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Exercise 1.

Let us recall that a random variable ¢(X) is the conditional expectation of Y given X,
denoted E[Y|X], if and only if it satisfies

Elp(X)n(X)] = E[Y h(X)]

for any bounded function h: R — R.

(a) Note that aY + (7 is an integrable random variable. By the definition of conditional
expectation, the right-hand side is a linear combination of two functions of X, and
hence it is itself a function of X. Using the linearity of expectation, we have

E[(«E[Y|X]+ BE[Z|X])h(X)] = aE[E[Y|X]h(X)] + BE[E[Z|X]h(X)]
= aE[Yh(X)] +BE[Zh(X)]
= E[(aY + SZ)h(X)]

for any bounded function h : R — R and any «a, 8 € R. Thus,
ElaY + Z|X] = oE[Y|X] + BE[Z]X].
(b) To prove this property, we use the following definition of ¢(X); in the discrete case:

p(z) =E[Y|X = 2] = ZylP’ = y|X =),

for all z, and in the continuous case:

fxy(z,y)
fx(z) %,

where (X,Y) have a joint density function fxy(z,y).

w@=MWX=ﬂ=Ay

1. Discrete case: Suppose first that Y > 0. Then,

p(z) =E[Y[|X =2] = ZyP =yl X =12)>0

for all x. Thus,
p(X) =E[Y[X] >0

Considering Z —Y > 0 and using property (a), we obtain (b).



(f)

(2)

2. Continuous case: In the same way as in the discrete case, we first consider a
random variable Y > 0. Since fxy(x,y) =0 for all y < 0, we have

o) = EIYIX =a] = [ 4Py 5 0

for all . Thus, ¢(X) = E[Y|X] > 0. Property (b) follows from the above and
property (a).

By definition, E[Z| X, Y] is an integrable random variable. It remains to show that
for any bounded function h: R — R,

E[E[Z|X]h(X)]] = E[E[Z]X, Y]h(X)]].

The left-hand side equals E[Zh(X)] by definition. Since h can be viewed as a func-
tion h : R? — R with (z,y) — h(z), the right-hand side is also equal to E[Zh(X)].
This proves the result.

Since f is bounded and E[|Y]|] < oo, we have that E[|Y f(X)|] < co. For any
bounded function h : R — R, we can write

EY f(X)h(X)] = E[Y(f-h)(X)] = E[E(V]X)(f - b)(X)]
— E[EY]X)/(X)h(X)]

where we use the fact that the product of two bounded functions f and h is a
bounded function. Thus,

EY f(X)|X] = E[Y[X]f(X).

If X and Y are independent, then h(X) and Y are also independent, and the
expectation of their product is the product of their expectations. Hence,

E[Y h(X)] = E[Y]E[A(X)] = E[E[Y]A(X)]
for any bounded function h : R — R. Thus, E[Y|X] = E[Y].

This is a special case of point (d) with Y = 1 identically.

We begin by recalling the following result. If g : R — R is convex and ¢ € R is
fixed, then there exists an affine function I(z) = ax + b such that I(c) = g(c) and
l(x) < g(z) for all .

Using this, we can show that for a convex function g : R — R, there exist two
sequences (ap)nen and (b, )nen such that for all z € R, g(x) = sup,en(anz + by).
Applying this to conditional expectation:

Elg(Y)|X] = E[a,Y + b,|X] = a,E[Y|X] + by, Vn € N.
Taking the supremum over n yields:

Elg(¥)|X] > sup(a,E[V]X] +b,) = g(E[Y|X])

This proves (g).



Exercise 2.

Notice that the events {N > n} and {X; + --- + X,, < 2} are the same. Thus,
P(N>n) = P(X;+---+ X, <x).

For = €]0, 1[, define G, (z) := P{X; + - - -+ X,, < z}. We will prove by induction that
Gn(z) = %

n!"’

