

Solution to Problem Set 12

May 13, 2025

Exercise 1.

(a) We observe that $\frac{b+B_t}{1+t} \geq a$ if and only if $B_t - at \geq a - b$, so that

$$\mathbb{P} \left\{ \sup_{t \geq 0} \frac{b+B_t}{1+t} \geq a \right\} = \mathbb{P} \left\{ \sup_{t \geq 0} (B_t - at) \geq a - b \right\}.$$

Since the process $(B_t - at, t \geq 0)$ is a Brownian motion with negative drift $(-a)$, this probability equals $e^{-2a(a-b)}$ by a result from the course.

(b) Let $(\widehat{B}_t, t \geq 0)$ be a Brownian motion and let $(B'_t, t \geq 0)$ and $(\widetilde{B}_t, t \geq 0)$ be standard Brownian motions. Define $B_t^* = B_{t-1}$ for all $t \geq 1$. Then $(B_t^*, t \geq 1)$ is a Brownian motion. Hence,

$$\begin{aligned} \mathbb{P} \left\{ \sup_{t \geq 0} \frac{b+B_t}{1+t} \geq a \right\} &= \mathbb{P} \left\{ \sup_{t \geq 0} \frac{\widehat{B}_t}{1+t} \geq a \mid \widehat{B}_0 = b \right\} \\ &= \mathbb{P} \left\{ \sup_{t \geq 0} \frac{B_{1+t}^*}{1+t} \geq a \mid B_1^* = b \right\} \\ &= \mathbb{P} \left\{ \sup_{t \geq 1} \frac{B'_t}{t} \geq a \mid B'_1 = b \right\}. \end{aligned}$$

Therefore, using the fact that $(tB'_{1/t}, t \geq 0)$ is a standard Brownian motion, it follows that

$$\begin{aligned} \mathbb{P} \left\{ \sup_{t \geq 1} \frac{B'_t}{t} \geq a \mid B'_1 = b \right\} &= \mathbb{P} \left\{ \sup_{t \geq 1} \widetilde{B}_{1/t} \geq a \mid \widetilde{B}_1 = b \right\} \\ &= \mathbb{P}_0 \left\{ \sup_{0 \leq t \leq 1} \widetilde{B}_t \geq a \mid \widetilde{B}_1 = b \right\}. \end{aligned}$$

Exercise 2.

Let $\widetilde{B}_t = tB_{\frac{1}{t}}$. Then $(\widetilde{B}_t, t \geq 0)$ is a standard Brownian motion (by setting, in addition, $\widetilde{B}_0 = 0$). Using a result from the course, we have

$$\mathbb{P}_0 \left\{ \bigcap_{n \in \mathbb{N}^*} \left\{ \exists t \in \left(0, \frac{1}{n}\right) : B_t = 0 \right\} \right\} = 1.$$

By letting $s = \frac{1}{t}$, this relation is equivalent to

$$\mathbb{P}_0 \left\{ \bigcap_{n \in \mathbb{N}^*} \left\{ \exists s \geq n : B_{1/s} = 0 \right\} \right\} = 1,$$

which is itself equivalent (renaming $s = t$) to

$$\mathbb{P}_0 \left\{ \bigcap_{n \in \mathbb{N}^*} \{\exists t \geq n : tB_{1/t} = 0\} \right\} = 1.$$

And by using the process $(\tilde{B}_t, t \geq 0)$, it follows that

$$\mathbb{P}_0 \left\{ \bigcap_{n \in \mathbb{N}^*} \{\exists t \geq n : \tilde{B}_t = 0\} \right\} = 1.$$

Exercise 3.

