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Exercise 1.

Let us recall that a random variable φ(X) is the conditional expectation of Y given X,
denoted E[Y |X], if and only if it satisfies

E[φ(X)h(X)] = E[Y h(X)]

for any bounded function h : R → R.

(a) Note that αY +βZ is an integrable random variable. By the definition of conditional
expectation, the right-hand side is a linear combination of two functions of X, and
hence it is itself a function of X. Using the linearity of expectation, we have

E
[
(αE[Y |X] + β E[Z|X])h(X)

]
= αE

[
E[Y |X]h(X)

]
+ β E

[
E[Z|X]h(X)

]
= αE

[
Y h(X)

]
+ β E

[
Zh(X)

]
= E

[
(αY + βZ)h(X)

]
for any bounded function h : R → R and any α, β ∈ R. Thus,

E[αY + βZ|X] = αE[Y |X] + βE[Z|X].

(b) To prove this property, we use the following definition of φ(X); in the discrete case:

φ(x) = E[Y |X = x] =
∑
y

yP(Y = y|X = x),

for all x, and in the continuous case:

φ(x) = E[Y |X = x] =

∫
R
y
fX,Y (x, y)

fX(x)
dy,

where (X, Y ) have a joint density function fX,Y (x, y).

1. Discrete case: Suppose first that Y ⩾ 0. Then,

φ(x) = E[Y |X = x] =
∑
y

yP(Y = y|X = x) ⩾ 0

for all x. Thus,
φ(X) = E[Y |X] ⩾ 0.

Considering Z − Y ⩾ 0 and using property (a), we obtain (b).
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2. Continuous case: In the same way as in the discrete case, we first consider a
random variable Y ⩾ 0. Since fX,Y (x, y) = 0 for all y ⩽ 0, we have

φ(x) = E[Y |X = x] =

∫
R
y
fX,Y (x, y)

fX(x)
dy ⩾ 0

for all x. Thus, φ(X) = E[Y |X] ⩾ 0. Property (b) follows from the above and
property (a).

(c) By definition, E[Z|X, Y ] is an integrable random variable. It remains to show that
for any bounded function h : R → R,

E
[
E[Z|X]h(X)]

]
= E

[
E[Z|X, Y ]h(X)]

]
.

The left-hand side equals E[Zh(X)] by definition. Since h can be viewed as a func-
tion h : R2 → R with (x, y) 7→ h(x), the right-hand side is also equal to E[Zh(X)].
This proves the result.

(d) Since f is bounded and E[|Y |] < ∞, we have that E[|Y f(X)|] < ∞. For any
bounded function h : R → R, we can write

E[Y f(X)h(X)] = E[Y (f · h)(X)] = E
[
E(Y |X)(f · h)(X)

]
= E

[
E(Y |X)f(X)h(X)

]
where we use the fact that the product of two bounded functions f and h is a
bounded function. Thus,

E[Y f(X)|X] = E[Y |X]f(X).

(e) If X and Y are independent, then h(X) and Y are also independent, and the
expectation of their product is the product of their expectations. Hence,

E[Y h(X)] = E[Y ]E[h(X)] = E[E[Y ]h(X)]

for any bounded function h : R → R. Thus, E[Y |X] = E[Y ].

(f) This is a special case of point (d) with Y = 1 identically.

(g) We begin by recalling the following result. If g : R → R is convex and c ∈ R is
fixed, then there exists an affine function l(x) = ax + b such that l(c) = g(c) and
l(x) ⩽ g(x) for all x.

Using this, we can show that for a convex function g : R → R, there exist two
sequences (an)n∈N and (bn)n∈N such that for all x ∈ R, g(x) = supn∈N(anx + bn).
Applying this to conditional expectation:

E[g(Y )|X] ⩾ E[anY + bn|X] = anE[Y |X] + bn, ∀n ∈ N.

Taking the supremum over n yields:

E[g(Y )|X] ⩾ sup
n∈N

(anE[Y |X] + bn) = g(E[Y |X]).

This proves (g).
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Exercise 2.

Notice that the events {N > n} and {X1 + · · ·+Xn ⩽ x} are the same. Thus,

P(N > n) = P(X1 + · · ·+Xn ⩽ x).

For x ∈]0, 1[, define Gn(x) := P{X1 + · · ·+Xn ⩽ x}. We will prove by induction that
Gn(x) =

xn

n!
.

The property holds for n = 1: G1(x) = P{X1 ≤ x} = x. Now assume the property
holds at rank n− 1 and prove it at rank n.

We will condition the desired probability on X1. The definition of conditional expec-
tation with h(X1) = 1 identically gives:

P(N > n) = E[1{N>n}] = E[E[1{N>n}|X1]] = E[P(N > n|X1)].