The property holds for n = 1: Gy(x) = P{X; < 2} = 2. Now assume the property
holds at rank n — 1 and prove it at rank n.

We will condition the desired probability on X;. The definition of conditional expec-
tation with A(X;) = 1 identically gives:

B(N > 1) = E[Lisny] = E[E[Liyon | X1]] = EP(V > n|Xy).

If fx,(u) = Lpqj(u) is the density of X;, then:
P(N >n) = /RIP’(X1+---+Xn < z| X1 =u) fx, (u) du
= /I]P’(X1+-~~+Xn <z| Xy =u)du
0
= /xIP’(Xl—{—---—i—Xn <z|X:i=u)du
0

because if u > x, then the conditional probability is necessarily zero. Indeed, it is impos-
sible to have X;+---4+X,, < x if X; > z. Using the independence of X; from Xs,..., X,
the substitution x —u = x1, and the fact that X, ..., X,, are independent and identically
distributed, we obtain:

P(N >n) = /[P’(X2+---—|—Xn<x—u)du
0
0

= / Gn_l(l‘l)dl‘l.
0

Next, applying the induction hypothesis:

T

]P)(N > TL) = Gn_l(l‘l)dl‘l

T n—1
Ly

(n—1)!
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Exercise 3.

Note that E|X;X5| = E|X;|E|X;| < co. Furthermore, by an application of exercise 1 we
have that

&

]E[X1X2]X3] [E[X71X3| X, X;5]| X5]

e

e

[XoE[X1]| X]

E
L E[XLE[X) [ Xo, X3]|Xs]
2 )
E[X,]E[Xs]| X3].

&

Exercise 4.
To understand where the formula comes from, let’s consider the following heuristics: let
1o € R and ¢ > 0, suppose that the density h is continuous, then
PIX€eANYE@—cyte)
PlY € (yo — ;90 + €)]
voe [ h(x, y)dzdy

Yyo—¢€

vote Jg Wz, y)dudy

Yyo—¢€

=0 2¢ [, h(x, yo)d / h(zx,yo)
Jr

- 2¢ [ Wz, yo)da ', o) da:’
Thus, we can infer that the conditional law of X knowing {Y = yo} has density
h( yo)

Jo 1@, yo)d
and thus we would expect the density formula.

PXeA|Y €(y—cy+e)=

Moreover, it remains to prove the condition in the definition of conditional expectation.

foh x,Y)dr  [pxh(z,Y)dr
L R—R 1 Y) = =
et f : R — R be bounded and let g(Y") [ hr, Yz 3%
We will check that E[g(Y)f(Y)] =E[X f(Y)]. In fact

Elg(Y)/(Y)] = / o) F ) fy (y)dy = / ( / £ h(z,y)dz)  (y)dy

//xh 2, y) f(y)dady = E[X f(Y)].

The first equality of the second line is followed by Fubini-Tonelli theorem.

for simplicity.

Exercise 5.

For the first part, observe that by Exercise 1

e[y x

For the second question, we start by proving the following symmetry property:

}: X1|X1+ZEX|X1 X1+§:E[X¢]ZX1+(”—1)E[X1]-

4



Lemma 1. Let XY, Z be three random variables with a finite first moment such that
(X, Z) has the same law as (Y, Z). Show that,

E[X|Z] =E[Y|Z] as.

Proof. For every bounded function g the equality of the joint laws of (X, Z) and (Y, Z),
resp., implies

E[Xg(Z)] =E[Yg(Z)] = E[E[X|Z]g(2)] =E[Xg(Z)] =E[Yg(Z)].
This, in turn, implies that a.s. E[X|Z] = E[Y|Z]. O

Now, by lemma, for every 1 < ,j < n one has,

ixk} :E[Xj‘ixk], a.5.
k=1 i=k

E [XZ»

and almost surely,

n

ZX,J =kZ:Xk-

k=1

iE[Xi anxk} :E[g)(i

i=1 k=1

The result follows.



