−a,b
= b)

= lim
a→∞

a

a+ b
= 1

where (∗) is justified by the fact that {Tb ≤ T−a, Tb < ∞} is an increasing sequence of events in
a ∈ N. We now want to determine E[Tb]. Let (Yn) = (S2

n − n) be the martingale defined in Example
2.5. Let’s apply Theorem 2.24 to (Yn) and T := T−a,b. We check the hypotheses:

(a) We already know P(T <∞) = 1.

(b) We first observe that

E[ |YT | ] = E[ |S2
T − T | ] ≤ E[S2

T ] + E[T ] ≤ max(a2, b2) + E[T ],

so the only thing left to verify is wether E[T ] < ∞. To do so, let us first recall the following
results:

Lemma 2.30. If X ≥ 0 is a random variable, then

E[X] ≤ 1 +

∞∑
k=1

P(X ≥ k).

Moreover, if P(X ∈ N) = 1, we have

E[X] =

∞∑
k=1

P(X ≥ k).
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Proof. To get the first result, simply notice that X ≤ 1 +
∑∞

k=1 1{X≥k} and take the expectation.
For the second result, we can write X =

∑∞
k=1 1{X≥k} since we assumed P(X ∈ N) = 1 and again

taking the expectation gives the desired equality.

From this, we have

E
[

T

a+ b

]
≤ 1 +

∞∑
k=1

P
(

T

a+ b
≥ k

)

≤ 1 +

∞∑
k=1

P
(

T

a+ b
> k − 1

)

= 1 +

∞∑
k=1

P
(
T > (k − 1)(a+ b)

)
≤ 1 +

∞∑
k=1

(1− 2−(a+b))k−1 <∞.

So E[T ] <∞ and this concludes the check of (b).

(c) We first split the starting term in two:

E[Yn · 1{T>n}] = E[(S2
n − n) · 1{T>n}]

= E[S2
n · 1{T>n}]− E[n · 1{T>n}].

Now, since S2
n ≤ max(a2, b2) on the set {T > n}, we get

E[S2
n · 1{T>n}] ≤ max(a2, b2) · P(T > n) −→ 0

as n→ ∞, since P(T <∞) = 1. For the second term, we have

E[n · 1{T>n}] ≤ E[T · 1{T>n}]
n→∞−→ 0

thanks to Lemma 2.22.

All three conditions hold, so we can apply Theorem 2.24 and we get

E[S2
T − T ] = E[YT ] = E[Y1] = E[S2

1 − 1] = E[X2
1 − 1] = 0.

Therefore,

E[T ] = E[S2
T ]

= a2P(ST−a,b
= −a) + b2P(ST−a,b

= b)

= a2
b

a+ b
+ b2

a

a+ b

= ab

(
a

a+ b
+

b

a+ b

)
= ab.

If a = b, E[T−a,a] = a2 is the mean time it takes to move a steps from the starting point. From this,
we can actually calculate E[Tb] using what we have done until now.

For all a ∈ N∗, we have that Tb ≥ T−a,b. Indeed, there are only two possible situations, either we visit
−a first, which means T−a,b < Tb, or we visit b first and in this case have T−a,b = Tb. From this and
what we saw earlier, we get

E[Tb] ≥ E[T−a,b] = ab

for all a ∈ N. In particular, E[Tb] ≥ supa∈N ab = +∞ since b ≥ 1. So E[Tb] = ∞ for all b ̸= 0.
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2.5 Optional Stopping Theorems for supermartingales

Before giving the optional stopping time theorems for supermartingales, we first look at two very
useful results.

Theorem 2.31. Doob’s decomposition theorem. Let (Sn)n≥1 be a supermartingale relative to
(Xn)n≥1. There exists a martingale (Mn)n≥1 and a process (An)n≥1 such that

(1) n 7→ An is nondecreasing (P (An ≤ An+1))= 1,

(2) A1 = 0,

(3) An+1 is a function of (X1, . . . , Xn) (An is predictable) and

(4) Sn =Mn −An.

Proof. See Problem Set 4.

Lemma 2.32. Let (Sn) be a supermartingale and T a stopping time relative to (Xn). Then

E[ST∧n] ≤ E[S1] , for all n ≥ 1.

Proof. Let Sn =Mn −An be the Doob decomposition of (Sn). We have

ST∧n =MT∧n −AT∧n,

so

E[ST∧n] = E[MT∧n]− E[AT∧n] ≤ E[MT∧n]
(2.23)
= E[M1] = E[S1],

where the inequality comes from the fact that AT∧n ≥ 0 and the last equality is a consequence from
one of our assumptions, A1 = 0.

Lemma 2.33. Let (Sn) be a supermartingale and φ : R → R a concave and nondecreasing function
such that E[ |φ(Sn)| ] <∞ for all n. Then (φ(Sn)) is a supermartingale.

Proof. We check the conditions of Definition 2.10.

(a) : We know by assumption that E[ |φ(Sn)| ] <∞.

(b) : The function φ is concave by assumption, meaning −φ is convex. Property (G) of conditional
expectation gives

E[−φ(Sn+1) |X1, . . . , Xn] ≥ −φ(E[Sn+1 |X1, . . . , Xn]).

From this, we get

E[φ(Sn+1) |X1, . . . , Xn] ≤ φ(E[Sn+1 |X1, . . . , Xn]) ≤ φ(Sn).

The last inequality follows from E[Sn+1 |X1, . . . , Xn] ≤ Sn, since Sn is a supermartingale and φ

is nondecreasing.

(c) : Since (Sn) is a supermartingale, Sn is a function of X1, . . . , Xn, meaning φ(Sn) is too.

Theorem 2.34. Let (Sn) be a supermartingale and T a stopping time relative to (Xn). Suppose that
P(T < ∞) = 1 and there is a random variable W ≥ 0 with E[W ] < ∞ and ST∧n ≥ −W , for all
n ∈ N. Then E[ST ] ≤ E[S1].

Remark 2.35. We often use this theorem when (Sn) is nonnegative and take W = 0.
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Proof. Fix b > 0, and Sb
n := min(b, Sn) n ≥ 1. Then we know that (Sb

n) is also a supermartingale, as
the function x 7→ min(b, x) is concave and nondecreasing, meaning we can apply Lemma 2.33. Using
Lemma 2.32 now gives

E[Sb
1] ≥ E[Sb

T∧n] (∗1)

for n ≥ 1. Noticing that Sn
n , S

b
T ∈ [−W, b], we have

0 ≤ |E[Sb
T∧n]− E[Sb

T ]|
= |E[Sb

T∧n − Sb
T ]|

= |E[(Sb
n − Sb

T ) · 1{T>n}]|
≤ E[(b+W ) · 1{T>n}] −→ 0

as n → ∞ by Lemma 2.22 applied to (b +W ). Therefore E[Sb
T∧n] → E[Sb

T ] as n → ∞. Letting

n→ ∞ in (∗1) gives

E[Sb
1] ≥ E[Sb

T ]. (∗2)

As b ↗ +∞, we have both Sb
n ↗ Sn and Sb

T ↗ ST , applying the monotone convergence theorem
gives us

lim
b→∞

E[Sb
1] = E[S1] and lim

b→∞
E[Sb

T ] = E[ST ] (∗3)

Combining (∗2) and (∗3) gives the desired result: E[S1] ≥ E[ST ].

Proposition 2.36. Let (Sn) be a supermartingale and T a stopping time relative to (Xn). Suppose
that P(Sn ≥ 0) = 1 for all n ∈ N∗. Then E[S1] ≥ E[ST · 1{T<∞}].

Remark 2.37. By definition,

ST · 1{T<∞} =

{
ST if T <∞,

0 if T = ∞
.

Proof. We first observe that

E[S1]
(2.32)

≥ E[ST∧n]
Sn≥0

≥ E[ST∧n · 1{T≤n}] = E[ST · 1{T≤n}].

On {T <∞}:

ST · 1{T≤n} =

{
0 for n < T ,

ST for n ≥ T
.

The function n 7→ ST · 1{T≤n} is nondecreasing and it converges to ST = ST · 1{T<∞}. Moreover,
ST · 1{T<∞} = ST on {T <∞}.

On {T = ∞}:

ST · 1{T≤n} = 0 = ST · 1{T<∞}

In both cases,

ST · 1{T≤n} ↗ ST · 1{T<∞}.

The monotone convergence theorem and our first observation give the desired result:

E[ST · 1{T<∞}] = lim
n→∞

E[ST∧n · 1{T≤n}] ≤ E[S1].
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Theorem 2.38. Let (Sn) be a supermartingale and U , T be two stopping times relative to (Xn).
Suppose there is N ∈ N such that P(1 ≤ U ≤ T ≤ N) = 1, then E[ST ] ≤ E[SU ].

Proof. Step 1: Fix k < N . For k ≤ n ≤ N ,

E[Sn+1 · 1{T > n} · 1{U = k}] = E
(
E[Sn+1 · 1{T > n} · 1{U = k} |X1, . . . , Xn]

)
= E

(
1{T > n} · 1{U = k} · E[Sn+1 |X1, . . . , Xn]

)
≤ E[

(
1{T > n} · 1{U = k} · Sn].

Step 2: The function n 7→ E[ST∧n · 1{U = k}] is nonincreasing on [k,N ]. Indeed,

E[ST∧n · 1{U = k}] = E[ST · 1{T ≤ n} · 1{U = k}] + E[Sn · 1{T > n} · 1{U = k}]
≥ E[ST · 1{T ≤ n} · 1{U = k}] + E[Sn+1 · 1{T > n} · 1{U = k}]
= E[ST∧(n+1) · 1U=k].

From this we get

E[Sk · 1{U=k}] = E[ST∧k · 1{U=k}] ≥ E[ST∧N · 1{U=k}] = E[ST · 1{U=k}],

where the first equality follows from T ≥ U = k and the last from our assumption P (1 ≤ U ≤ T ≤
N) = 1.

Step 3: Finally,

E[SU ] =

N∑
k=1

E[Sk · 1{U=k}] ≥
N∑

k=1

E[ST · 1{U=k}] = E
[
ST

N∑
k=1

1{U=k}
]
= E[ST ].

Note that we have an analogous result for submartingales:

Theorem 2.39. Let (Sn) be a submartingale and U , T be two stopping times relative to (Xn).
Suppose there is N ∈ N such that P(1 ≤ U ≤ T ≤ N) = 1, then E[ST ] ≥ E[SU ].

2.6 Martingales convergence theorems

Definition 2.40. We say that a sequence (Sn) of random variables converges in probability to a
random variable S if:

∀ ϵ > 0, lim
n→∞

P(|Sn − S| > ϵ) = 0.

We often write Sn
p→ S to say that the sequence Sn converges in probability to S.

Definition 2.41. A sequence of random variables (Sn) converges almost-surely to a random variable
S if:

P
(
{ω ∈ Ω : lim

n→∞
Sn(ω) = S(ω)}

)
= 1.

We write limn→∞ Sn = S a.s. or Sn
a.s.→ S to denote almost-sure convergence.

Theorem 2.42. Monotone convergence theorem (MCT). If P(Sn ≥ 0) = 1 and P(Sn ≤
Sn+1) = 1 for all n ∈ N and Sn

a.s.→ S, then

lim
n→∞

E[Sn] = E[ lim
n→∞

Sn] = E[S].
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Theorem 2.43. Dominated convergence theorem (DCT). If Sn → S a.s. and if there is a
random variable W ≥ 0 such that E[W ] <∞ and P(|Sn| ≤W ) = 1 for all n ∈ N, then

lim
n→∞

E[Sn] = E[ lim
n→∞

Sn] = E[S].

Proposition 2.44. Let (Xn) be a sequence of random variables and X a random variable. Define

An(ϵ) = {|Xn −X| > ϵ} and Bm(ϵ) =
⋃

n≥m

An(ϵ).

(a) We have the following sufficient and necessary conditions for almost-sure convergence:

Xn
a.s.→ X ⇐⇒ ∀ ϵ > 0 , lim

m→∞
P(Bm(ϵ)) = 0 ⇐⇒ ∀ ϵ > 0, lim

m→∞
P( sup

n≥m
|Xn −X| > ϵ) = 0.

(b) If
∑∞

n=1 P(An(ϵ)) <∞ for all ϵ > 0, then Xn
a.s.→ X.

(c) If Xn
a.s.→ X, then Xn

p→ X.

Remark 2.45. We often write {A} as a shorthand for {ω ∈ Ω : ω ∈ A}. Here, for example, we
wrote {|Xn −X| > ϵ} instead of the more detailed expression {ω ∈ Ω : |Xn(ω)−X(ω)| > ϵ}.