First, we will establish a result that will be needed later. We know that the sum of two independent Gaussians is Gaussian. A more general result tells us that any linear combination of a Gaussian vector is a Gaussian vector. The case of interest is the vector

$$\vec{X} = (B_{t_1}, B_{t_2}, \dots, B_{t_n})^T,$$

where $(B_t, t \geq 0)$ is a standard Brownian motion and $0 \leq t_1 < \dots < t_n < t$. We know from the course that the vector

$$\vec{Y} = (B_{t_1}, B_{t_2} - B_{t_1}, \dots, B_{t_n} - B_{t_{n-1}})^T$$

follows a law $\mathcal{N}_n(\vec{0}, AA^T)$, where

$$A = \begin{pmatrix} \sqrt{t_1} & & & 0 \\ & \sqrt{t_2 - t_1} & & \\ & & \ddots & \\ 0 & & & \sqrt{t_n - t_{n-1}} \end{pmatrix}.$$

Moreover, we can write $\vec{X} = S\vec{Y}$ with

$$S = \begin{pmatrix} 1 & & & 0 \\ 1 & 1 & & \\ \ddots & \ddots & \ddots & \\ 1 & & 1 & 1 \end{pmatrix}.$$

By setting $\Sigma = SA$, we find that \vec{X} follows a multivariate normal law $\mathcal{N}_n(\vec{0}, \Sigma\Sigma^T)$. One can check that the joint density of the $X_i = B_{t_i}$ given in the course is indeed

$$f_{\vec{X}}(x_1, \dots, x_n) = \left(\frac{1}{2\pi} \right)^{n/2} \frac{1}{|\det \Sigma|} \exp \left\{ -\frac{1}{2} \vec{x}^T (\Sigma\Sigma^T)^{-1} \vec{x} \right\}.$$

Thus, any linear combination of the coordinates of \vec{X} will follow a multivariate Gaussian law. We will use this in part (b).

We now return to the exercise at hand.

(a) Using Fubini's theorem, we find that

$$\begin{aligned}
\mathbb{E}(C_k) &= \frac{2}{\pi} \mathbb{E} \left(\int_0^\pi \left(B_t - \frac{t}{\pi} B_\pi \right) \sin(kt) dt \right) = \frac{2}{\pi} \int_0^\pi \mathbb{E} \left(B_t - \frac{t}{\pi} B_\pi \right) \sin(kt) dt = 0, \\
\mathbb{E}(C_k C_l) &= \left(\frac{2}{\pi} \right)^2 \mathbb{E} \left(\int_0^\pi \left(B_t - \frac{t}{\pi} B_\pi \right) \sin(kt) dt \int_0^\pi \left(B_s - \frac{s}{\pi} B_\pi \right) \sin(ls) ds \right) \\
&= \left(\frac{2}{\pi} \right)^2 \int_0^\pi dt \int_0^\pi ds \sin(kt) \sin(ls) \mathbb{E} \left((B_t - \frac{t}{\pi} B_\pi)(B_s - \frac{s}{\pi} B_\pi) \right) \\
&= \left(\frac{2}{\pi} \right)^2 \int_0^\pi dt \int_0^\pi ds \sin(kt) \sin(ls) \left(s \wedge t \left(1 - \frac{s \vee t}{\pi} \right) \right) \\
&= \left(\frac{2}{\pi} \right)^2 \int_0^\pi dt \left(\int_0^t ds \sin(kt) \sin(ls) s \left(1 - \frac{t}{\pi} \right) + \int_t^\pi ds \sin(kt) \sin(ls) t \left(1 - \frac{s}{\pi} \right) \right) \\
&= \left(\frac{2}{\pi} \right)^2 \int_0^\pi dt \left((1 - \frac{t}{\pi}) \sin(kt) \left[\frac{\sin(ls)}{l^2} - \frac{\cos(ls)s}{l} \right]_0^t \right. \\
&\quad \left. + \sin(kt)t \left[-\frac{\cos(ls)(1 - \frac{s}{\pi})}{l} - \frac{\sin(ls)}{l^2\pi} \right]_t^\pi \right) \\
&= \left(\frac{2}{\pi} \right)^2 \int_0^\pi dt \left((1 - \frac{t}{\pi}) \sin(kt) \frac{\sin(lt)}{l^2} - (1 - \frac{t}{\pi}) \sin(kt) \frac{\cos(lt)t}{l} \right) \\
&\quad + \left(\frac{2}{\pi} \right)^2 \int_0^\pi dt \left(\sin(kt)t \frac{\cos(lt)(1 - \frac{t}{\pi})}{l} + \sin(kt)t \frac{\sin(lt)}{l^2\pi} \right) \\
&= \left(\frac{2}{\pi} \right)^2 \int_0^\pi \frac{1}{l^2} \sin(kt) \sin(lt) dt \\
&= \begin{cases} 0, & \text{if } k \neq l, \\ \frac{2}{\pi l^2}, & \text{if } k = l. \end{cases}
\end{aligned}$$

