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Exercise 1.

(a) We observe that b+Bt

1+t
⩾ a if and only if Bt − at ⩾ a− b, so that

P
ß
sup
t⩾0

b+Bt

1 + t
⩾ a

™
= P

ß
sup
t⩾0

(Bt − at) ⩾ a− b

™
.

Since the process (Bt − at, t ⩾ 0) is a Brownian motion with negative drift (−a),
this probability equals e−2a(a−b) by a result from the course.

(b) Let (“Bt, t ⩾ 0) be a Brownian motion and let (B′
t, t ⩾ 0) and (‹Bt, t ⩾ 0) be

standard Brownian motions. Define B∗
t = Bt−1 for all t ⩾ 1. Then (B∗

t , t ⩾ 1) is a
Brownian motion. Hence,

P
ß
sup
t⩾0

b+Bt

1 + t
⩾ a

™
= P

®
sup
t⩾0

“Bt

1 + t
⩾ a

∣∣∣ “B0 = b

´
= P

ß
sup
t⩾0

B∗
1+t

1 + t
⩾ a

∣∣∣B∗
1 = b

™
= P

ß
sup
t⩾1

B′
t

t
⩾ a

∣∣∣B′
1 = b

™
.

Therefore, using the fact that (tB′
1/t, t ⩾ 0) is a standard Brownian motion, it

follows that

P
ß
sup
t⩾1

B′
t

t
⩾ a

∣∣∣B′
1 = b

™
= P

ß
sup
t⩾1

‹B1/t ⩾ a
∣∣∣ ‹B1 = b

™
= P0

ß
sup
0⩽t⩽1

‹Bt ⩾ a
∣∣∣ ‹B1 = b

™
.

Exercise 2.

Let ‹Bt = tB 1
t
. Then (‹Bt, t ⩾ 0) is a standard Brownian motion (by setting, in addition,‹B0 = 0). Using a result from the course, we have

P0

{ ⋂
n∈N∗

ß
∃t ∈

Å
0,

1

n

ã
: Bt = 0

™}
= 1.

By letting s = 1
t
, this relation is equivalent to

P0

{ ⋂
n∈N∗

{∃s ⩾ n : B1/s = 0}

}
= 1,
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which is itself equivalent (renaming s = t) to

P0

{ ⋂
n∈N∗

{∃t ⩾ n : tB1/t = 0}

}
= 1.

And by using the process (‹Bt, t ⩾ 0), it follows that

P0

{ ⋂
n∈N∗

{∃t ⩾ n : ‹Bt = 0}

}
= 1.

Exercise 3.

First, we will establish a result that will be needed later. We know that the sum of
two independent Gaussians is Gaussian. A more general result tells us that any linear
combination of a Gaussian vector is a Gaussian vector. The case of interest is the vector

X⃗ = (Bt1 , Bt2 , . . . , Btn)
T ,

where (Bt, t ⩾ 0) is a standard Brownian motion and 0 ⩽ t1 < · · · < tn < t. We know
from the course that the vector

Y⃗ = (Bt1 , Bt2 −Bt1 , . . . , Btn −Btn−1)
T

follows a law Nn(⃗0, AA
T ), where

A =

à √
t1 0

√
t2 − t1

. . .

0
√
tn − tn−1

í
.

Moreover, we can write X⃗ = SY⃗ with

S =

à
1 0

1 1

. . . . . .

1 1 1

í
.

By setting Σ = SA, we find that X⃗ follows a multivariate normal law Nn(⃗0,ΣΣ
T ). One

can check that the joint density of the Xi = Bti given in the course is indeed

fX⃗(x1, . . . , xn) =

Å
1

2π

ãn/2 1

| detΣ|
exp

ß
−1

2
x⃗T
(
ΣΣT

)−1
x⃗

™
.

Thus, any linear combination of the coordinates of X⃗ will follow a multivariate Gaussian
law. We will use this in part (b).