Proof. (a) Observe that {
lim

n→∞
Xn = X

}
=
⋂

k∈N∗

⋃
N∈N

⋂
n≥N

{
|Xn −X| ≤ 1/k

}
.

To see this, it can be useful to know that

lim
n→∞

Xn(ω) = X(ω) ⇐⇒ ∀k ∈ N∗,∃N ∈ N, n ≥ N : |Xn(ω)−X(ω)| ≤ 1/k.

Therefore,

P
(
lim

n→∞
Xn = X

)
= 1 ⇐⇒ P

({
lim
n→∞

Xn = X
}c)

= 0

⇐⇒ P
( ⋃

k∈N∗

⋂
N∈N

⋃
n≥N

{
|Xn −X| > 1/k

})
= 0.

Notice that ∪n≥N{|Xn −X| > 1/k} = BN (1/k) and define Ck = ∩N∈NBN (1/k). We have that
Ck ⊂ Ck+1 and our previous expression simplifies to P(∪k∈N∗Ck) = 0. However, this holds if and
only if P(Ck) = 0 for all k ∈ N∗, which implies

0 = P(Ck) = P
( ⋂

N∈N
BN (1/k)

)
= lim

N→∞
P(BN (1/k)),

since BN+1(1/k) ⊂ BN (1/k). From this we get

P
(
lim

n→∞
Xn = X

)
= 1 ⇐⇒ ∀k ∈ N∗, lim

N→∞
P(BN (1/k)) = 0. (1)

It remains to check that this is equivalent to

∀ϵ > 0, lim
N→∞

P(BN (ϵ)) = 0. (2)

25



Clearly, (2) ⇒ (1), so it remains to check (1) ⇒ (2). For ϵ < ϵ′, An(ϵ
′) ⊂ An(ϵ), so Bm(ϵ′) ⊂

Bm(ϵ). If

lim
N→∞

P(BN (ϵ)) = 0

then

lim
N→∞

P(BN (ϵ′)) = 0

and (1) ⇒ (2) follows.

(b) First note that P(BN (ϵ)) ≤
∑

n≥N P(An(ϵ)). Since
∑∞

n=1 P(An(ϵ)) <∞ by assumption, we have

0 ≤ lim
N→∞

P(BN (ϵ)) ≤ lim
N→∞

∑
n≥N

P(An(ϵ)) = 0.

(c) We have Xn
p→ X if and only if ∀ϵ > 0, limn→∞ P(An(ϵ)) = 0. If Xn → X a.s., then

0 ≤ lim
n→∞

P(An(ϵ)) ≤ lim
n→∞

P(Bn(ϵ)) = 0.

Proposition 2.46. Cauchy criterion for almost-sure convergence. Let (Sn) be a sequence of
random variables such that

∀ϵ > 0, lim
m→∞

P
(
sup
i≥m

|Si − Sm| > ϵ

)
= 0.

Then there exists a random variable S such that Sn → S a.s.

Proof. See Problem Set 5.

Proposition 2.47. The Doob-Kolmogorov inequality. Let (Sn) be a submartingale relative to
(Xn) such that P(Sn ≥ 0) = 1 for all n ∈ N. Then for all λ > 0,

P
(

max
i=1,...,n

Si ≥ λ

)
≤ E[Sn]

λ
.

Note that this result also holds if we have the strict inequality: maxi=1,...,n Si > λ.

Proof. Set

T =

{
inf{k ≥ 0 : Sk ≥ λ} , if maxi=1,...,n Si ≥ λ

n , if maxi=1,...,n Si < λ
.

It is easy to see that T is a stopping time relative to (Xn). For k < n,

{T = k} = {S1 < λ, . . . , Sk−1 < λ, Sk ≥ λ}

which is determined by X1, . . . , Xk. For k = n, the set

{T = n} = {S1 < λ, . . . , Sn−1 < λ}

is determined by X1, . . . , Xn. By construction of T , we have that P(0 ≤ T ≤ n ≤ n) = 1. We can
therefore apply the optional stopping theorem for bounded stopping times (Theorem 2.39), which
gives

E[Sn] ≥ E[ST ].
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Moreover, thanks to our assumption P(Sn ≥ 0) = 1 and the fact that ST ≥ λ on {maxi=1,...,n ≥ λ},
we get the desired result

E[Sn] ≥ E[ST ] ≥ E
[
ST · 1{ max

i=1,...,n
Si ≥ λ}

]
≥ E

[
λ · 1{ max

i=1,...,n
Si ≥ λ}

]
= λ · P

(
max

i=1,...,n
Si ≥ λ

)
.

We now give a variant of the above inequality.

Proposition 2.48. Fix p > 1. If E[ |Si|p ] <∞ for i = 1, . . . , n, then

E
[

max
i=1,...,n

|Si|p
]
≤
(

p

p− 1

)p

· E[ |Sn|p ].

Proof. See Problem Set 6.

Remark 2.49. A special case of the above inequality that might be useful to keep in mind is when
we take p = 2:

E
[

max
i=1,...,n

S2
i

]
≤ 4 · E[S2

n].

We are now ready to state and prove the main result of this subsection:

Theorem 2.50. Let (Sn) be a martingale relative to (Xn). Suppose that there is M <∞ such that

E[S2
n] ≤M

for all n ∈ N. Then there is a random variable S such that limn→∞ Sn = S a.s.

Remark 2.51. Note that a martingale that satisfies the assumption in the above theorem is called
an L2-bounded martingale.

Proof. First observe that the function n 7→ E[S2
n] is nondecreasing, as the square of a martingale is a

submartingale (Lemma 2.13) and we can then refer to Remark 2.14. In addition:

E[S2
n+m] = E[(Sm + Sn+m − Sm)2]

= E[S2
m] + 2E[Sm(Sn+m − Sm)] + E[(Sn+m − Sm)2]

= E[S2
m] + E[(Sn+m − Sm)2]

since

E[Sm(Sn+m − Sm)] = E
(
E[Sm(Sn+m − Sm) |X1, . . . Xm]

)
= E

(
SmE[(Sn+m − Sm) |X1, . . . Xm]

)
= E

(
Sm(E[Sn+m |X1, . . . Xm]− §m)

)
(2.9)
= E[Sm(Sm − Sm)]

= 0.

As m 7→ E[S2
m] is nondecreasing and bounded by M , we can set

M0 = lim
m→∞

E[S2
m] ≤M.
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For m ∈ N, define Yn = Sm+n − Sm. Then (Yn) is a martingale relative to (Yn). Indeed,

E[Yn+1 |Y1, . . . , Yn] = E (E[Yn+1 |X1, . . . , Xm+n] |Y1, . . . , Yn)
= E

(
E[Sm+(n+1) − Sm |X1, . . . , Xm+n] |Y1, . . . , Yn

)
= E

(
E[Sm+(n+1) |X1, . . . , Xm+n]− E[Sm |X1, . . . , Xm+n] |Y1, . . . , Yn

)
= E[Sm+n − Sm |Y1, . . . Yn]
= E[Yn |Y1, . . . , Yn]
= Yn.

Applying the Doob-Kolmogorov inequality to the submartingale (Y 2
n ) gives

P
(

max
i=1,...,n

|Yi| > ϵ

)
= P

(
max

i=1,...,n
Y 2
i > ϵ2

)
≤ 1

ϵ2
E[Y 2

n ]

that is

P
(

max
i=m,...,m+n

|Si − Sm| > ϵ

)
≤ 1

ϵ2
E[(Sm+n − Sm)2] =

1

ϵ2
(E[S2

m+n]− E[S2
m]).

We now want to let n→ ∞:

∞⋃
n=1

{
max

i=m,...,m+n
|Si − Sm| > ϵ

}
=
{
sup
i≥m

|Si − Sm| > ϵ
}
.

Therefore,

P
(
sup
i≥m

|Si − Sm| > ϵ

)
≤ 1

ϵ2
(M0 − E[S2

m]).

Letting m→ ∞ gives

0 ≤ lim
m→∞

P
(
sup
i≥m

|Si − Sm| > ϵ

)
≤ 1

ϵ2
(M0 −M0) = 0.

The desired result now follows from the Cauchy criterion for almost-sure convergence.

Definition 2.52. Let (Sn) be a submartingale. For a < b, N ∈ N∗, let Va,b,N be the number of
couples (i, j) with 1 ≤ i < j ≤ N such that

Si ≤ a, a < Si < b for i < k < j and b ≤ Sj.

Va,b,N is the number of upcrossings of [a, b] between times 1 and N . Below is a graphic illustrating
an example of an upcrossing:
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N

a

b

Si

Sj

i j

Figure 1: Here is an example of an upcrossing of [a, b].

Remark 2.53. If f : N → R is nondecreasing, then there is at most one upcrossing of [a, b]
during {1, . . . , N}. A submartingale is a stochastic analogue of this, so there should not be too many
upcrossings of [a, b] during {1, . . . , N}

Lemma 2.54. The upcrossings inequality: Keeping the notation introduced above, we have the
following inequality:

E[Va,b,N ] ≤ 1

b− a

(
E[(SN − a)+]− E[(S1 − a)+]

)
.

Proof. Set Xn = (Sn − a)+. Since the function x 7→ (x − a)+ is nondecreasing and convex, Lemma
2.13 ensures that (Xn) is also a submartingale. Set T0 = 0 and for k = 1, . . . , N :

If k is odd:

Tk =

{
N if Xj > 0 for j ∈ [Tk−1 + 1, N ]

min{j ∈ [Tk−1 + 1, N ], Xj = 0} otherwise
.

If k is even:

Tk =

{
N if Xj < b− a for j ∈ [Tk−1 + 1, N ]

min{j ∈ [Tk−1 + 1, N ], Xj ≥ b− a} otherwise
.

Lastly, set TN+1 = N .

T1 T2 T3 N

a

b

Figure 2: Notice that in this particular example, N = T4 = T5 = . . . = TN = TN+1.
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The Tk are stopping times and are defined such that 1 ≤ Tk ≤ Tk+1 ≤ N . They are the right-
endpoints of an upcrossing or a downcrossing. If for some k ≤ N , Tk = N , then Tk+1 = N . We get,
applying the optional stopping theorem for bounded stopping times (Theorem 2.39),

E[XTk
] ≤ E[XTk+1

]. (∗)

Notice that

XN −X1 =

N∑
k=1

(
XTk+1

−XTk

)
+XT1 −X1

=
∑
k odd

(
XTk+1

−XTk

)
+
∑

k even

(
XTk+1

−XTk

)
+XT1

−X1

≥ (b− a)Va,b,N +
∑

k even

(
XTk+1

−XTk

)
+XT1

−X1,

where the last inequality comes from the fact that for k odd (Tk, Tk+1) is an upcrossing and (XTk+1
−

XTk
) ≥ (b− a). Taking the expectation gives

E[XN −X1] ≥ (b− a)E[Va,b,N ] +
∑

k even

(
E[XTk+1

]− E[XTk
]
)
+
(
E[XT1

]− E[X1]
)

(∗)
≥ (b− a)E[Va,b,N ].

Going back to our definition of (Xn), we get the inequality we were looking for:

E[Va,b,N ] ≤ 1

b− a
E[(SN − a)+ − (S1 − a)+].

Statement 2.55. Fatou’s lemma. Let Xn ≥ 0 a.s., then

E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn].

Theorem 2.56. A.s. convergence of submartingales. Let (Sn) be a submartingale relative to
(Xn), such that supn∈N E[S+

n ] <∞. Then there is a random variable S such that

Sn
a.s.−→ S and E[ |S| ] <∞.

Proof. Fix a < b, N ∈ N and Va,b,N as before. Then

E[Va,b,N ] ≤ 1

b− a
E[(SN − a)+] ≤

1

b− a

(
E[S+

N ] + |a|
)
≤ 1

b− a

(
sup
n∈N

E[S+
n ] + |a|

)
<∞.

For N ↗ ∞, we have

Va,b,N ↗ Va,b

where Va,b is the number of upcrossings of [a, b] by (Sn : n ∈ N). The monotone convergence theorem
gives
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E[Va,b] = lim
N→∞

E[Va,b,N ] ≤ 1

b− a

(
sup
N∈N

E[S+
N ] + |a|

)
and as a consequence P(Va,b <∞) = 1. Now consider the event

{lim inf
n→∞

Sn < a < b < lim sup
n→∞

Sn} = {Va,b = ∞}.

Therefore P(lim infn→∞ Sn < a < b < lim supn→∞ Sn) = 0 and

P

 ⋃
a<b
a,b∈Q

{lim inf
n→∞

Sn < a < b < lim sup
n→∞

Sn}

 = 0.