If fX1(u) = 1[0,1](u) is the density of X1, then:

P(N > n) =

∫
R
P(X1 + · · ·+Xn ⩽ x|X1 = u)fX1(u) du

=

∫ 1

0

P(X1 + · · ·+Xn ⩽ x|X1 = u) du

=

∫ x

0

P(X1 + · · ·+Xn ⩽ x|X1 = u) du

because if u > x, then the conditional probability is necessarily zero. Indeed, it is impos-
sible to have X1+ · · ·+Xn ⩽ x if X1 > x. Using the independence of X1 from X2, . . . , Xn,
the substitution x−u = x1, and the fact that X1, . . . , Xn are independent and identically
distributed, we obtain:

P(N > n) =

∫ x

0

P(X2 + · · ·+Xn ⩽ x− u) du

=

∫ x

0

P(X2 + · · ·+Xn ⩽ x1) dx1

=

∫ x

0

Gn−1(x1) dx1.

Next, applying the induction hypothesis:

P(N > n) =

∫ x

0

Gn−1(x1) dx1

=

∫ x

0

xn−1
1

(n− 1)!
dx1

=
xn

n!
.
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Exercise 3.

Note that E|X1X2| = E|X1|E|X2| < ∞. Furthermore, by an application of exercise 1 we
have that

E[X1X2|X3]
c)
= E[E[X1X2|X2, X3]|X3]

d)
= E[X2E[X1|X2, X3]|X3]

e)
= E[X2E[X1]|X3]

a)
= E[X1]E[X2|X3].

Exercise 4.

To understand where the formula comes from, let’s consider the following heuristics: let
y0 ∈ R and ε > 0, suppose that the density h is continuous, then

P[X ∈ A | Y ∈ (y0 − ε; y0 + ε)] =
P[X ∈ A ∩ Y ∈ (y0 − ε; y0 + ε)]

P[Y ∈ (y0 − ε; y0 + ε)]

=

∫ y0+ε

y0−ε

∫
A
h(x, y)dxdy∫ y0+ε

y0−ε

∫
R h(x, y)dxdy

ε→0
≈

2ε
∫
A
h(x, y0)dx

2ε
∫
R h(x, y0)dx

=

∫
A

h(x, y0)∫
R h(x

′, y0)dx′dx

Thus, we can infer that the conditional law of X knowing {Y = y0} has density

h(·, y0)∫
R h(x

′, y0)dx′ ,

and thus we would expect the density formula.

Moreover, it remains to prove the condition in the definition of conditional expectation.

Let f : R → R be bounded and let g(Y ) :=

∫
R xh(x, Y )dx∫
R h(x, Y )dx

=

∫
R xh(x, Y )dx

fY (Y )
for simplicity.

We will check that E[g(Y )f(Y )] = E[Xf(Y )]. In fact,

E[g(Y )f(Y )] =

∫
R
g(y)f(y)fY (y)dy =

∫
R
(

∫
R
xh(x, y)dx)f(y)dy

=

∫
R

∫
R
xh(x, y)f(y)dxdy = E[Xf(Y )].

The first equality of the second line is followed by Fubini-Tonelli theorem.

Exercise 5.

For the first part, observe that by Exercise 1

E
[ n∑

i=1

Xi

∣∣∣X1

]
= E[X1|X1] +

n∑
i=2

E[Xi|X1] = X1 +
n∑

i=2

E[Xi] = X1 + (n− 1)E[X1].

For the second question, we start by proving the following symmetry property:

4



Lemma 1. Let X, Y, Z be three random variables with a finite first moment such that
(X,Z) has the same law as (Y, Z). Show that,

E[X|Z] = E[Y |Z] a.s..

Proof. For every bounded function g the equality of the joint laws of (X,Z) and (Y, Z),
resp., implies

E[Xg(Z)] = E[Y g(Z)] ⇒ E
[
E[X|Z]g(Z)

]
= E[Xg(Z)] = E[Y g(Z)].

This, in turn, implies that a.s. E[X|Z] = E[Y |Z].

Now, by lemma, for every 1 ⩽ i, j ⩽ n one has,

E
[
Xi

∣∣∣ n∑
k=1

Xk

]
= E

[
Xj

∣∣∣ n∑
i=k

Xk

]
, a.s.

and almost surely,

n∑
i=1

E
[
Xi

∣∣∣ n∑
k=1

Xk

]
= E

[ n∑
i=1

Xi

∣∣∣ n∑
k=1

Xk

]
=

n∑
k=1

Xk.

The result follows.
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