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Exercise 1.

The goal is to construct the limiting random variable. We will use the fact that R is
a complete space, and therefore we will prove that

P{ω ∈ Ω : the sequence (Sn(ω))n∈N is a Cauchy sequence} = 1.

Define the following events:

A(ε, n) := {ω ∈ Ω : sup
i⩾n

|Si(ω)− Sn(ω)| > ε},

B(ε, n) := {ω ∈ Ω : ∀ m, p ⩾ n, |Sm(ω)− Sp(ω)| ⩽ ε},
B(ε) :=

⋃
n∈N

B(ε, n),

B :=
⋂

ε∈Q+

B(ε).

By hypothesis, lim
n→+∞

P(A(ε, n)) = 0. Moreover, we observe that B = {ω ∈ Ω : the

sequence (Sn(ω))n∈N is a Cauchy sequence}. Indeed,

ω ∈ B ⇔ ∀ ε ∈ Q+, ω ∈ B(ε)

⇔ ∀ ε ∈ Q+, ∃ n ∈ N : ω ∈ B(ε, n)

⇔ ∀ ε ∈ Q+, ∃ n ∈ N, ∀ m, p ⩾ n, |Sm(ω)− Sp(ω)| ⩽ ε

⇔ (Sn(ω))n∈N is a Cauchy sequence.

It is thus sufficient to show that P(B) = 1. First, we show that lim
n→+∞

P(B(ε, n)) = 1. To

do so, we show the inclusion

A
(ε
2
, n

)c

⊆ B(ε, n).

Indeed, it is easy to see that

A(ε, n)c = {ω ∈ Ω : ∀i ⩾ n, |Si(ω)− Sn(ω)| ⩽ ε}.

Consequently, if ω ∈ A(ε/2, n)c, then for all i ⩾ n, |Si(ω)−Sn(ω)| ⩽ ε/2. For allm, p ⩾ n,
we then have

|Sm(ω)− Sp(ω)| ⩽ |Sm(ω)− Sn(ω)|+ |Sn(ω)− Sp(ω)|

⩽
ε

2
+

ε

2
= ε,

and ω ∈ B(ε, n). Thus,

P
(
A
(ε
2
, n

)c)
⩽ P(B(ε, n)),
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and by hypothesis, we can write lim
n→+∞

P(B(ε, n)) = 1. Next, it is clear that for all n ∈ N,
we have B(ε, n) ⊂ B(ε, n+ 1). By probability continuity, we thus have

1 = lim
n→+∞

P(B(ε, n)) = P(B(ε)).

Therefore, for all ε ∈ Q+, P(B(ε)c) = 0 and by σ-subadditivity

P

Ñ ⋃
ε∈Q+

B(ε)c

é
⩽

∑
ε∈Q+

P(B(ε)c) = 0.

This means that

P(B) = P

Ñ ⋂
ε∈Q+

B(ε)

é
= 1.

Thus, we now define

S(ω) =

®
lim

n→+∞
Sn(ω) if ω ∈ B,

0 otherwise,

to obtain lim
n→+∞

Sn = S a.s.

Exercise 2.

(a) Since f is bounded, there exists M ∈ R such that for all i ∈ N, |f(i)| ⩽ M . Then,
on the one hand, E[|Yn|] = E[|f(Xn)|] ⩽ M . On the other hand, for all i1, . . . , in,
using the definition of Yn, the definition of conditional expectation (discrete case),
Markov property, and the hypothesis, we obtain

E[Yn+1|X1 = i1, . . . , Xn = in] = E[f(Xn+1)|X1 = i1, . . . , Xn = in]

=
∑
i

f(i)P(Xn+1 = i|X1, . . . , Xn = in)

=
∑
i

f(i)P(Xn+1 = i|Xn = in)

=
∑
i

f(i)pin,i

= f(in),

for all n ∈ N, and thus E[Yn+1|X1, . . . , Xn] = f(Xn) = Yn. Hence, (Yn) is indeed a
martingale relative to (Xn).

(b) Using the total probability formula and the hypothesis,

P(Xn = j for infinitely many n)

=
∑
i

P(Xn = j for infinitely many n|X1 = i)P(X1 = i).

=
∑
i

P(X1 = i) = 1.
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Since {Xn = j} ⊂ {Yn = f(j)}, we have

P{Yn = f(j) for infinitely many n} = 1. (1)

Since E[Y 2
n ] ⩽ M2, the martingale convergence theorem applies to (Yn). Thus,

there exists a random variable Y such that lim
n→+∞

Yn = Y almost surely. From ( 1 ),

P{Y = f(j)} = 1 for all j ∈ N, and thus f(i) = f(j) for all i, j ∈ N. Consequently,
f is a constant function.

Exercise 3.

Sτ is a random variable since it is almost surely equal to
∑∞

n=1Xn1τ⩾n. Since {τ ⩾ n} =
{τ ⩽ n− 1}c, Xn is independent of 1{n⩽τ}. Thus we have Sτ is integrable since

E[|Sτ |] ⩽
∑
n⩾1

E[|Xn| · 1{n⩽τ}] =
∑
n⩾1

E[|Xn|]E[1{n⩽τ}] =
∑
n

E[|X1|]P[n ⩽ τ ] = E|X1|E[τ ].

Furthermore, by the dominated convergence theorem, we have

E[Sτ ] = E[
∑
n⩾1

Xn1{n⩽τ}] =
∑
n⩾1

E[Xn]E[1{n⩽τ}] =
∑
n

E[X1]P[n ⩽ τ ] = E[X1]E[τ ],

as
m∑

n=1

Xn1{n⩽τ} is dominated by
∑
n⩾1

|Xn| · 1{n⩽τ} and E[
∑
n⩾1

|Xn| · 1{n⩽τ}] =
∑
n⩾1

E[|Xn| ·

1{n⩽τ}] < ∞.
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