Equivalently, P(lim infn→∞ Sn < lim supn→∞ Sn) = 0, meaning P(lim infn→∞ Sn = lim supn→∞ Sn) =
1. Therefore, (Sn) converges a.s. and S = limn→∞ Sn is the desired random variable.

A priori, S = ±∞ is possible. We now want to exclude this possibility. Thanks to Fatou’s lemma,
we have

E[S+] = E[ lim
n→∞

S+
n ] = E[lim inf

n→∞
S+
n ] ≤ lim inf

n→∞
E[S+

n ] ≤ sup
n∈N

E[S+
n ] <∞.

So E[S+] <∞, and since Sn = S+
n − S−

n , we have E[S−
n ] = E[S+

n ]− E[Sn] ≤ E[S+
n ]− E[S1] thanks to

Remark 2.14. Using Fatou’s lemma once again gives

E[S−] = E[lim inf
n→∞

S−
n ] ≤ lim inf

n→∞
E[S−

n ] ≤ lim inf
n→∞

E[S+
n ]− E[S1] ≤ sup

n∈N
E[S+

n ]− E[S1] <∞.

Finally, E[ |S| ] = E[S+] + E[S−] <∞.

Theorem 2.57. L2-convergence of L2-bounded martingales. Let (Sn) be a martingale relative
to (Xn) such that supn∈N E[S2

n] <∞. Then there is a random variable S such that

lim
n→∞

Sn = S a.s. and lim
n→∞

E[(Sn − S)2] = lim
n→∞

||Sn − S||2L2 = 0.

Proof. We have already shown that there exists a random variable S such that limn→∞ Sn = S a.s.
It remains to prove limn→∞ E[(Sn − S)2] = 0. Using the variant of the Doob-Kolmogorov inequality
(Proposition 2.48) with p = 2, we have

E[ max
i∈{1,...n}

S2
i ] ≤ 4 · E[S2

n]. (∗)

Noticing maxi∈{1,...n} S
2
i ↗ supi∈N S

2
i as n→ ∞, i.e., (maxi∈{1,...,n} S

2
i )n is a sequence of nonnegative

random variables increasing to supi∈N S
2
i , we can use the monotone convergence theorem:

E[sup
i∈N

S2
i ] = E[ lim

n→∞
max

i∈{1,...,n}
S2
i ]

(MCT )
= lim

n→∞
E[ max

i∈{1,...,n}
S2
i ].

And now (∗) gives
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E[sup
i∈N

S2
i ] ≤ 4 · lim

n→∞
E[S2

n] ≤ 4 · sup
n∈N

E[S2
n] <∞,

where the last inequality holds by assumption.

Before we can conclude this proof, observe that

(Sn − S)2 = |Sn − S|2

≤ (|Sn|+ |S|)2

≤ (2 sup
i∈N

|Si|)2

= 4 sup
i∈N

S2
i <∞.

Let W = 4 supi∈N S
2
i . We have E[W ] <∞, (Sn − S)2 → 0 a.s. as n→ ∞ and (Sn − S)2 ≤W for all

n ∈ N and we can therefore apply the dominated convergence theorem

lim
n→∞

E[(Sn − S)2] = E[ lim
n→∞

(Sn − S)2] = E[0] = 0,

which concludes the proof.

Remark 2.58. As a side note, to better understand the steps of this proof (as well as many others),
retracing the steps in reverse is often beneficial. Here, for example, we want to show that limn→∞ E[(Sn−
S)2] = 0, but we already know from a previous result that Sn → S almost surely for some random
variable S. From this, we infer that (Sn − S)2 → 0 almost surely, and we now just need to find a
way to show E[(Sn − S)2] → 0 as n → ∞. Multiple theorems and results could be helpful to show
this; the only thing left to do is to find which one fits our situation best. In this case, the monotone
convergence theorem won’t be of any help since we do not know whether the sequence is increasing in
n or not. Another possibility would be the bounded convergence theorem (essentially the dominated
convergence theorem but using a constant to bound the sequence of random variables), but again, it
seems quite difficult to find a constant that would bound our sequence (Sn − S)2 since we know so
little about it. Finally, we can try our luck with the dominated convergence theorem. In this particular
case, the random variable used as a bound comes out naturally, but most of the time, more work will
be needed to find a suitable one.
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3 Branching Processes

In probability theory, a branching process is a type of stochastic process, which is a collection of
random variables indexed by a set, typically the natural numbers or non-negative real numbers.
Originally, branching processes were developed to model populations where each individual in generation
n produces a random number of individuals in generation n+ 1. This reproduction is often modeled
using a fixed probability distribution that is consistent across all individuals. We will primarily
consider branching processes in this context.

Branching processes are frequently employed to model biological reproduction scenarios. For example,
consider bacteria where each bacterium can produce 0, 1, or 2 offspring with certain probabilities
within a single time unit. Beyond biological applications, branching processes can also be used to
model other dynamic systems, such as the spread of surnames in genealogy or the propagation of
neutrons in a nuclear reactor.

Hypothesis A: The numbers of offspring from different individuals are independent and identically
distributed (i.i.d.) random variables, each following the distribution of a random variable Z. We will
write pj = P(Z = j) for j ∈ N.

Remark 3.1. E[Z] is the expected number of offspring per individual. If E[Z] > 1, the population
should grow and in case E[Z] < 1, we would expect the population to decrease. If E[Z] = 1, what
happens ?

Our first objective will be to determine the extinction probability, i.e., the probability that there
is an n ∈ N such that Xn = 0. Note that this implies Xm = 0 for m ≥ n. With this goal in mind, we
define the generating function of the random variable Z, denoted by gZ(·), as follows:

gZ(s) = P(Z = 0) + sP(Z = 1) + s2P(Z = 2) + . . .

=

∞∑
j=0

sjP(Z = j)

=

∞∑
j=0

pjs
j .

And we give some properties that follow immediately from the definition.

Proposition 3.2. (a) The series
∑∞

j=0 pjs
j converges uniformly on [−1, 1];

(b) gZ(s) = E[sZ ];

(c) If Z and Z ′ are two independent random variables taking values in N, then gZ+Z′(s) = gZ(s) ·
gZ′(s);

(d) If
∑∞

j=0 j pj < ∞, then g′Z(1) = E[Z], and if
∑∞

j=0 j
2 pj < ∞, then Var(Z) = g′′Z(1) + E[Z] −

E[Z]2.

Proof. See Problem Set 7.

Remark 3.3. Recall that the moment generating function of the random variable Z is given by
MZ(t) = E[etZ ], provided this expectation exists for t in some open neighborhood of zero. So, gZ(s) =
MZ( ln s ).

Let us now explore in more details the generating function of Xn, when we set X0 = 1. By definition,

gXn+1
(s) = E[sXn+1 ] = E

(
E[sXn+1 |Xn]

)
= E[ψ(Xn)],
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where ψ(j) = E[sXn+1 |Xn = j]. Observe that

E[sXn+1 |Xn = j] = E[sZ
n
1 +...+Zn

j |Xn = j]

with Zn
i the number of offspring of individual i of generation n. Noticing that {Xn = j} is determined

by the Zk
i , where k < n, Hypothesis A gives

E[sXn+1 |Xn = j] = E[sZ
n
1 +...+Zn

j ] = E[sZ
n
1 ] · . . . · E[sZ

n
j ] =

(
E[sZ ]

)j
=
(
gZ(s)

)j
,

as the event {Xn = j} is independent of the Zk
i , k < n. Therefore,

E[sXn+1 |Xn] = ψ(Xn) =
(
gZ(s)

)Xn

and

gXn+1
(s) = E[(gZ(s))Xn ] = gXn

(
gZ(s)

)
.

That is,

gXn+1
= gXn

◦ gZ = (gXn−1
◦ gZ) ◦ gZ

= gXn−1
◦ g(2)Z

= . . .

= gX1
◦ g(n)Z

= g
(n+1)
Z .

The last equality follows from the fact that gX1
= gZ , since X0 = 1. This gives the following formula

for gXn :

gXn = g
(n)
Z = gZ ◦ gZ ◦ . . . ◦ gZ︸ ︷︷ ︸

n times

.

Let’s return to our main objective: determining the extinction probability. Let F =
⋃∞

n=1{Xn = 0} =
{ the population becomes extinct }. We want to find P(F ). Observe that {Xn = 0} ⊆ {Xn+1 = 0},
so P(F ) = limn→∞ P(Xn = 0).

Theorem 3.4. Suppose X0 = 1 and Hypothesis A holds. Then P(F ) is the smallest number α ≥ 0
such that

α =

∞∑
j=0

αj pj = gZ(α).

Remark 3.5. (a) If the probability that an individual has no offspring is zero, i.e., p0 = P(Z = 0) =
0, then 0 = gZ(0) and P(F ) = 0.

(b) Case of male descendants in the U.S.A (Lotka 1931 [3]). Statistical methods showed that

gZ(s) =
0.482− 0.041s

1− 0.559s
.

So α = gZ(α) gives a 2nd degree polynomial equation with two solutions: 1, which is always a solution,
and α = 0.86, which was interpreted as the probability of extinction of a family name.
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Proof. Recall P(F ) = limn→∞ P(Xn = 0). Set αn = P(Xn = 0), we know that α = limn→∞ αn =
P(F ) exists. Therefore,

αn = P(Xn = 0) = gXn(0) = g
(n)
Z (0) = gZ

(
g
(n−1)
Z (0)

)
= gZ

(
gXn−1(0)

)
= gZ(αn−1).

If we now let n→ ∞, we get

α = lim
n→∞

αn = lim
n→∞

gZ(αn−1)
(∗)
= gZ

(
lim
n→∞

αn−1

)
= gZ(α),

where we used the continuity of gZ in (∗). Let us now prove the second part of the claim. Let β ≥ 0
be another solution, i.e., β = gZ(β). Since gZ in nondecreasing on [0, 1] and 0 ≤ β, we have

gZ(0) ≤ gZ(β) = β.

Again,

g
(2)
Z (0) = gZ

(
gZ(0)

)
≤ gZ(gZ(β)) = gZ(β) = β.

Recall that αn = g
(n)
Z (0). Repeating what we did above, we will eventually get

αn = gXn(0) = g
(n)
Z (0) ≤ g

(n)
Z (β) = β.

Since this holds for all n ∈ N, letting n→ ∞ gives the desired result: α ≤ β.

Hypothesis B:

(a) We will assume pj < 1 for all j and p0 + p1 < 1. If p0 + p1 = 1, then pj = 0 for j ≥ 2 and each
individual has 0 or 1 offspring, nothing interesting happens.

(b) E[Z] =
∑∞

j=1 j pj <∞.

Proposition 3.6. Under Hypotheses A and B, we have

1. Extinction probability = 1 ⇐⇒ E[Z] ≤ 1.

2. Extinction probability = 0 ⇐⇒ p0 = P(Z = 0) = 0.

Proof. Follows from the fact that gZ(1) = 1 and s 7→ gZ(s) is strictly convex and nondecreasing on
[0, 1].

Let us now study the asymptotic behaviour of Xn as n→ ∞.

Lemma 3.7. Set m = E[Z], σ2 = Var(Z) <∞. Then

E[Xn] = mn

and

Var(Xn) =

σ2m
n(mn − 1)

m2 −m
, for m ̸= 1

nσ2 , for m = 1
.
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Proof. First notice that

E[Xn] = g′Xn
(1) =

(
gXn−1 ◦ gZ

)′
(1) = g′Xn−1

(
gZ(1)

)
· g′Z(1) = g′Xn−1

(1) ·m,

meaning E[Xn] = mE[Xn−1]. By iterating, we get the desired result: E[Xn] = mn. For the second
part of the claim, we have

g′Xn+1
(s) = g′Xn

(
gZ(s)

)
· g′z(s)

and

g′′Xn+1
(s) = g′′Xn

(
gZ(s)

)
· g′Z(s) · g′Z(s) + g′Xn

(
gZ(s)

)
· g′′Z(s)

= g′′Xn

(
gZ(s)

)
· g′Z(s)2 + g′Xn

(
gZ(s)) · g′′Z(s).

Recall point (d) of Proposition 3.2

g′′Xn
(1) = Var(Xn)− E[Xn] +

(
E[Xn]

)2
.

From this, we get

Var(Xn+1) = g′′Xn+1
(1) +mn+1 −m2(n+1)

= g′′Xn
(gZ(1)︸ ︷︷ ︸

=1

) ·
(
g′Z(1)︸ ︷︷ ︸
=m

)2
+ g′Xn

(
g′Z(1)︸ ︷︷ ︸
=1

)
· g′′Z(1) +mn+1 −m2(n+1)

=
(
Var(Xn)− E[Xn] + E[Xn]

2
)
·m2 + E[Xn] · (σ2 −m+m2) +mn+1 −m2(n+1)

= Var(Xn) ·m2 −mn+2 +m2n+2 +mnσ2 −mn+1 +mn+2 +mn+1 −m2n+2

= Var(Xn) ·m2 +mnσ2.