(b) To determine the law of C_k , we write the integral as a Riemann sum. Define

$$C_k^{(n)} = \frac{2}{\pi} \sum_{i=1}^n \frac{\pi}{n} \left(B_{\frac{i\pi}{n}} - \frac{1}{\pi} \frac{i\pi}{n} B_\pi \right) \sin \left(k \frac{i\pi}{n} \right).$$

By the continuity of B_t , $C_k^{(n)}$ converges almost surely to C_k . It is then necessary to find the law of this limit. Since $C_k^{(n)}$ can be written as a linear combination of the coordinates of the vector $\vec{X} = (B_{\frac{\pi}{n}}, B_{\frac{2\pi}{n}}, \dots, B_\pi)^T$, we know from part (a) above that $C_k^{(n)}$ follows a normal law $\mathcal{N}(0, \sigma_n^2)$. That is, its characteristic function is given by

$$\phi_n(t) = \mathbb{E} \left(e^{itC_k^{(n)}} \right) = e^{-\sigma_n^2 \frac{t^2}{2}}, \quad \forall t \in \mathbb{R}.$$

Since almost sure convergence implies convergence in law, the characteristic function of $C_k^{(n)}$ must converge. Thus $\sigma_n \rightarrow \sigma$ and the limit C_k follows a normal law $\mathcal{N}(0, \sigma^2)$, where $\sigma^2 = \frac{2}{\pi k^2}$ by part (a).

(c) By part (b), we know that $(C_{j_1}, \dots, C_{j_n})$, for any $j_1, \dots, j_n \in \mathbb{N}$, is the limit of a multivariate normal vector. Therefore, this vector is also multivariate normal. Moreover, as shown in part (a), the C_{j_i} are uncorrelated, which implies their independence. Furthermore, we check that

$$\begin{aligned}\mathbb{E}(C_k B_\pi) &= \left(\frac{2}{\pi}\right)^2 \mathbb{E}\left(\int_0^\pi \left(B_t - \frac{t}{\pi} B_\pi\right) \sin(kt) dt \cdot B_\pi\right) \\ &= \left(\frac{2}{\pi}\right)^2 \int_0^\pi ds \sin(kt) \mathbb{E}\left((B_t - \frac{t}{\pi} B_\pi) B_\pi\right) \\ &= 0.\end{aligned}$$

Thus, they are also independent of B_π .

(d) Note that $B_t - \frac{t}{\pi} B_\pi$ is a.s. a continuous function and the value of it at 0 and π are both 0, we have that $B_t - \frac{t}{\pi} B_\pi \in L^2[0, \pi]$. Thus, by the theory of Fourier series, we know that C_k are simply its Fourier coefficients, which means that

$$B_t - \frac{t}{\pi} B_\pi = \sum_{k=1}^{\infty} C_k \sin(kt). \quad (1)$$

By (b) and (c), we can define $Y_0 := \frac{1}{\sqrt{\pi}} B_\pi$ and $Y_k := k \sqrt{\frac{\pi}{2}} C_k$ for $k \geq 1$ so that $(Y_k)_{k \in \mathbb{N}}$ are i.i.d $N(0, 1)$ random variables. And we will have that

$$B_t = \frac{t}{\sqrt{\pi}} Y_0 + \sqrt{\frac{2}{\pi}} \sum_{k=1}^{\infty} \frac{\sin kt}{k} Y_k. \quad (2)$$

This implies that (X_t) and (B_t) have the same law.