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Exercise 1.

Since (X, Y ) and Z are independent, it follows that Y and Z are independent. We
distinguish between the discrete and continuous cases.

Discrete case: for all y and z, we have

E[X|Y = y, Z = z] =
∑
x

xP(X = x|Y = y, Z = z)

=
∑
x

x
P(X = x, Y = y, Z = z)

P(Y = y, Z = z)

by independence
=

∑
x

x
P(X = x, Y = y)P(Z = z)

P(Y = y)P(Z = z)

=
∑
x

xP(X = x|Y = y)

= E[X|Y = y],

which is exactly what we wanted to show.

Continuous case: we assume that fX,Y,Z , fX,Y , fY,Z , fY and fZ are the respective joint
densities of the vectors (X, Y, Z), (X, Y ), (Y, Z), Y , and Z. Then, for all y and z,

E[X|Y = y, Z = z] =

∫
R
x
fX,Y,Z(x, y, z)

fY,Z(y, z)
dx

by independence
=

∫
R
x
fX,Y (x, y)fZ(z)

fY (y)fZ(z)
dx

=

∫
R
x
fX,Y (x, y)

fY (y)
dx

= E[X|Y = y],

which is exactly what we wanted to show.
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Exercise 2.

(a) We use the definition of conditional expectation with the bounded function h ≡ 1.
Then we use properties (d) and (a) of conditional expectation shown in Exercise 1
of Series 1. Finally, we take into account that (Sn) is a martingale relative to (Xn).
We then obtain for all integers k ⩽ l ⩽ m,

E[(Sm − Sl)Sk] = E[E[(Sm − Sl)Sk|Xk, . . . , X1]]

= E[Sk E[Sm − Sl|Xk, . . . , X1]]

= E[Sk(E[Sm|Xk, . . . , X1]− E[Sl|Xk, . . . , X1])]

= E[Sk(Sk − Sk)] = 0.

(b) Suppose that (Sn) is a martingale relative to (Xn). The previous point can then be
applied. Let i ̸= j. Without loss of generality, we assume that i < j. Let k = i,
l = j − 1, and m = j. Applying point (a), we obtain

0 = E[(Sm − Sl)Sk] = E[(Sj − Sj−1)Si]

= E[XjSi]. (1)

Since the previous equality holds for i and i − 1 (i ⩾ 2), E[XjSi] − E[XjSi−1] = 0.
By linearity, 0 = E[Xj(Si − Si−1)] = E[XiXj]. If i = 1, we use equality (1) directly
to obtain E[XjX1] = 0.

Exercise 3.

(a) The random variable T takes values in {1, . . . , n}. Therefore, the family {T = 1},
. . ., {T = n} must be a partition of Ω. This can be expressed in two ways for the
sequence B1, . . . , Bn:

1. Geometric condition, valid for any sequence (Y1, . . . , Yn) of random variables:
let Ak = Bk × Rn−k. Then the family A1, . . . , An must be a partition of Rn.
We then have

{(Y1, . . . , Yn) ∈ Ak} = {(Y1, . . . , Yk) ∈ Bk} = {T = k}.

2. Probabilistic condition, valid for a given sequence Y1, . . . , Yn of random vari-
ables: let Ak = Bk × Rn−k. Then, for all k ̸= j,

P{(Y1, . . . , Yn) ∈ Ak ∩ Aj} = 0 and P{(Y1, . . . , Yn) ∈
⋃n

k=1 Ak} = 1.

(b) We can express the event {T = n} as follows:

{T = n} = {Sn ∈ [1, 2) and Sk /∈ [1, 2),∀ k < n}
= {(X1, . . . , Xn) ∈ Bn}

where Bn = {(x1, . . . , xn) ∈ Rn : x1 + · · ·+ xk /∈ [1, 2),∀ k < n and x1 + · · ·+ xn ∈
[1, 2)}.
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Exercise 4.

The sum of two stopping times is again a stopping time since

{τ1 + τ2 = n} =
⋃

0⩽k⩽n

{τ1 = k} ∩ {τ2 = n− k}.

Note that for any k ⩽ n, there exist B1
k and B2

k such that {τ1 = k} = {(Y1, Y2, . . . , Yn) ∈
B1

k and {τ2 = k} = {(Y1, Y2, . . . , Yn) ∈ B2
k} as τ1 and τ2 are stopping times. Thus we have

that

{τ1+τ2 = n} =
⋃

0⩽k⩽n

{(Y1, Y2, . . . , Yn) ∈ B1
k∩B2

n−k} = {(Y1, Y2, . . . , Yn) ∈
⋃

0⩽k⩽n

B1
k∩B2

n−k},

(2)
which means that τ1 + τ2 is a stopping time.

Exercise 5.

Define (Ω,F ,P) to be a product space of (Ωi,P(Ωi),Unif(Ωi)) with Ωi = {1, . . . , 6}2 for
all i ∈ N. For all i, let (Xi, Yi) : Ω → R2 be a projection on the i-th coordinate, i.e.
(Xi, Yi)(ω) = ωi = (ω1

i , ω
2
i ) ∈ {1, . . . , 6}2. Set Si := Xi + Yi, which clearly a random

variable. In this model Si clearly describes the sum of the two dice of the i-th roll. We
are interested in terminating the game once Si is even, hence, define τ := {i ⩾ 1 : Si

mod 2 ≡ 0}. Indeed, {τ = n} = {S1, . . . , Sn−1 mod 2 ≡ 1, Sn mod 2 ≡ 0} and

P[τ > n] = P [∩i⩽n{Si mod 2 ≡ 1}] iid
=

∏
i⩽n

1

2

n→∞−−−→ 0.

Here P [{Si mod 2 ≡ 1}] = 1
2
because the second dice has half the probability of being

even or odd after the first dice is given. For the first roll S1, one may check that its
distribution is as below:

2 3 4 5 6 7 8 9 10 11 12

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Formally, it is supported on {2, 3, . . . , 12} with

P[S1 = k] =
1

36

(
(k − 1)1k⩽7 + (13− k)1k>7

)
for k = 2, 3, . . . , 12. Hence, for k ∈ {2, 4, . . . , 12},

P[Sτ = k] =
∑
i∈N

P[Si = k, τ = i] =
∑
i∈N

P[Si = k;S1, . . . Si−1 mod 2 ≡ 1]

iid
=

∑
i∈N

P[Si = k]
∏
j<i

1

2
= P[S1 = k]

∑
i∈N

Å
1

2

ãi−1

= 2P[S1 = k]

=
1

18

(
(k − 1)1k⩽7 + (13− k)1k>7

)
.

(3)

Note that the law of Sτ is obtained from the law of S1 by deleting the mass from odd
numbers and doubling the mass of even numbers.
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