Finally,

Var(Xn+1) = mnσ2 +m2Var(Xn)

= mnσ2 +m2
(
mn−1σ2 +m2Var(Xn)

)
= (mn +mn+1)σ2 +m4Var(Xn−1)

= . . .

= (mn +mn+1 + . . .+m2n)σ2 +m2(n+1) Var(X0)︸ ︷︷ ︸
=0

=

(n+ 1)σ2 , if m = 1
m2n+1 −mn

m− 1
σ2 , if m ̸= 1

.

We can now simply rewrite the case m ̸= 1 and get

Var(Xn+1) =

(n+ 1)σ2 , if m = 1
mn+1(mn+1 − 1)

m2 −m
σ2 , if m ̸= 1

.

Theorem 3.8. Let Sn = m−nXn. Then (Sn) is a martingale relative to (Xn). If m > 1, there exists
a random variable S such that Sn → S a.s. and E[(Sn − S)2] → 0 as n→ ∞.
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Proof. We first check E[ |Sn| ] is finite for all n ≥ 1:

E[ |Sn|] = E[Sn] =
1

mn
E[Xn] = 1 <∞.

For the second condition, we have

E[Sn+1 |X1, . . . , Xn] = E
[
Xn+1

mn+1
|X1, . . . , Xn

]
=

1

mn+1
E[Xn+1 |X − 1, . . . , Xn].

Observe that

E[Xn+1 |Xn = jn, . . . , X1 = j1]
(Hyp. A)

= E[Zn
1 + . . .+ Zn

jn ]

= jn · E[Z]

= jn ·m,

where Zn
k is the number of offspring of individual k in the generation n. From this, we get

E[Xn+1 |X1, . . . , Xn] = mXn

and therefore

E[Sn+1 |X1, . . . , Xn] =
1

mn+1
·m ·Xn =

Xn

mn
= Sn.

Now, supposem > 1. We want to use the Martingale convergence theorem for L2-bounded martingales,
to do so, we first need to check that (Sn) is an L

2-bounded martingale:

E[S2
n] = Var(Sn) +

(
E[Sn]

)2
=

1

m2n
Var(Xn) + 1

=
σ2

m2n
· m

n(mn − 1)

m2 −m
+ 1

=
σ2

m2 −m
(1− 1

mn
) + 1

≤ σ2

m2 −m
+ 1 <∞.

We can apply our theorem, which guarantees the existence of a random variable S such that Sn → S
a.s. and E[(Sn − S)2] → 0 as n→ ∞.

Conclusions:

(a) If m ≤ 1, then P(∃n : Xn = 0) = 1 (See Proposition 3.6).

(b) If m > 1, then for large n, Xn ∼ mnS.

First note that P(S ≥ 0) = 1. If S > 0, the population grows exponentially. In case S = 0, we have
that m−nXn → 0, the population ”grows” more slowly than n 7→ mn. In fact, we will show that
the population becomes extinct in this case. From this, we get that there is two possibilities for the
population of interest: ”either extinction or explosion”.

Remark 3.9. Since E[(Sn − S)2] → 0, we have

E[Sn]︸ ︷︷ ︸
=1

→ E[S] = 1, Var(Sn) → Var(S) =
σ2

m2 −m
> 0.
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Proposition 3.10. If m > 1.

(1) P(S = 0) = P({extinction}).

(2) Var(S |S > 0)> 0 : given S > 0 (no extinction), S is still random, it is not a constant.

Proof. We will only give a proof for (1). Clearly, {extinction} ⊆ {S = 0}, because Sn = m−nXn → S
a.s., so P({extinction}) ≤ P(S = 0).

To verify that this inequality holds as an equality, let q = P(S = 0) and note that

{S = 0} =
{

lim
n→∞

Sn = 0
}
.

Now, observe that

P
(
lim
n→∞

Sn = 0 |X1 = k
)
= P

(
lim
n→∞

1

mn

k∑
l=1

X(k)
n = 0

)

= P

(
k⋂

l=1

{ lim
n→∞

m−nX(l)
n = 0} |X1 = k

)
(∗)
=

k∏
l=1

P
(
lim
n→∞

m−nX(l)
n |X1 = k

)
=

k∏
l=1

P
(
lim
n→∞

m−nXn = 0
)

=
(
P(S = 0)

)k
.

Therefore,

q = P(S = 0) =

∞∑
k=0

P(S = 0 |X1 = k)︸ ︷︷ ︸
qk

·P(X1 = k)︸ ︷︷ ︸
pk

=

∞∑
k=0

qk · pk

= gZ(q).

That is: q = gZ(q). In addition, q = P(S = 0) < 1 because Var(S) > 0. We know that s = gZ(s)
has exactly two nonnegative solutions (when m > 1), namely 1 and P({extinction}), therefore q =
P({extinction}).

38



4 Brownian motion

Definition 4.1. A Brownian motion (BM) is a stochastic process (Bt : t ∈ R+) with two properties:

(a) For all s, t ∈ R+, we have

Bt+s −Bs ∼ N (0, σ2t),

with σ > 0 a fixed parameter.

(b) For t1 < t2 ≤ t3 < t4, the increments (Bt4 − Bt3) and (Bt2 − Bt1) are independent. The same
holds for increments over n ∈ N nonoverlapping intervals.

Remark 4.2. 1. The law of B0 is not specified.

2. We will often write B(t) instead of Bt for clarity.

3. Unless stated otherwise, we will consider the case σ = 1 and B0 = 0. We will designate this
specific instance as a standard Brownian motion. We have in this case Bt ∼ N (0, t), t ∈ R+.

We now want to find an expression for the joint probability distribution of (Bt1 , Bt2 , . . . , Btn), where
0 < t1 < . . . < tn. Define

p(x, t) =
1√
2πt

· exp
{
−x

2

2t

}
,

which is the probability density function of a N (0, t).

Proposition 4.3. Using the function p(x, t) defined above, we have

f(Bt1
,...,Btn )(x1, . . . , xn) = p(x1, t1)p(x2 − x1, t2 − t1) . . . p(xn − xn−1, tn − tn−1).

Proof. By property (b) of our definition, the probability density function of Y = (Bt1 − B0, Bt2 −
Bt1 , . . . , Btn −Btn−1

), where B0 = 0, is given by

g(y1, . . . , yn) = p(y1, t1 − t0)p(y2, t2 − t1) . . . p(yn, tn − tn−1).

Define T : Rn → Rn by T (x1, . . . , xn) = (x1, x2 − x1, . . . , xn − xn−1). Then, T (Bt1 , . . . , Btn) = Y .
Recall that if Y = T (X) with T bijective and C0, then

fX(x) = fY
(
T (x)

)
· |det(J)|

where J = (∂Ti/∂xj) is the Jacobian matrix. In our case, the Jacobian matrix is of the form

J =


1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . .
. . .

. . .
...

0 0 0 −1 1

 ,

meaning det(J) = 1. Therefore,

f(Bt1
,...,Btn )(x1, . . . , xn) = p(x1, t1)p(x2 − x1, t2 − t1) . . . p(xn − xn−1, tn − tn−1).
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Lemma 4.4. Translation invariance. For s < t, the conditional law of Bt given Bs = y has the
following property:

P(Bt ≤ x |Bs = y) = P(Bt ≤ x− y |Bs = 0).

Proof. We know that the joint density of (Bs, Bt) is:

f(y, x) = p(y, s)p(x− y, t− s).

The conditional density of Bt given Bs = y is:

fBt |Bs
(x | y) = f(y, s)

fBs(y)
=
p(y, s)p(x− y, t− s)

p(y, s)
= p(x− y, t− s).

It follows that

P(Bt ≤ x |Bs = y) =

∫ x

−∞
p(v − y, t− s)dv

(u=v−y)
=

∫ x−y

−∞
p(u, t− s)du

= P(Bt ≤ x− y |Bs = 0).

Statement 4.5. Continuity of sample paths. Fix ω ∈ Ω. With probability one,

R+ → R
t 7→ Bt(ω)

is continuous.

Theorem 4.6. Markov property. For t1 < . . . < tn < t,

P(Bt ≤ x |Bt1 = x1, . . . , Btn = xn) = P(Bt ≤ x |Btn = xn).

Proof. See Problem Set 8.

Proposition 4.7. The covariance of Bs and Bt is given by

Cov(Bs, Bt) = E[BsBt] = s ∧ t.

Proof. Without loss of generality, suppose s ≤ t. Using the independence of increments and the fact
that Bt follows a N (0, t) distribution, we have

E[BsBt] = E
[
Bs

(
(Bt −Bs) +Bs

)]
= E[Bs(Bt −Bs)] + E[B2

s ]

= E[Bs] · E[Bt −Bs] + s

= 0 + s

= s ∧ t.
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4.1 Probabilities of behaviors of Brownian motion

Our goal is now to derive expressions for the probabilities of behaviors defined by specified values at
particular times. Let 0 < t1 < . . . < tn be specific time points and ai, bi ∈ R such that ai < bi, with
i ∈ {1, . . . , n}. The probability for Bti to be in the interval [ai, bi] for all i ∈ {1, . . . , n} is

P(Bt1 ∈ [a1, b1], . . . , Btn ∈ [an, bn]) =

∫ b1

a1

dx1 . . .

∫ bn

an

dxn p(x1, t1)p(x2 − x1, t2 − t1)

. . . p(xn − xn−1, tn − tn−1).

t1 t2 t3 t4

Figure 3: One example of a sample path that satisfies the constraints at times t1, t2, t3 and t4.

Remark 4.8. Many interesting events are not of this kind, for example:

P
(

max
u∈[0,t]

Bu > a

)
= P

 ⋃
r∈Q∩[0,t]

{Br > a}

 .

Proposition 4.9. Reflection principle (Bachelier). For a ≥ 0,

P
(

max
u∈[0,t]

Bu ≥ a

)
= 2P(Bt ≥ a).

The formal proof of the above proposition requires the use of the strong Markov property (Theorem
4.53), which we have not yet introduced. Therefore, we will provide an informal explanation of the
result and indicate the points at which the strong Markov property would be applied in a rigorous
proof. Let

τ =

{
inf{a ≥ 0 : Bu = a} , if {u ≥ 0 : Bu = a} ≠ ∅
+∞ , otherwise

.

Define

B̃t =

{
Bt , if t < τ

a− (Bt − a) , if t ≥ τ
.
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Intuitively, (B̃t) is also a BM by symmetry. However, this is where one would need to use the strong
Markov property in order to get a rigorous justification. Consider the event

{
max
u∈[0,t]

Bu ≥ a, Bt ≥ a

}
=

{
max
u∈[0,t]

B̃u ≥ a, B̃t ≤ a

}
.

Therefore,

P
(

max
u∈[0,t]

Bu ≥ a, Bt ≥ a

)
= P

(
max
u∈[0,t]

B̃u ≥ a, B̃t ≤ a

)
(∗)
= P

(
max
u∈[0,t]

Bu ≥ a, Bt ≤ a

)
,

where the equality marked by (∗) follows form the fact that B̃t and Bt are both BMs. From this, and
recalling that P(Bt = a) = 0 for the equality denoted by (⋆), we get the desired result

P
(

max
u∈[0,t]

Bu ≥ a

)
(⋆)
= P

(
max
u∈[0,t]

Bu ≥ a, Bt ≥ a

)
+ P

(
max
u∈[0,t]

Bu ≥ a, Bt ≤ a

)
= 2P

(
max
u∈[0,t]

Bu ≥ a, Bt ≥ a

)
= 2P (Bt ≥ a) .

Proposition 4.10. Fix a ̸= 0. We define the first hitting time of level a by

Ta =

{
inf{t ≥ 0 : Bt = a} , if {t ≥ 0 : Bt = a} ≠ ∅
+∞ , otherwise

.

The probability density function of Ta is

fTa
(t) =

|a|√
2a

· 1√
t3

exp

{
−a2

2t

}
,

for t > 0.

Proof. Suppose a > 0. Then

{Ta ≤ t} =

{
max
u∈[0,t]

Bu ≥ a

}
and from this

P(Ta ≤ t) = P
(

max
u∈[0,t]

Bu ≥ a

)
= 2P(Bt ≥ a)

= 2

∫ ∞

a

1√
2πt

exp

{
−x2

2t

}
dx

(∗)
=

2√
2πt

∫ ∞

a/
√
t

exp

{
−y2

2

}√
t dy

=
2√
2π

∫ ∞

a/
√
t

exp

{
−y2

2

}
dy
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where we used the change of variable x = y
√
t in (∗). Finally,

fTa
(t) =

d

dt
P(Ta ≤ t) =

2√
2π

(
− exp

{
−a2

2t

})(
−a
2
√
t3

)
=

a√
2π

1√
t3

exp

{
−a2

2t

}
.

