
EPFL - SMA MARTINGALES AND APPLICATIONS
Prof. R. Dalang SPRING 2025

Solution to Problem Set 4 March 11, 2025

Exercise 1.

Let us first verify that E[|Sn|] < +∞ for all n ⩾ 0. Indeed, E[|S0|] = E[|X0|] < +∞.
For n ⩾ 1, using the triangle inequality and the linearity of expectation, and considering
Mi as an upper bound of fi, we obtain

E[|Sn|] = E

(∣∣∣∣∣X0 +
n−1∑
i=0

Xi+1fi(X0, . . . , Xi)

∣∣∣∣∣
)

⩽ E[|X0|] +
n−1∑
i=0

E[|Xi+1||fi(X0, . . . , Xi)|]

⩽ E[|X0|] +
n−1∑
i=0

MiE[|Xi+1|]

< +∞,

by hypothesis.
It remains to prove that E[Sn+1|X0, . . . , Xn] = Sn. Using properties (a) and (d) (see

Exercise 1, Series 1), we obtain

E[Sn+1|X0, . . . , Xn]

= E[X0|X0, . . . , Xn] +
n−1∑
i=0

E[Xi+1fi(X0, . . . , Xn)|X0, . . . , Xn]

+E[Xn+1fn(X0, . . . , Xn)|X0, . . . , Xn]

= X0 +
n−1∑
i=0

Xi+1fi(X0, . . . , Xn) + fn(X0, . . . , Xn)E[Xn+1|X0, . . . , Xn]

= Sn,

thanks to the hypothesis.

Exercise 2.

First, suppose such a decomposition exists. Then we must have

Sn+1 − Sn = Mn+1 −Mn + An+1 − An.

Consequently, by conditioning on X1, . . . , Xn and using properties (a) and (d) (see Exer-
cise 1, Series 1),

E[Sn+1|X1, . . . , Xn]− Sn = An+1 − An.

Thus,
An+1 = An + E[Sn+1|X1, . . . , Xn]− Sn.
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Since A1 = 0, we deduce that for n ⩾ 2,

An =
n−1∑
k=1

(E[Sk+1|X1, . . . , Xk]− Sk).

We can then define Mn := Sn − An. It remains to verify that the sequences (An) and
(Mn) thus defined (uniquely) satisfy the required properties. Indeed, the uniqueness of
the decomposition is given by the fact that the sequence (An) is uniquely defined.

First, A1 = 0. Next, the sequence (An) is increasing since for all n ⩾ 1 we have
An+1 − An = E[Sn+1|X1, . . . , Xn] − Sn ⩾ 0 because (Sn) is a submartingale. Moreover,
An+1 is a function of X1, . . . , Xn by the definition of conditional expectation and since
Sk, k ⩽ n, are also such functions.

It remains to verify that (Mn) is a martingale relative to (Xn). Note that for all n ⩾ 1,

Mn+1 −Mn = Sn+1 − An+1 − (Sn − An),

so
Mn+1 = Mn + Sn+1 − E[Sn+1|X1, . . . , Xn]. (1)

We note that E[|Sn|] < ∞ for all n ⩾ 1 by the definition of a submartingale. Then,
E[|M1|] = E[|S1|] < ∞. We proceed by induction. Assuming E[|Mn|] < ∞, then

E[|Mn+1|] ⩽ E[|Mn|] + E[|Sn+1|] + E[|E[Sn+1|X1, . . . , Xn]|]
< +∞,

by the induction hypothesis, the triangle inequality, and the definition of conditional ex-
pectation.

Furthermore, using relation (1) and properties (a) and (d) (see Ex. 1, Series 1), we
obtain

E[Mn+1|X1, . . . , Xn] = E[Mn|X1, . . . , Xn] + E[Sn+1|X1, . . . , Xn]

− E[E[Sn+1|X1, . . . , Xn]|X1, . . . , Xn]

= Mn,

which proves that (Mn) is a martingale relative to (Xn).

Exercise 3.

Let us start by showing that T is a stopping time. The random variable T represents
the number of steps before drawing a green ball. The event {T = n} is therefore equivalent
to {R0 = 1, R1 = 2, R2 = 3, . . . , Rn−1 = n,Rn = n} (T is the first time n at which the
number of red balls in the urn is n). This equality of events shows that {T = n} is
determined by the values of R0, . . . , Rn, and hence that T is a stopping time with respect
to the sequence (Rn).

