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Exercise 1.

(a) T is the first time at which the process dies out and Y is the total number of indi-
viduals over time. There is a finite number of individuals if and only if the process
dies out at some time, hence the equality of the probabilities.

(b) We must first show that gY (s) = s gZ(gY (s)). Since X0 = 1 almost surely,

gY (s) = E[sY 1{Y <∞}] = E[sX0+X1+··· · 1{Y <∞}] = sE[sX1+··· · 1{Y <∞}]

= s

+∞∑
k=0

E[sX1+··· · 1{Y <∞} | X1 = k]P(X1 = k)

= s
+∞∑
k=0

E[sY1+···+Yk ·
k∏

i=1

1{Yi<∞}]P(Z = k)

where Yi is the number of descendants of the ith child of X0, for each child i of X0.
These variables Y1, . . . , Yk are independent and identically distributed, thus we have

gY (s) = s
+∞∑
k=0

(gY (s))
k P(Z = k)

= s gZ(gY (s)).

Finally, we must verify that the solution is unique. There are three cases to discuss:

1. s = 0. Then x = 0, and moreover gY (0) = P(Y = 0) = 0 since Y ⩾ X0 = 1.

2. s = 1. Then we have x = gZ(x), and by the extinction theorem, the smallest
solution of this equation is the extinction probability α. But since we are
looking for solutions of the equation in the interval [0, α], the solution is indeed
unique. Also note that

gY (1) =
+∞∑
k=0

P(Y = k) = P(Y < +∞) = P(T < +∞) = α.

3. s ∈ ]0, 1[. One must study the function x ∈ [0, 1] 7→ s gZ(x). The function is
continuous, strictly convex, and increasing. Moreover, at 0, it takes the value
s p0 ∈ [0, 1], and at 1, it equals s ∈ ]0, 1[. All this implies that the solution of

x = s gZ(x)

is unique.
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Furthermore, since s ∈ [0, 1], we notice that the function x 7→ s gZ(x) is less than
or equal to the function x 7→ gZ(x) for every x. Now, since the solutions of the
equation x = gZ(x) are α and 1, we can deduce that the solutions of the equation
x = s gZ(x) are either less than or equal to α or greater than or equal to 1. Thus,
if this equation admits a solution in the interval [0, 1], it must necessarily lie in the
interval [0, α].

Exercise 2.

According to the lecture, we have the joint densities

fBt1 ,..., Btn
(x1, . . . , xn) = p(x1, t1)p(x2 − x1, t2 − t1) · · · p(xn − xn−1, tn − tn−1)

and

fBt1 ,...,Btn , Bt(x1, . . . , xn, y) = p(x1, t1)p(x2−x1, t2−t1) · · · p(xn−xn−1, tn−tn−1)p(y−xn, t−tn).

We then obtain the conditional density

fBt|Bt1 ,..., Btn
(y | x1, . . . , xn) =

fBt1 ,..., Btn , Bt(x1, . . . , xn, y)

fBt1 ,..., Btn
(x1, . . . , xn)

= p(y − xn, t− tn) ·
p(xn, tn)

p(xn, tn)

=
fBtn , Bt(xn, y)

fBtn
(xn)

= fBt|Btn
(y | xn).

We therefore have the Markov property:

P{Bt ⩽ y | Btn = xn, . . . , Bt1 = x1} = P{Bt ⩽ y | Btn = xn}.

Exercise 3.

Using the same notations as in the previous exercise, we have

fBt|Bt1 ,Bt2
(y | a, b) =

fBt1 , Bt, Bt2
(a, y, b)

fBt1 ,Bt2
(a, b)

=
p(a, t1)p(y − a, t− t1)p(b− y, t2 − t)

p(a, t1)p(b− a, t2 − t1)

=
p(y − a, t− t1)p(b− y, t2 − t)

p(b− a, t2 − t1)
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where p(x, t) = 1√
2πt

e−
x2

2t . We then obtain

fBt|Bt1 ,Bt2
(y | a, b) =

√
2π(t2 − t1) exp

Ä
− (y−a)2

2(t−t1)

ä
exp
Ä
− (b−y)2

2(t2−t)

ä
√

2π(t− t1)
√
2π(t2 − t) exp

Ä
− (b−a)2

2(t2−t1)

ä
=

1√
2π (t−t1)(t2−t)

(t2−t1)

·

exp

Ñ
−
y2 − 2y

Ä
a t2−t
t2−t1

+ b t−t1
t2−t1

ä
+
Ä
a2 t2−t

t2−t1
+ b2 t−t1

t2−t1
− (b− a)2 (t−t1)(t2−t)

(t2−t1)2

ä
2 (t−t1)(t2−t)

t2−t1

é
=

1√
2π (t−t1)(t2−t)

(t2−t1)

exp

Ñ
−

¶
y −
Ä
a+ (b− a) t−t1

t2−t1

ä©2
2 (t−t1)(t2−t)

t2−t1

é
which corresponds to the density of the law

N
(
a+ (b− a)

t− t1
t2 − t1

,
(t− t1)(t2 − t)

t2 − t1

)
.

Exercise 4.

The calculation is straightforward using the independence of increments and the fact that
Bt follows a N (0, t) distribution. If s ⩽ t, we obtain

E[BsBt] = E
[
Bs

(
(Bt −Bs) +Bs

)]
= E[Bs(Bt −Bs)] + E[B2

s ]

= E[Bs]E[Bt −Bs] + s

= 0 + s

= s = min(s, t).

Exercise 5.

(a) To show this we simply need to check that for any n ⩾ 1, n ∈ N∗, we have

E[Zn|Yn+1] = Zn+1.

In fact,

E[Zn|Yn+1] = E[E[X|Yn]|Yn+1] = E[E[X|Xn, Yn+1]|Yn+1] = E[X|Yn+1] = Zn+1.

(b) For any a < b and any N ⩾ 1, the upcrossing lemma for martingales in (a) implies
that

E[Ua,b,N ] ⩽
1

b− a
(E[(Z1 − a)+]− E[(ZN − a)+]) ⩽

1

b− a
E[(Z1 − a)+].
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where Ua,b,N is the number of upcrossings of the interval [a, b] between 1 and N for
the martingale (ZN−k+1, k = 1, . . . , N). Note that

E[(Z1 − a)+] ⩽ a+ E[|Z1|] = a+ E[|E[X | Y1]|] ⩽ a+ E[E[|X| | Y1]] = a+ E[|X|].

If we define Ua,b := limN→∞ Ua,b,N to be the number of upcrossings(downcrossings)
of [a, b] by (Zk, k ∈ N∗), by Monotone convergence theorem we have E[Ua,b] =
limN→∞ E[Ua,b,N ] ⩽ 1

b−a
(a+ E[|X|]), which is finite. Thus Ua,b is a.s. finite.

(c) As the a.s. convergence theorem of submartingale, let a = lim inf
k→∞

Zk, b = lim sup
k→∞

Zk,

if a ̸= b we can check that Ua,b is not finite, which gives a contradiction.

4 R. Dalang