The case a < 0 can be treated analogously.

Remark 4.11. (a) The stopping time Ta is a.s. finite:

P(Ta <∞) = lim
t→∞

P(Ta ≤ t) = lim
t→∞

2√
2π

∫ ∞

a/
√
t

exp

{
−y2

2

}
dy =

2√
2π

∫ ∞

0

exp

{
−y2

2

}
dy = 1.

(b) The stopping time Ta does not have a finite expectation:

E[Ta] =
∫ ∞

0

t fTa
(t)dt =

∫ ∞

0

t
a√
2π

1√
t3

exp

{
−a2

2t

}
dt ≥

∫ ∞

1

a√
2π

1√
t
exp

{
−a2

2t

}
dt

≥
∫ ∞

1

a√
2π

1√
t
exp

{
−a2

2

}
dt = ∞.

Proposition 4.12. The probability P(minu∈[0,t]Bu ≤ 0 |B0 = a), i.e., the probability of moving down
a units is given by

P
(

min
u∈[0,t]

Bu ≤ 0 |B0 = a

)
=

a√
2π

∫ t

0

u−3/2 exp

{
−a2

2u

}
du.

Proof. By symmetry and invariance under translation in space, we have

P
(

min
u∈[0,t]

Bu ≤ 0 |B0 = a

)
= P

(
max
u∈[0,t]

Bu ≥ 2a |B0 = a

)
= P

(
max
u∈[0,t]

Bu ≥ a |B0 = 0

)
= P(Ta ≤ t |B0 = 0)

=
a√
2π

∫ t

0

u−3/2 exp

{
−a2

2u

}
du.

Proposition 4.13. As a direct consequence of Proposition 4.12, we get that the probability of visiting
zero, starting at Bt0 = a, during [t0, t1], for 0 < t0 < t1, is

P
(

min
u∈[t0,t1]

Bu ≤ 0 |Bt0 = a

)
= P

(
min

u∈[0,t1−t0]
Bu ≤ 0 |B0 = a

)
=

a√
2π

∫ t1−t0

0

u−3/2 exp

{
−a2

2u

}
du.
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Proposition 4.14. Let 0 < t0 < t1. The probability α of visiting zero in the interval (t0, t1) is

α = P(∃t ∈ (t0, t1)Bt = 0 |B0 = 0) =
2

π
arccos

(√
t0
t1

)
.

Proof. First recall the following formula of total probability:

P(F ) =
∫ ∞

−∞
P(F |X = x) fX(x)dx.

We have

α =

∫ ∞

−∞
P(∃t ∈ (t0, t1) : Bt = 0 |Bt0 = a) fBt0

(a) da

= 2

∫ ∞

0

P
(

min
u∈(t0,t1)

Bu ≤ 0 |Bt0 = a

)
fBt0

(a) da

= 2

∫ ∞

0

da fBt0
(a)

∫ t1−t0

0

du
a√
2π
u−3/2 exp

{
−a2

2u

}
(1)
=

1

π
√
t0

∫ t1−t0

0

duu−3/2

∫ ∞

0

da a exp

{
−a

2

2

(
1

t0
+

1

u

)}
(2)
=

√
t0
π

∫ t1−t0

0

du

(t0 + u)
√
u

(3)
=

2

π

∫ √
(t1−t0)/t0

0

dv

1 + v2

=
2

π
arctan

{√
t1 − t0
t0

}
.

We switched the integrals in (1), used the explicit antiderivative of a exp{−(a2/2)(1/t0 +1/u)} given
by

− exp

{
−a2

2

(
1

t0
+

1

u

)}
t0u

t0 + u

in (2) and did the change of variables u = t0 v
2 in (3). It follows that

tan2
(π
2
α
)
=
t1
t0

− 1

⇒ t1
t0

= 1 + tan2
(π
2
α
)
=

1

cos2 ((απ)/2)

⇒
√
t0
t1

= cos
(πα

2

)
.

From this, we get the desired result

α = P(∃t ∈ (t0, t1)Bt = 0 |B0 = 0) =
2

π
arccos

(√
t0
t1

)
.
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Proposition 4.15. The arcsin law. Define L1 := sup{t ≤ 1 : Bt = 0}, the time of the last visit to
0 before time 1. Then

P(L1 ≤ s) =
2

π
arcsin(

√
s), s ∈ [0, 1].

Remark 4.16. Note that P(B1 = 0) = 0, so P(L1 < 1) = 1.

Proof. First observe that

{L1 ≤ s} = {Bt ̸= 0 for all t ∈ [s, 1]},

meaning

P(L1 ≤ s) = 1− P(∃t ∈ [s, 1] : Bt = 0 |B0 = 0)

= 1− 2

π
arccos(

√
s).

Now recalling the following identity:

arccos(x) + arcsin(x) =
π

2
,

we find the desired result

P(L1 ≤ s) = 1− 2

π

(π
2
− arcsin(

√
s)
)
=

2

π
arcsin(

√
s).

Remark 4.17. The probability density function of L1 is given by:

fL1
(s) =

2

π

1√
1− s

1

2
√
s
=

1

π

1√
s(1− s)

,

for s ∈ (0, 1). The density function of L1 has the following plot:

0.2 0.4 0.6 0.8 1

2

4

s

fL1(s)

So we would typically expect L1 to be near 0 or 1 and that it would be less likely for it to be near 1/2.

Remark 4.18. We will use the following notation: Pa(. . .) = P(. . . |B0 = a).
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4.2 Three invariant properties of Brownian motion

Proposition 4.19. Scaling invariance. Let (Bt, t ∈ R+) be a standard BM. Fix a > 0 and define

B̃t =
√
a
−1
Bat. Then (B̃t) is a standard BM.

Proof. We check the two defining properties:

(a)

B̃t+s − B̃s =
1√
a
Ba(t+s) −

1√
a
Bas

=
1√
a
(Bas+at −Bas)

=
1√
a
N (0, at)

= N (0, t).

(b) Let t1 < t2 ≤ t3 < t4. The increments

B̃t4 − B̃t3 =
1√
a
(Bat4 −Bat3)

and

B̃t2 − B̃t1 =
1√
a
(Bat2 −Bat1)

are independent as

t1 < t2 ≤ t3 < t4 ⇐⇒ at1 < at2 ≤ at3 < at4.

Proposition 4.20. Time inversion. Let (Bt) be a standard BM and define B̃t = tB1/t if t > 0

and B̃0 = 0. Then (B̃t) is a standard BM.

Proof. We check the two defining properties:

(a)

B̃t+s − B̃s = (t+ s)B1/(t+s) − sB1/s

= tB1/(t+s) − s(B1/s −B1/(t+s))

= tN
(
0,

1

t+ s

)
− sN

(
0,

1

s
− 1

t+ s

)
(∗)
= N

(
0, t2

1

t+ s
+ s2

(
1

s
− 1

t+ s

))
= N (0, t),

where (∗) holds by independence.
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(b) Let t1 < t2 ≤ t3 < t4 and recall that for a standard BM:

Cov(Bu, Bv) = E[BuBv] = u ∧ v.

To check independence, it suffices to show that the covariance is zero:

E
[(
B̃t4 − B̃t3

)(
B̃t2 − B̃t1

)]
= E

[(
t4B1/t4 − t3B1/t3

) (
t2B1/t2 − t1B1/t1

)]
= t4t2E[B1/t4B1/t2 ]− t4t1E[B1/t4B1/t1 ]

− t3t2E[B1/t3B1/t2 ] + t3t1E[B1/t3B1/t1 ]

= t4t2 ·
1

t4
− t4t1 ·

1

t4
− t2t3 ·

1

t3
+ t3t1 ·

1

t3
= 0.

Remark 4.21. The continuity of t 7→ B̃t(ω) at t = 0 is obvious. It is suggested by the fact that

E[(B̃t)
2] = t2E[B2

1/t] = t2 · 1
t
= t→ 0

as t↘ 0.

Proposition 4.22. Invariance under translation of time. Fix h > 0, define B̃t = Bt+h − Bh.
Then (B̃t) is a standard BM.

Proof. We check the two defining properties:

(a)

B̃t+s − B̃s = (Bt+s+h −Bh)− (Bs+h −Bh)

= Bt+s+h −Bs+h

law
= N (0, t)

(b) Let t1 < t2 ≤ t3 < t4. The increments

B̃t4 − B̃t3 = Bt4+h −Bt3+h

and

B̃t2 − B̃t1 = Bt2+h −Bt1+h

are independent because t1 + h < t2 + h ≤ t3 + h < t4 + h since t1 < t2 ≤ t3 < t4.
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4.3 Some transformations of Brownian motion

Definition 4.23. A reflected Brownian motion is the process (Xt, t ∈ R+) defined by Xt = |Bt|,
where (Bt) is a standard BM.

Proposition 4.24. The reflected BM has the Markov property. In addition, for 0 ≤ s < t,

fXt
(y |Xs = x) = p(y − x, t− s) + p(y + x, t− s),

where y, x ≥ 0 and where p(u, r) = (
√
2πr)−1 exp{−u2/(2r)}.

Proof. Fix 0 ≤ t1 < t2 < . . . < tn < t and x1, . . . , xn, x ≥ 0. Then

P(Xt ≤ x |Xtn = xn, . . . , Xt1 = x1) = P(−x ≤ Bt ≤ x |Btn = ±xn, . . . , Bt1 = ±x1)

= P(−x ≤ Bt ≤ x | (Btn = +xn, past) or (Btn = −xn, past))
(1)
= P(−x ≤ Bt ≤ x |Btn = xn, past)

(2)
= P(−x ≤ Bt ≤ x |Btn = xn)

=

∫ x

−x

p(y − xn, t− tn)dy

(3)
= P(Xt ≤ x |Xtn = xn),

where (1) follows by symmetry, (2) holds since a standard BM has the Markov property and lastly,
we can see in (3) that the ”past” positions did not affect our calculation.

From this, we get that the conditional density of Xt given Xtn = xn is:

d

dx
P(Xt ≤ x |Xtn = xn) = p(x− xn, t− tn)− p(−x− xn, t− tn)(−1)

= p(x− xn, t− tn) + p(x+ xn, t− tn),

which is exactly what we wanted.

Definition 4.25. Absorbed Brownian motion. Let (Bt) be a BM with B0 = a ̸= 0. We define
the BM absorbed at 0 to be the process (Yt, t ∈ R+) defined by

Yt =

{
Bt , if t ≤ T0 = inf{t ≥ 0 : Bt = 0}
0 , if t > T0

.

Proposition 4.26. The BM absorbed at 0 has the Markov property. In addition, for 0 ≤ s < t,

fYt
(y |Ys) = p(y − x, t− s)− p(y + x, t− s),

with y, x > 0.
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Proof. We prove the case B0 = a > 0. Let 0 ≤ t1 < . . . < tn < t and y, x, xi ≥ 0 for i ∈ {1, . . . , n−1}.
We will check that

P(Yt > y |Ytn = x, Ytn−1
= xn−1, . . . , Yt1 = x1) = P(Yt > y |Ytn = x).

If x = 0, then both sides are equal to 0. If x > 0 and xi > 0 for i ∈ {1, . . . , n− 1}, so that the path
is possible, then we have

LHS = P
(
Yt > y | min

u∈[0,tn]
Bu > 0, Ytn = x, . . . , Yt1 = x1

)
= P

(
Bt > y, min

u∈[tn,t]
Bu > 0 |Btn = x, min

u∈[0,tn]
Bu > 0, Btn−1

= xn−1, . . . , Bt1 = x1︸ ︷︷ ︸
past

)

(1)
= P

(
Bt > y, min

u∈[tn,t]
Bu > 0 |Btn = x

)
(2)
= P(Yt > y |Ytn = x),

where (1) follows from the Markov property applied to the BM (Bt) and we can see in (2) that the
values of Yt at earlier times played no role.