We now return to the exercise at hand.
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(a) Using Fubini’s theorem, we find that

E(Ck) =
2

π
E
Å∫ π

0

(
Bt −

t

π
Bπ

)
sin(kt) dt

ã
=

2

π

∫ π

0

E
(
Bt −

t

π
Bπ

)
sin(kt) dt = 0,

E(CkCl) =

Å
2

π

ã2
E
Å∫ π

0

(
Bt −

t

π
Bπ

)
sin(kt) dt

∫ π

0

(
Bs −

s

π
Bπ

)
sin(ls) ds

ã
=

Å
2

π

ã2 ∫ π

0

dt

∫ π

0

ds sin(kt) sin(ls)E
(
(Bt −

t

π
Bπ)(Bs −

s

π
Bπ)

)
=

Å
2

π

ã2 ∫ π

0

dt

∫ π

0

ds sin(kt) sin(ls)
(
s ∧ t

(
1− s ∨ t

π

))
=

Å
2

π

ã2 ∫ π

0

dt

(∫ t

0

ds sin(kt) sin(ls) s
(
1− t

π

)
+

∫ π

t

ds sin(kt) sin(ls) t
(
1− s

π

))

=

Å
2

π

ã2 ∫ π

0

dt

(
(1− t

π
) sin(kt)

[sin(ls)
l2

− cos(ls)s

l

]t
0

+ sin(kt)t
[
−
cos(ls)(1− s

π
)

l
− sin(ls)

l2π

]π
t

)

=

Å
2

π

ã2 ∫ π

0

dt

(
(1− t

π
) sin(kt)

sin(lt)

l2
− (1− t

π
) sin(kt)

cos(lt)t

l

)

+

Å
2

π

ã2 ∫ π

0

dt

(
sin(kt)t

cos(lt)(1− t
π
)

l
+ sin(kt)t

sin(lt)

l2π

)

=

Å
2

π

ã2 ∫ π

0

1

l2
sin(kt) sin(lt) dt

=

0, if k ̸= l,

2
πl2

, if k = l.

(b) To determine the law of Ck, we write the integral as a Riemann sum. Define

C
(n)
k =

2

π

n∑
i=1

π

n

(
B iπ

n
− 1

π

iπ

n
Bπ

)
sin
(
k
iπ

n

)
.

By the continuity of Bt, C
(n)
k converges almost surely to Ck. It is then necessary to

find the law of this limit. Since C
(n)
k can be written as a linear combination of the

coordinates of the vector X⃗ = (Bπ
n
, B 2π

n
, . . . , Bπ)

T , we know from part (a) above

that C
(n)
k follows a normal law N (0, σ2

n). That is, its characteristic function is given
by

ϕn(t) = E
(
eitC

(n)
k

)
= e−σ2

n
t2

2 , ∀ t ∈ R.

Since almost sure convergence implies convergence in law, the characteristic func-
tion of C

(n)
k must converge. Thus σn → σ and the limit Ck follows a normal law

N (0, σ2), where σ2 = 2
πk2

by part (a).
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(c) By part (b), we know that (Cj1 , . . . , Cjn), for any j1, . . . , jn ∈ N, is the limit of
a multivariate normal vector. Therefore, this vector is also multivariate normal.
Moreover, as shown in part (a), the Cji are uncorrelated, which implies their inde-
pendence. Furthermore, we check that

E(CkBπ) =

Å
2

π

ã2
E
Å∫ π

0

(
Bt −

t

π
Bπ

)
sin(kt) dt ·Bπ

ã
=

Å
2

π

ã2 ∫ π

0

ds sin(kt)E
(
(Bt −

t

π
Bπ)Bπ

)
= 0.

Thus, they are also independent of Bπ.

(d) Note that Bt − t
π
Bπ is a.s. a continuous function and the value of it at 0 and π are

both 0, we have that Bt − t
π
Bπ ∈ L2[0, π]. Thus, by the theory of Fourier series, we

know that Ck are simply its Fourier coefficients, which means that

Bt −
t

π
Bπ =

∞∑
k=1

Ck sin(kt). (1)

By (b) and (c), we can define Y0 := 1√
π
Bπ and Yk := k

√
π
2
Ck for k ⩾ 1 so that

(Yk)k∈N are i.i.d N(0, 1) random variables. And we will have that

Bt =
t√
π
Y0 +

…
2

π

∞∑
k=1

sin kt

k
Yk. (2)

This implies that (Xt) and (Bt) have the same law.
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