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Solution to Problem Set 11 May 6, 2025

Exercise 1.

The idea is the same as in Exercise 3 of Problem Set 10. Since Brownian motion is a
time-homogeneous Markov process, we can write
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Using a second order Taylor expansion in the neighborhood of By = Zy = x, there
exists a random variable 6 € (0, 1) such that
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One can show, in the same manner as in Exercise 3 of Problem Set 10, that the last term
on the right-hand side of (1) tends to 0 as h — 0. Taking the limit as  tends to 0 in the
first two terms of (1), we obtain the desired result.

Exercise 2.

(a) It was shown in class that P{M, > m, B, < x} = P{B, > 2m — x}. Thus,
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(c)

or, more explicitly,

2m —x 2 exp (_(2m—:c)2> .
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It suffices to perform the change of variables (z,y) +— (z,z — y), with Jacobian
matrix
1 0
=1 %)

fMt,Mt—Bt(ma y) = fMtth (m’ m — y)’

with |det J| = 1, to obtain

or more explicitly,
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We use the joint density computed in (a) to find the marginal law. In particular,
using relation (2), we have
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Note that this is indeed a density, since the function is positive and f(foo 2p(y,t) dy =
1.

It suffices to use the answers from (a) and (b) to obtain
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Exercise 3.

Let Y be a random variable independent of B = (B;)¢c[o,1) and it has a uniform distribution
on [0,1]. Then (W})scp,1 defined as

W, =B, +6(t—Y) Vtelo1] (3)
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satisfies the desired property. Indeed, since P[o(t —Y) = 0] = P[Y # t] = 1 for any
t € [0,1] (the same holds for at most countably many points simultaneously), the marginal
laws of W and B coincide. It is also clear that ¢t — (¢ —Y") is almost surely discontinuous,
and so is the process W.

Exercise 4.

Let [a, b] be an arbitrary non-degenerate interval. If it is an interval of monotonicity, then
for any a = t; <ty < ... < t,41 = b, all the increments (Btk+1 — By,)}_; have to have
the same sign. But by definition of the BM, these increments are independent, hence
this event has probability 2 x 27". By sending n to oo, we see that the probability of
B being monotone on [a, b] is zero. (One can also see this from the reflection principle.)
Since the union of countable zero sets is again a zero set, we can conclude the same result
simultaneously for countably many intervals. In particular,

]P’[ U {t € [a,b] — By is monotone}} = 0. (4)

0<a<beQ

But by density of Q in R, every non-degenerate interval will contain a non-degenerate
interval with rational points. Therefore,

IP’[ U {t € [a,b] — By is monotone}] =0 (5)

0<a<beR

Exercise 5.

Recall that in the proof of Exercise 4 Sheet 10, we showed that a.s, sup, By = +00. The
same argument applied to (—B;); implies that inf, B, = —oo almost surely. This and the
continuity of BM directly imply that both 1", ; and 7T, are almost surely finite.

3 R. Dalang