Let us now compute (⋆) = P
(
Bt > y,minu∈[tn,t]Bu > 0 |Btn = x

)
:

(⋆) = P(Bt < 2x− y, max
u∈[tn,t]

Bu ≤ 2x |Btn = x)

(1)
= P(Bt−tn < 2x− y, max

u∈[0,t−tn]
Bu ≤ 2x |B0 = x)

(2)
= P(Bt−tn < x− y, max

u∈[0,t−tn]
Bu < x |B0 = 0)

= P0(Bt−tn ≤ x− y)− P0(Bt−tn ≤ x− y, max
u∈[0,t−tn]

Bu > x)

(3)
= P0(Bt−tn ≤ x− y)− P0(Bt−tn > x+ y)

= P0(Bt−tn < x− y)− P0(Bt−tn < −x− y)

= P0(−x− y < Bt−tn < x− y)

=

∫ x−y

−x−y

p(u, t− tn)du,

where we used the translation of time property in (1) and of space in (2). The equality denoted by
(3) follows from the reflection principle. Finally, we get the desired density function

fYt(y |Ytn = x) = −
(
p(x− y, t− tn)(−1)− p(−x− y, t− tn)(−1)

)
= p(x− y, t− tn)− p(x+ y, t− tn).

Definition 4.27. A Brownian motion with drift is the process (Zt, t ∈ R+) defined by Zt =
Bt + µt, where (Bt) is a standard BM, and µ ̸= 0.

Proposition 4.28. For 0 ≤ t1 < t2 ≤ t3 < t4, the increments

Zt4 − Zt3 = Bt4 −Bt3 + µ(t4 − t3) ; Zt2 − Zt1 = Bt2 −Bt1 + µ(t2 − t1)
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are independent. Therefore,

fZt2
−Zt1

, Zt4
−Zt3

(x, y) = fBt2
−Bt1

(
x− µ(t2 − t1)

)
fBt4

−Bt3

(
y − µ(t4 − t3)

)
.

Proof. Directly follows from Definition 4.27.

Proposition 4.29. A BM with drift has the Markov property.

Proof. Fix 0 ≤ t1 < . . . < tn < t. Then,

P0(Zt ≤ x |Ztn = xn, . . . , Zt1 = x1)

= P(Zt − Ztn ≤ x− xn |Ztn − Ztn−1
= xn − xn−1, . . . , Zt2 − Zt1 = x2 − x1, Zt1 − Z0 = x1 − 0)

(⋆)
= P(Zt − Ztn ≤ x− xn)

= P(Zt − Ztn ≤ x− xn |Ztn − Z0 = xn − 0)

= P(Zt ≤ x |Ztn = xn),

where (⋆) is a consequence of Proposition 4.28.

Let us now study the time it takes for a standard BM to exit an interval. For a ∈ R, we defined
τa = inf{t ≥ 0 : Bt = a}, the first time we hit the level a. We already saw that P(τa < ∞) = 1.
If B0 ∈ [a, b], a < b and a, b ∈ R, then Ta,b = τa ∧ τb is the first exit time of the interval [a, b]. Let
x ∈ (a, b) and fix h > 0, small, so that [x − h, x + h] ⊂ (a, b). The BM starting at x must exit the
interval [x− h, x+ h] before exiting [a, b]. By symmetry,

Px(BTx−h,x+h
= x− h) =

1

2
= Px(BTx−h,x+h

= x+ h).

Therefore,

Px(BTa,b
= b) =Px(BTa,b

= b |BTx−h,x+h
= x− h) · Px(BTx−h,x+h

= x− h)

+ Px(BTa,b
= b |BTx−h,x+h

= x+ h) · Px(BTx−h,x+h
= x+ h).

Let f(x) = Px(Ta,b = b), then

f(x) =
1

2
f(x− h) +

1

2
f(x+ h).

This implies that f is affine, i.e., of the form f(x) = αx+ β, α, β ∈ R. If f ∈ C2, write

0 =
1

2

(
f(x+ h) + 2f(x) + 2f(x− h)

)
and divide by h2

0 =
1

2

f(x+ h) + 2f(x) + f(x− h)

h2
.

Finally, letting h↘ 0 gives
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0 =
1

2
f ′′(x),

confirming that f(x) = αx + β for some α, β ∈ R. We have the following two constraints: f(a) = 1
and f(b) = 1. From this, we get

f(x) =
x− a

b− a
.

Proposition 4.30. For x ∈ [a, b], we have

Px(BTa,b
= b) =

x− a

b− a
.

Our next goal will be to determine Ex[Ta,b], x ∈ [a, b], i.e., find the mean exit time of [a, b]. As
defined above, we have Ta,b = τa ∧ τb, with Ex[τa] = +∞ = Ex[τb]. Fix h > 0. We aim to first find
an expression for Ex[Tx−h,x+h] = E0[T−h,h], where T−h,h = inf{u ≥ 0 : |Bu| = h}. By the scaling

invariance property, (B̃u = hBu/h2 u ∈ R+) is also a standard BM. Therefore, T−h,h has the same

law as T̃−h,h = inf{u ≥ 0 ; |B̃u| = h}. By noticing that

T̃−h,h = inf{u ≥ 0 : |B̃u| = h}
= inf{u ≥ 0 : |hBu/h2 | = h}
= inf{u ≥ 0 : |Bu/h2 | = 1}
= inf{vh2 ≥ 0 : |Bv| = 1}
= h2 inf{v ≥ 0 : |Bv| = 1}
= h2T−1,1,

we find E0[T−h,h] = E0[T̃−h,h] = h2E0[T−1,1] = h2 · c0, with c0 = E0[T−1,1] > 0. We will follow the
same reasoning used to determine Px(Ta,b = b) in order to derive an expression for Ex[Ta,b], leaving
c0 as the only remaining unknown.

Fix h > 0 small. A Brownian motion (BM) starting from x must first exit the interval [x− h, x+ h]
before it can exit the larger interval [a, b] ⊃ [x − h, x + h]. This first exit takes h2c0 units of time.
Then, starting from either x− h or x+ h, it must exit [a, b], so

Ex[Ta,b] =
(
c0h

2 + Ex−h[Ta,b]
)
· 1
2
+
(
c0h

2 + Ex+h[Ta,b]
)
· 1
2
.

Let g(x) = Ex[Ta,b]. Then,

g(x) =
(
c0h

2 + g(x− h)
)
· 1
2
+
(
c0h

2 + g(x+ h)
)
· 1
2
.

Expanding and rearranging gives

0 = c0h
2 +

1

2
(g(x− h)− 2g(x) + g(x+ h)) .

Dividing by h2 yields

0 = c0 +
1

2
· g(x− h)− 2g(x) + g(x+ h)

h2
,
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and taking the limit as h↘ 0 gives

0 = c0 +
1

2
g′′(x).

Hence, g′′(x) = −2c0, implying that g is a second-degree polynomial. Using the boundary conditions
g(a) = 0 = g(b), we find the explicit form

g(x) = c0(b− x)(x− a).

Proposition 4.31. For x ∈ [a, b],

Ex[Ta,b] = (b− x)(x− a),

where we have used the fact that c0 = E0[T−1,1] = 1.

We now consider a slightly more computationally involved problem. Specifically, we aim to compute
the probability that a BM with drift exits the interval [a, b] through the point b before reaching a. Let
Zt = Bt + µt, where µ ̸= 0 and (Bt) is a standard BM, so that (Zt) is a Brownian motion with drift
µ. Define Ta,b = inf {u ≥ 0 : Zu ∈ {a, b}}. Our goal is to compute Px(ZTa,b

= b), the probability
that the process exits through b when started from x ∈ [a, b].

Fix h > 0, small. During h2 units of time, the BM moves about ±h units (Bt ∼ N (0, t)). The drift
contributes for µh2 units, and µh2 << h since we consider a small value of h. We must have

Px(ZTa,b
= b) =

1

2
Px+µh2+h(ZTa,b

= b) +
1

2
Px+µh2−h(ZTa,b

= b).

Let f(x) = Px(ZTa,b
= b). We have

f(x) =
1

2
f(x+ µh2 + h) +

1

2
f(x+ µh2 − h)

and

0 =
1

2

[
f(x+ µh2 + h)− f(x− µh2 + h)

]
+

1

2

[
f
(
x+ (h− µh2)

)
− 2f(x) + f

(
x− (h− µh2)

)︸ ︷︷ ︸
=c

]
.

Using the Taylor expansions:

0 =
1

2

{
f ′(x)

[
(µh2 + h)− (h− µh2)

]
+

1

2
f ′′(x)

[
(µh2 + h)2 − (h− µh2)2

]}
+

1

2
c

so

0 =
1

2

[
f ′(x)2µh2 + o(h2)

]
+

1

2
c.

Dividing by h2 gives

0 = µf ′(x) +
1

2

c

(h− µh2)
· (h− µh2)2

h2
· o(h

2)

h2
,

and letting h↘ 0 yields

0 = µf ′(x) +
1

2
f ′′(x),
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since

c

(h− µh2)
→ f ′′(x) ;

(h− µh2)2

h2
→ 1 ;

o(h2)

h2
→ 0

as h↘ 0.

Therefore,

f ′(x) = c1 exp{−2µx},
f(x) = c̃1 exp{−2µx}+ c̃2.

Using the boundary conditions f(a) = 0, f(b) = 1, we get

f(x) =
exp{−2µx} − exp{−2µa}
exp{−2µb} − exp{−2µa}

.

Proposition 4.32. For a BM with drift µ ̸= 0,

Px(ZTa,b
= b) =

exp{−2µx} − exp{−2µa}
exp{−2µb} − exp{−2µa}

,

for x ∈ [a, b].

Corollary 4.33. Let Zt = Bt + µt, µ < 0 be a BM with drift and set M := supt∈R+
Zt. For m ≥ 0,

P0(M ≥ m) = exp{2µm}.

Therefore, P0(M = +∞) = 0 and

E0[M ] =

∫ ∞

0

P0(M ≥ m)dm =
−1

2µ
> 0.

Proof. Set τa = inf{t ≥ 0 : Zt = a}. By Proposition 4.32,

P0(τb < τ−a) =
exp{−2µ · 0} − exp{2µa}
exp{−2µb} − exp{2µa}

=
1− exp{2µa}

exp{−2µb} − exp{2µa}
(⋆)

for −a < 0 < b with a, b > 0. Now suppose that

P0

(
lim

a→+∞
τ−a = +∞

)
= 1. (⋆⋆)

If we let a↗ +∞ in (⋆), we find

P0(M ≥ b) = P0(τb < +∞) =
1− 0

exp{−2µb} − 0
= exp{2µb}.

It remains to be shown that (⋆⋆) holds. First, notice that the map a 7→ τ−a is nondecreasing. Indeed,
if a1 < a2, then (Zt) must hit level −a1 before it can reach level −a2, so τ−a1

< τ−a2
. In particular,

lim
a→+∞

τ−a = sup
a∈R+

τ−a.
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For t > 0,

{
sup
a∈R+

τ−a ≤ t
}
=
⋂
a∈N

{τ−a ≤ t} =
{

inf
s∈[0,t]

Zs = −∞
}
.

From this and the fact that s 7→ Zs(ω) is continuous, we must have

P0

(
sup
a∈R+

τ−a ≤ t

)
= P0

(
inf

s∈[0,t]
Zs = −∞

)
= 0.

Moreover, the event {supa∈R+
τ−a ≤ t} is increasing in t, i.e., if t1 ≤ t2, then {supa∈R+

τ−a ≤ t1} ⊆
{supa∈R+

τ−a ≤ t2}. Therefore,

P0

(
sup
a∈R+

τ−a < +∞

)
= P0

 ⋃
t≥0 ; t∈N

{
sup
a∈R+

τ−a ≤ t
} = lim

t→∞ ; t∈N
P0

(
sup
a∈R+

τ−a ≤ t

)
= 0,

and P0(supa∈R+
τ−a = +∞) = 1.

Let us now do a quick overview of the asymptotic behavior of t 7→ Zt, with µ < 0. Recall our
definition of a BM with drift Zt = Bt + µt. Since E[B2

t ] = t, Bt has order of magnitude
√
t, i.e.

Bt ∼
√
t and for Zt we have:

(1) For t small (t ∼ 0),
√
t >> t, meaning Zt behaves like Bt.

(2) For t large (t→ +∞),
√
t << t, so Zt behaves like µt.

4.4 Zero set of Brownian motion and its Hausdorff dimension

Definition 4.34. Let (Bt , t ∈ R+) be a standard BM. We call the set

Z(ω) := {t ∈ R+ : Bt(ω) = 0} ,

the zero set of the standard BM (Bt).

Proposition 4.35.

P0

( ⋂
n∈N∗

{
∃t ∈

(
0, n−1

)
: Bt = 0

})
= 1

Therefore, there exists a sequence (tn)n∈N such that tn > tn+1 > 0, limn→+∞ tn = 0 and Btn = 0 for
all n.

Proof. Let n ∈ N∗. Then, for all m > n:

P0

(
∃t ∈ (0, n−1) : Bt = 0

)
≥ P0

(
∃t ∈ (m−1, n−1) : Bt = 0

)
=

2

π
arccos

(√
n

m

)
.