Since RT = T , we have

E[ST ] = E
ï

RT

T + 2

ò
= E
ï

T

T + 2

ò
= 1− E

ï
2

T + 2

ò
.
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Next, suppose that it is possible to apply the stopping theorem to the martingale (Sn)
and the stopping time T . Then,

E[ST ] = E[S1] =
1

2
,

which leads to
1

2
= 1− 2E

ï
1

T + 2

ò
,

that is,

E
ï

1

T + 2

ò
=

1

4
.

Thus, it remains to justify this assumption. To do so, let us first compute P{T > n}. We
have

P{T > n} = P{R0 = 1, R1 = 2, . . . , Rn = n+ 1}
= P{R0 = 1} · P{R1 = 2|R0 = 1} · . . . · P{Rn = n+ 1|R0 = 1, . . . , Rn = n}

= 1 · 1
2
· 2
3
· . . . · n

n+ 1

=
1

n+ 1
.

We now successively verify that the assumptions of the stopping theorem are satisfied.

(i) By continuity of probabilities,

P{T < +∞} = P (∪n⩾1{T ⩽ n})
= lim

n→∞
P{T ⩽ n}

= 1− lim
n→∞

P{T > n} = 1.

(ii) E[|ST |] ⩽ 1 since ST ⩽ 1.

(iii)

E[Sn|T > n]P{T > n} = E[Sn1{T>n}]

⩽ E[1{T>n}]

= P{T > n}

=
1

n+ 1
−→

n→+∞
0

And thus, we can apply the stopping theorem.

Exercise 4.

Observe that equivalently, for all n ⩾ 0,

P[T > n+N |n] ⩽ 1− ε a.s..

3



Hence, |n is short for |X1, . . . , Xn, since {T > n} is determined byX1, . . . , Xn, by definition
and monotonicity of conditional expectation,

P[T > n+N ] = E[P[T > n+N |n]1{T>n}] ⩽ (1− ε)E[1{T>n}] = (1− ε)P[T > n].

This holds for any n ⩾ 0. Therefore,

P[T > kN ] ⩽ (1− ε)P[T > (k − 1)N ] ⩽ . . . ⩽ (1− ε)k−1P[T > N ] ⩽ (1− ε)k.

This in turn implies that P[T < ∞] ⩾ 1− (1− ε)k for all k ⩾ 0. By sending k to infinity,
P[T < ∞] = 1. Moreover, since T p is a non-negative random variable,

E[T p] =

∫ ∞

0

P[T p > t]dt =

∫ ∞

0

psp−1P[T > s]ds =
∞∑
k=0

∫ (k+1)N

kN

psp−1P[T > s]ds

⩽
∞∑
k=0

P[T > kN ]

∫ (k+1)N

kN

psp−1ds ⩽ Np

∞∑
k=0

(1− ε)k
(
(k + 1)p − kp

)
< ∞.

The latter sum is clearly convergent. Fully analogously, for λ > 0,

E[eλT ] =
∫ ∞

0

P[eλT > t]dt = 1 +

∫ ∞

1

P[eλT > t]dt = 1 +

∫ ∞

0

λeλsP[T > s]ds

= 1 +
∞∑
k=0

∫ (k+1)N

kN

λeλsP[T > s]ds ⩽ 1 +
∞∑
k=0

P[T > kN ]

∫ (k+1)N

kN

λeλsds

⩽ 1 + (eλN − 1)
∞∑
k=0

(1− ε)keλkN .

The latter series is convergent if (1−ε)eλN < 1, which is the case when λ > 0 is sufficiently
small.

Exercise 5.

Let n ∈ N. Consider A := {E[Xn+1|n] > Xn}, which is determined by X1, . . . , Xn. Again,
|n is short for |X1, . . . , Xn. Define τ = (n+ 1)1A + n1Ac ⩽ n+ 1. It is clearly a bounded
stopping time. Thus, on the one hand,

E[X0] = E[Xτ ] = E[Xn+11A] + E[Xn1Ac ].

On the other hand, since n is a bounded stopping time, E[X0] = E[Xn]. Combined, we
get that if P[A] > 0,

E[Xn+11A] = E[Xn1A] < E[E[Xn+1|n]1A] = E[Xn+11A],

which leads to a contradiction. Hence, E[Xn+1|n] ⩽ Xn almost surely. Fully analogously,
we can obtain the reverse inequality, and so E[Xn+1|n] = Xn almost surely. Integrability
are assumed.
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