By letting m→ +∞,

54



P0

(
∃t ∈ (0, n−1) : Bt = 0

)
≥ 2

π
arccos(0) = 1.

Set Fn = {∃t ∈ (0, n−1) : Bt = 0}. Then, Fn ⊇ Fn+1 and therefore:

P0

( ⋂
n∈N∗

{
∃t ∈

(
0, n−1

)
: Bt = 0

})
= P0

( ⋂
n∈N∗

Fn

)
= lim

n→+∞
P0(Fn) = 1,

since P0(Fn) = 1 for all n ∈ N∗.

Before stating and proving the next result, let us recall a simple and useful fact:

Lemma 4.36. Let Y be a random variable. If E[Y ] = 0 and P(Y ≥ 0) = 1, then P(Y > 0) = 0.

Proof. For any n ∈ N∗, define

En =
{
Y > n−1

}
.

Since Y is nonnegative,

Y ≥ Y · 1En
≥ n−1

1En
,

by definition of En. Taking the expectation gives

0 = E[Y ] ≥ n−1P(En) ≥ 0,

and therefore P(En) = 0. From this, we get the desired result

0 ≤ P(Y > 0) = P (∪n∈N∗En) = lim
n→∞

P(En) = 0.

Remark 4.37. When the BM starts at x0 ̸= 0, we can set τ0 = inf{t ≥ 0 : Bt = 0} and we already
know that Px0

(τ0 < +∞) = 1 (see Remark 4.11). From this and what we have seen above, there will
be an infinite number of visits to zero in the interval [τ0, τ0 + ϵ], for ϵ > 0.

Proposition 4.38.

P0

(
∃0 ≤ t0 < t1 : Bt = 0 for all t ∈ [t0, t1]

)
= 0.

Proof. For N ∈ N, define

FN =
{
∃0 ≤ t0 < t1 ≤ N : Bt = 0 for all t ∈ [t0, t1]

}
.

Then, since FN ⊆ FN+1 and ∪N∈NFN = {∃0 ≤ t0 < t1 : Bt = 0 for all t ∈ [t0, t1]}, we have
P0(∪N∈NFN ) = limN→+∞ P0(FN ) and it suffices to show P0(FN ) = 0 for all N ∈ N to get the desired
result.

If FN occurs, then
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∫ N

0

1{Bt = 0}dt ≥
∫ t1

t0

1 · dt = t1 − t0 > 0.

Set Y =
∫ N

0
1{Bt = 0}dt ≥ 0. Thanks to Fubini’s theorem, we find

E0[Y ] = E0

[∫ N

0

1{Bt = 0}dt

]
=

∫ N

0

E0[1{Bt = 0}]dt =
∫ N

0

P0(Bt = 0)︸ ︷︷ ︸
=0

dt = 0.

Combining E0[Y ] = 0 and P0(Y ≥ 0) = 1, we conclude P0(Y > 0) = 0. Finally, since {Y > 0} ⊇ FN ,
we get P0(FN ) = 0 for all N ∈ N.

Remark 4.39. Fix N ∈ N∗. Define

ZN (ω) = {t ∈ (0, N) : Bt(ω) = 0}.

Then, ZN (ω) is a closed set in (0, N), meaning Zc
N (ω) is an open set in (0, N) and

Zc
N (ω) =

∞⋃
i=1

Oi,

where Oi, i ∈ N are disjoint open intervals. Then we have ZN (ω) ∪ Zc
N (ω) = (0, N) and

1ZN (ω)(t) + 1Zc
N (ω)(t) = 1

for t ∈ (0, N). Therefore, ∫ N

0

1ZN (ω)(t)dt+

∫ N

0

1Zc
N (ω)(t)dt = N.

Since

∫ N

0

1ZN (ω)(t)dt = 0,

we have that in some sense ZN (ω) has length zero, and Zc
N (ω) has length N .

Our main goal now will be to find the Hausdorff dimension of Z(ω), but before that, we have to go
over some definitions and results.

Definition 4.40. Fix E ⊂ R.

(a) A family (Ui, i ∈ N) of intervals is a cover of E if E ⊂ ∪i∈NUi.

(b) Let L(Ui) denote the length of Ui, where L([a, b]) = b− a for a ≤ b. Fix δ > 0, (Ui) is a δ-cover
of E if it is a cover of E and L(Ui) ≤ δ for all i.

(c) Fix α > 0. Define

µα(E) = lim
δ↘0

inf
(Ui) a δ-cover of E

∞∑
i=1

(
L(Ui)

)α
.

Note that 0 ≤ µα(E) ≤ +∞.
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Lemma 4.41. (a) Fix α > 0 and suppose that µα(E) < +∞. Then for β > α, µβ(E) = 0.

(b) Fix α > 0 and suppose that µα(E) > 0. Then for β < α, µβ(E) = +∞.

Proof. (a) Fix β > α. Then,

0 ≤ µβ(E) = lim
δ↘0

inf
Cδ(E)

∞∑
i=1

(
L(Ui)

)β
= lim

δ↘0
inf

Cδ(E)

∞∑
i=1

(
L(Ui)

)β−α

·
(
L(Ui)

)α
≤ lim

δ↘0
δβ−α inf

Cδ(E)

∞∑
i=1

(
L(Ui)

)α
,

where we write Cδ(E) to denote the fact that we take the infimum over the δ-covers (Ui) of E.
Fix δ0 > 0, we now have

µβ(E) ≤ δβ−α
0 lim

δ↘0
inf

Cδ(E)

∞∑
i=1

(
L(Ui)

)α
= δβ−α

0 µα(E).

Since β > α, µα(E) < +∞ and the above holds for all δ0 > 0, we have that µβ(E) = 0.

(b) Suppose µα(E) > 0. Fix β < α. Suppose by contradiction that µβ(E) < +∞. By (a), we would
have µα(E) = 0, which gives a contradiction. Hence, µβ(E) = +∞.

From Lemma 4.41, we conclude that there exists α0 such that if β > α0, then µβ(E) = 0 and if
β < α0, then µβ(E) = +∞. The value µα0

(E) can be 0, +∞ or in (0,+∞).

Definition 4.42. The value α0 mentioned above is called the Hausdorff dimension of E.

The Hausdorff dimension of a set E in Rd is defined similarly:

Definition 4.43. (a) For E ⊂ Rd, (Ui)i∈N is a δ-cover of E if E ⊂ ∪iUi, and each Ui is a ball with
radius ϵi > 0 and diam(Ui) = 2ϵi ≤ δ.

(b) For α > 0,

µα(E) = lim
δ↘0

inf
Cδ(E)

∞∑
i=1

(
diam(Ui)

)α
.

(c) dimH(E) = inf{α > 0 : µα(E) = 0} = sup{a > 0 : µα(E) = +∞}

Remark 4.44. To show that dimH(E) ≤ α0, it suffices, for each α > α0 and n ∈ N∗, to find a
(1/n)-cover (Un

i ) of E such that

lim inf
n→+∞

∑
i

(
diam(Un

i )
)α

= 0.

Indeed,
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µα(E) = lim
δ↘0

inf
Cδ(E)

∑
i

(
diam(Ui)

)α
≤ lim

n→+∞
inf

C1/n(E)

∑
i

(
diam(Ui)

)α
≤ lim inf

n→+∞

∑
i

(
diam(Un

i )
)α

= 0.

Example 4.45. (a) Let d = 2 and E = [0, 1]× {0}. Define the sets

Un
i :=

[
i

n
,
i+ 1

n

]
×
[
− 1

2n
,
1

2n

]
, i = 0, . . . , n− 1.

The sets Un
i are balls of diameter n−1 for the norm ||(x1, x2)|| = max(|x1|, |x2|). In order to

cover E, we need n balls with diameter n−1. Since

n∑
i=1

(
diam(Un

i )
)α

= n

(
1

n

)α

= n1−α n→+∞−→

{
+∞ , α < 1

0 , α > 1

suggesting dimH(E) = 1. In fact, it proves that dimH(E) ≤ 1.

(b) Let d = 2 and E = [0, 1]2. Define

Un
i,j =

[
i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

]
, i, j ∈ {0, . . . , n− 1}.

This time, we need n2 balls with diameter n−1 in order to cover E:

n∑
i,j=1

(
diam(Un

i,j)
)α

= n2
(
1

n

)α

= n2−α n→+∞−→

{
+∞ , α < 2

0 , α > 2
,

which suggests dimH(E) = 2 and ensures dimH(E) ≤ 2.

(c) Let C be the Cantor set. The Cantor set is defined inductively as follows. As a base case, we let

C0 := [0, 1];

C1 := [0, 1/3] ∪ [2/3, 1];

C2 := [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].

For n ∈ N, the set Cn is the union of 2n disjoint closed interval of length 3−n. To get Cn+1 from
Cn, we remove the open middle third from each of the intervals in Cn. The Cantor set is defined
as

C :=

∞⋂
n=0

Cn.

At stage n, there are 2n intervals with length 3−n needed to cover the Cantor set,

2n∑
i=1

(
diam(Un

i )
)α

= 2n
(
1

3

)α·n

= exp{n[log(2)− log(3)]} n→+∞−→

{
+∞ , α < [log(2)/ log(3)]

0 , α > [log(2)/ log(3)]
,

which suggests dimH(C) = log(2)/ log(3) and ensures dimH(C) ≤ log(2)/ log(3).
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Theorem 4.46. Let (Bt)t≥0 be a standard BM. Then,

P0

(
ω : dimH {t ∈ R+ : Bt(ω) = 0} =

1

2

)
= 1.

We will not prove this theorem in full; instead, we will prove the following result:

Proposition 4.47.

P0

(
ω : dimH {t ∈ R+ : Bt(ω) = 0} ≤ 1

2

)
= 1.

To do so, we will need the two following lemmas.

Lemma 4.48. There exists 0 < c0 < c1 < +∞ and s0 > 0 such that for all t ∈ [1, 2] and 0 ≤ s ≤ s0,

c0
√
s ≤ arccos

(√
t

t+ s

)
≤ c1

√
s.

Proof. Setting y = (t+ s)/t, we get

arccos

(√
t

t+ s

)
√
s

=

arccos

(
1
√
y

)
√
t
√
y − 1

and it suffices to show that

lim
y↘1

arccos

(
1
√
y

)
√
y − 1

= 1.

Applying B-H, we get

lim
y↘1

−1√
1− 1/y

· −1

2
y−3/2

1

2
√
y − 1

= lim
y↘1

√
y

y − 1
·
√
y − 1

y3/2
= 1.

Lemma 4.49. For I = [t0, t1] ⊂ [1, 2], t0 < t1 and t1 − t0 small enough, we have

P0(∃t ∈ I : Bt = 0) ≤ 2

π
c1
√
L(I).

Proof. Using the previous lemma,

P0(∃t ∈ [t0, t1] : Bt = 0) =
2

π
arccos

(√
t0

t0 + (t1 − t0)

)
≤ 2

π
c1
√
t1 − t0,

provided t1 − t0 ≤ s0.

59



Proof. of Proposition 4.47. Let Z(ω) = {t ∈ [1, 2] : Bt(ω) = 0}. Define

Un
i (ω) =


[
1 +

i

n
, 1 +

i+ 1

n

]
, if Z(ω) ∩

[
1 +

i

n
, 1 +

i+ 1

n

]
̸= ∅

∅ , otherwise
.

Clearly, Z(ω) ⊂ ∪n−1
i=0 U

n
i , meaning (Un

i , i = 0, . . . , n − 1) is a n−1-cover of Z(ω). Fix α > 2−1. We
will show that P(µα(Z) = 0) = 1. Since µα(Z) ≥ 0, we have

0 ≤ E0[µα(Z)]

≤ E0

[
lim inf
n→∞

n−1∑
i=0

(
L(Un

i )
)α]

(1)

≤ lim inf
n→∞

E0

[
n−1∑
i=0

(
L(Un

i )
)α]

= lim inf
n→∞

n−1∑
i=0

E0

[(
L(Un

i )
)α]

= lim inf
n→∞

n−1∑
i=0

E0

[(
1

n

)α

1{Un
i ̸= ∅}+ 0α1{Un

i = ∅}
]

= lim inf
n→∞

n−1∑
i=0

(
1

n

)α

P0

(
∃t ∈

[
1 +

i

n
, 1 +

i+ 1

n

]
: Bt = 0

)
(2)

≤ lim inf
n→∞

n−1∑
i=0

(
1

n

)α

· c
√

1

n

= lim inf
n→∞

n1−α−(1/2)

= lim inf
n→∞

n1/2−α = 0

as α > 1/2. We used Fatou’s lemma (Lemma 2.55) in (1) and Lemma 4.49 in (2).

Finally, combining E0[µα(Z)] = 0 and P(µα(Z) ≥ 0) = 1, we get P0(µα(Z) = 0) = 1, which in turn
implies P0(dimH(Z) ≤ 1/2) = 1. The only step left to do is extend this result to R+.

Now, let Z(ω) = {t ∈ R+ : Bt(ω) = 0}. We have just proved that

P0

(
µα(Z ∩ [1, 2]) = 0

)
= 1

for α > 1/2. Similarly,

P0

(
µα(Z ∩ [n, n+ 1]) = 0

)
= 1 and P0

(
µα

(
Z ∩

[
1

n+ 1
,
1

n

])
= 0

)
= 1

for all n ≥ 1. Therefore,

µα(Z) = µα

(
{0} ∪

[ ∞⋃
n=1

{
Z ∩

(
1

n+ 1
,
1

n

]}]
∪

[ ∞⋃
n=1

{Z ∩ [n, n+ 1)}

])
(⋆)
= µα({0}) +

∞∑
i=1

µα

(
Z ∩

(
1

n+ 1
,
1

n

])
+

∞∑
i=1

µα (Z ∩ [n, n+ 1))

= 0,

with probability one. The equality denoted by (⋆) follows from the fact that µα is a measure and all
sets involved are disjoint.
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4.5 Continuity of sample paths

The objective of this subsection is to construct a random continuous function t 7→ Bt(ω) satisfying
properties (a) and (b) of Definition 4.1. To achieve this, we will follow Paul Lévy’s construction. The
idea is as follows:

Let (Xn) be a sequence of i.i.d. N (0, 1) random variables, and define S0 = 0, Sn = X1 + . . .+Xn for
n ≥ 1. The process (Sn) is a Gaussian random walk on R. We view (Sn) as the restriction to N of a
BM (Bt) on R+, such that Bn = Sn for all n ∈ N. Thus, we have defined the BM at integer times,
but it remains to define Bt for t ∈ R+ \ N.

Step 1: Linear interpolation.

Define

B
(1)
t =

{
Bt , if t ∈ N
Bn + (t− n)(Bn+1 −Bn) , if t ∈ (n, n+ 1), n ∈ N

and observe that we have the equality

B
(1)
n+1/2 =

B
(1)
n +B

(1)
n+1

2
= E[Bn+1/2 |Bn, Bn+1]

as, given Bn, Bn+1, the law of Bn+1/2 is N{(Bn +Bn+1)/2, 1/4}. See Exercise 3 of Problem Set 8.

Step 2: Refine the time step.

Set

B(2)
n = B(1)

n = Sn , n ∈ N;

B
(2)
n+(1/2) =

1

2

(
B(1)

n +B
(1)
n+1

)
+

1

2
Z(1)
n , n ∈ N,

where
(
Z

(1)
n , n ∈ N

)
are i.i.d. N (0, 1), and independent of (Xn).

We then repeat these two steps. It remains to verify that the process defined in the limit is indeed
continuous and satisfies properties (a) and (b) of BM.

While this might seem confusing at first, it is the core principle behind the rigorous construction of
Brownian motion, which we now begin. Hopefully, the formal mathematical framework will clarify
the somewhat messy ideas introduced above. We restrict ourselves to the construction of the BM on
the interval [0, 1], the generalization to R+ follows naturally and is given as an exercise, see Exercise
1 of Problem Set 13.

For n ∈ N, let

Dn =

{
k

2n
, k = 0, 1, . . . , 2n

}
,

the dyadics of order n in [0, 1]. The sets {Dn}n∈N are increasing in n ∈ N and D = ∪n∈NDn is the
set of dyadics in [0, 1]. Moreover, the set D is countable and dense in [0, 1].

Let (Zd, d ∈ D) be i.i.d. N (0, 1) random variables. We begin by defining Bt for t ∈ D. We start with
the base case n = 0: Set B0 = 0 and B1 = Z1. This defines Bt for t ∈ D0.

For n ≥ 1, we will define Bt for t ∈ Dn inductively, so that
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(i) for r < s < t in Dn, Bt −Bs ∼ N (0, t− s) and is independent of Bs −Br;

(ii) for t ∈ Dn, Bt is determined by the Ze with e ∈ Dn and is therefore independent of Zf , where
f ∈ D \Dn.

For the base case n = 0, properties (i) and (ii) hold. For n ≥ 1, suppose, by induction, that
(Bt, t ∈ Dn−1) has been defined in such a way that (i) and (ii) hold for n − 1. The goal is now to
define Bt, for t ∈ Dn \Dn−1 using (Bt, t ∈ Dn−1) so that (i) and (ii) are satisfied.

For d ∈ Dn \Dn−1, let

d−n = d− 2−n ; d+n = d+ 2−n,

so that d−n , d
+
n ∈ Dn−1. Now, set

Bd =
1

2

(
Bd−

n
+Bd+

n

)
+

1

2(n+1)/2
Zd, (⋆1)

and we define, for d ∈ Dn,

Bd =

Bd , if d ∈ Dn−1

1

2

(
Bd−

n
+Bd+

n

)
+

1

2(n+1)/2
Zd , if d ∈ Dn \Dn−1

.

Now that we have defined (Bt, t ∈ Dn), it remains to check that (i) and (ii) are satisfied. Observe
that

X1 =
1

2

(
Bd+

n
−Bd−

n

)
∼ N

(
0,

1

2n+1

)
by induction and (i) for the case (n− 1), and

X2 =
1

2(n+1)/2
Zd ∼ N

(
1

2n+1

)
.

Property (ii) for (n−1), ensures that X1 and X2 are independent. Therefore, their sum and difference
are independent and N (0, 2−n). This observation follows from the fact that X1, X2 ∼ N (0, 2−(n+1))
combined with

Cov(X1 +X2, X1 −X2) = E[(X1 +X2)(X1 −X2)]

= E[X2
1 ]− E[X2

2 ]

= 0.

Note that

X1 +X2 = Bd −Bd−
n

; X1 −X2 = Bd+
n
−Bd. (⋆2)

Consequently, for d, f ∈ Dn \Dn−1, d < f , the increments

Bd+
n
−Bd, Bd −Bd−

n
; Bf+

n
−Bf , Bf −Bf−

n
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are independent. Indeed, we have just seen that the first two are independent. Same holds for the
second two. The remaining independencies are easy to check. Take the increments

Bd+
n
−Bd and Bf −Bd−

n

for example. Using (⋆2), we see that the first is determined by (Bd+
n
−Bd−

n
) and Zd, while the second

is determined by (Bf+
n
−Bf−

n
) and Zf . Their independence then follows from (i), (ii) for (n− 1) and

the equivalence between ”pairwise independence” and ”mutual independence” for Gaussians.

The family (Bt, t ∈ D) we just defined satisfies the properties (i) and (ii). Property (i) holds as an
increment over a long interval can be expressed as the sum of increments over intervals of lengths
2−n. Property (ii) holds by construction, in particular by (⋆1). We see immediately that (Bt, t ∈ D)
has the properties (a) and (b) of a BM (Definition 4.1).

The final step in our construction is to extend the family (Bt, t ∈ D) to all of [0, 1]. To achieve this,
we will introduce a new approach that may initially appear unrelated to what we have done until
now. However, the connection will soon become apparent, and we will see how this new perspective
simplifies the process. In particular, it will clarify both the extension from D to [0, 1] and the proof
of the continuity of sample paths.

Define F0(t) = tZ1, t ∈ [0, 1] for n = 0. For n ≥ 1, let

Fn(t) =


2−(n+1)/2Zt , if t ∈ Dn \Dn−1

0 , if t ∈ Dn−1

linear (affine) , between consecutive elements of Dn

Each Fn is a continuous function on [0, 1]. Define B
(n)
t =

∑n
i=0 Fi(t). This function is continuous

and affine between consecutive elements of Dn. From the definition of the Fn’s, we see that B
(n)
t =∑n

i=0 Fi(t) =
∑∞

i=0 Fi(t) for t ∈ Dn.

Definition 4.50. For t ∈ D = ∪∞
n=0Dn, let

B̃t =

∞∑
i=0

Fi(t).

As mentioned above, B̃t = B
(n)
t for t ∈ Dn.

The next proposition will make the link between Definition 4.50 and the construction used in (⋆1).

Proposition 4.51. For t = d ∈ Dn, B̃t = Bd, where Bd denotes the construction in (⋆1).

Proof. For n = 0, we only need to check for t ∈ {0, 1}. If t = 0, then B̃0 = 0 = B0. If t = 1, then B̃1 =
F0(1) = Z1 = B1. Now suppose that the result holds for (n− 1). Then, for t ∈ Dn ∩Dn−1, we have
B̃t = Bt by induction. In case t = d ∈ Dn \Dn−1, we start by noticing that for i ∈ {0, 1, . . . , n− 1},
Fi is affine on [d−n , d

+
n ]. Therefore,

n−1∑
i=0

Fi(d) =

n−1∑
i=0

1

2

(
Fi(d

−
n ) + Fi(d

+
n )
)

=
1

2

[
n−1∑
i=0

Fi(d
−
n ) +

n−1∑
i=0

Fi(d
+
n )

]

=
1

2

(
Bd−

n
+Bd+

n

)
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where the last inequality follows by induction. Finally, using the definition of Fn, we get the desired
result

B̃t =

n∑
i=0

Fi(d) =

n−1∑
i=0

Fi(d) + Fn(d) =
1

2

(
Bd−

n
+Bd+

n

)
+ 2−(n+1)/2Zd = Bd.

We now have all the necessary results to establish the continuity of the sample paths.

Proposition 4.52. The series of functions
∑∞

n=0 Fn converges uniformly on [0, 1], with probability
one. Therefore,

t 7→ B̃t =

∞∑
n=0

Fn(t)

is a continuous function with probability one.

Proof. First notice that

sup
t∈[0,1]

|Fn(t)| ≤ 2−(n+1)/2 sup
t∈Dn\D−n−1

|Zt|.

Let c > 0,

P

(
sup

t∈Dn\Dn−1

|Zt| ≥ c
√
n

)
≤ P

(
sup
t∈Dn

|Zt| ≥ c
√
n

)
≤
∑
t∈Dn

P
(
|Zt| ≥ c

√
n
)

≤ (2n + 1) exp

{
−c

2n

2

}
≤ 2 · 2n exp

{
−c

2n

2

}
= 2 exp

{
n

(
log(2)− c2

2

)}

using the fact that for Z ∼ N (0, 1) and x ≥ 0,

P (|Z| ≥ x) ≤ exp

{
−x

2

2

}
.

If log(2)− (c2/2) < 0, i.e., c >
√
2 log(2), then

∞∑
n=0

P

(
sup

t∈Dn\Dn−1

|Zt| ≥ c
√
n

)
<∞.

By the Borel-Cantelli lemma, there exists N(ω) ∈ N such that for n ≥ N(ω),

sup
t∈Dn\Dn−1

|Zt| < c
√
n
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and

sup
t∈[0,1]

|Fn(t)| ≤ c
√
n2−(n+1)/2.

Meaning

∞∑
n=0

sup
t∈[0,1]

|Fn(t)| ≤ c

∞∑
n=0

√
n2−(n+1)/2 <∞.

Therefore,
∑∞

n=0 Fn converges normally, which implies uniform convergence on [0, 1].

We have just shown that

t 7→ B̃t =

∞∑
n=0

Fn(t), t ∈ [0, 1]

is continuous with probability one. Moreover, since B̃t = Bt for all t ∈ D, the process (B̃t, t ∈ D)
satisfies properties (a) and (b) of Brownian motion. As D is dense in [0, 1] and the mapping t 7→ B̃t

is continuous, it follows that the process (B̃t, t ∈ [0, 1]) also satisfies properties (a) and (b). This
completes the construction of the continuous stochastic process t 7→ B̃t we set out to define.

4.6 The Strong Markov Property

This subsection presents a result that was not covered in the course. However, we state it without
proof, as it was mentioned earlier and will be needed for the final exercise of Problem Set 13.

Theorem 4.53. Strong Markov Property. For every almost surely finite stopping time T , the
process (BT+t −BT , t ∈ R+) is a standard Brownian motion independent of (Bt, t ≤ T ).

We have not formally defined what a stopping time for Brownian motion is, as doing so would take us
beyond the scope of this course. Intuitively, one can think of a stopping time T as a random variable
taking values in [0,∞] such that, for each t ∈ R+, the event {T ≤ t} is determined by (Bs, s ≤ t).
For readers seeking a precise definition, we refer to Chapter 8 of Probability: Theory and Examples
by R. Durrett [2].
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