

Solution to Problem Set 11

May 6, 2025

Exercise 1.

The idea is the same as in Exercise 3 of Problem Set 10. Since Brownian motion is a time-homogeneous Markov process, we can write

$$\begin{aligned} \frac{\mathbb{E}[f(Z_{t+h}) - f(x) \mid Z_t = x]}{h} &= \frac{\mathbb{E}[f(Z_h) - f(x) \mid Z_0 = x]}{h} \\ &= \frac{\mathbb{E}[f(B_h + \mu h + x) - f(x)]}{h}. \end{aligned}$$

Using a second order Taylor expansion in the neighborhood of $B_0 = Z_0 = x$, there exists a random variable $\theta \in (0, 1)$ such that

$$\begin{aligned} &\frac{\mathbb{E}[f(Z_{t+h}) - f(x) \mid Z_t = x]}{h} \\ &= \mathbb{E} \left[f'(x) \frac{B_h + \mu h}{h} + f''(x + \theta(B_h + \mu h)) \frac{(B_h + \mu h)^2}{2h} \right] \\ &= \mu f'(x) + \frac{f''(x)}{2} \frac{1}{h} \mathbb{E}[B_h^2 + 2\mu B_h + \mu^2 h^2] \\ &\quad + \mathbb{E} \left[\left(f''(x + \theta(B_h + \mu h)) - f''(x) \right) \frac{(B_h + \mu h)^2}{2h} \right] \\ &= \mu f'(x) + \frac{f''(x)}{2} (1 + \mu^2 h) \\ &\quad + \mathbb{E} \left[\left(f''(x + \theta(B_h + \mu h)) - f''(x) \right) \frac{(B_h + \mu h)^2}{2h} \right]. \end{aligned} \tag{1}$$

One can show, in the same manner as in Exercise 3 of Problem Set 10, that the last term on the right-hand side of (1) tends to 0 as $h \rightarrow 0$. Taking the limit as h tends to 0 in the first two terms of (1), we obtain the desired result.

Exercise 2.

(a) It was shown in class that $\mathbb{P}\{M_t \geq m, B_t \leq x\} = \mathbb{P}\{B_t \geq 2m - x\}$. Thus,

$$\begin{aligned} f_{M_t, B_t}(m, x) &= -\frac{\partial}{\partial m} \frac{\partial}{\partial x} \left(1 - \int_{-\infty}^{2m-x} p(y, t) dy \right) \\ &= -\frac{\partial}{\partial m} p(2m - x, t), \\ &= -2 \frac{\partial p(2m - x, t)}{\partial u}, \end{aligned} \tag{2}$$

or, more explicitly,

$$f_{M_t, B_t}(m, x) = \frac{2m-x}{t} \frac{2}{\sqrt{2\pi t}} \exp\left(-\frac{(2m-x)^2}{2t}\right).$$

It suffices to perform the change of variables $(x, y) \mapsto (x, x - y)$, with Jacobian matrix

$$J = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix},$$

with $|\det J| = 1$, to obtain

$$f_{M_t, M_t - B_t}(m, y) = f_{M_t, B_t}(m, m - y),$$

or more explicitly,

$$f_{M_t, M_t - B_t}(m, y) = \frac{m+y}{t} \frac{2}{\sqrt{2\pi t}} \exp\left(-\frac{(m+y)^2}{2t}\right).$$

(b) We use the joint density computed in (a) to find the marginal law. In particular, using relation (2), we have

$$\begin{aligned} f_{M_t - B_t}(y) &= \int_0^{+\infty} f_{M_t, M_t - B_t}(m, y) dm \\ &= \int_0^{+\infty} -2 \frac{\partial}{\partial u} p(m+y, t) dm \\ &= 2p(y, t). \end{aligned}$$

Note that this is indeed a density, since the function is positive and $\int_0^{+\infty} 2p(y, t) dy = 1$.

(c) It suffices to use the answers from (a) and (b) to obtain

$$\begin{aligned} \mathbb{P}\{M_t > \xi \mid B_t = M_t\} &= \int_{\xi}^{+\infty} f_{M_t \mid B_t = M_t}(y) dy \\ &= \int_{\xi}^{+\infty} \frac{f_{M_t, M_t - B_t}(y, 0)}{f_{M_t - B_t}(0)} dy \\ &= \int_{\xi}^{+\infty} -\frac{2 \frac{\partial p(y, t)}{\partial u}}{2p(0, t)} dy \\ &= \frac{p(\xi, t)}{p(0, t)} \\ &= \exp\left(-\frac{\xi^2}{2t}\right). \end{aligned}$$

Exercise 3.

Let Y be a random variable independent of $B = (B_t)_{t \in [0,1]}$ and it has a uniform distribution on $[0, 1]$. Then $(W_t)_{t \in [0,1]}$ defined as

$$W_t := B_t + \delta(t - Y) \quad \forall t \in [0, 1] \tag{3}$$

satisfies the desired property. Indeed, since $\mathbb{P}[\delta(t - Y) = 0] = \mathbb{P}[Y \neq t] = 1$ for any $t \in [0, 1]$ (the same holds for at most countably many points simultaneously), the marginal laws of W and B coincide. It is also clear that $t \mapsto \delta(t - Y)$ is almost surely discontinuous, and so is the process W .

Exercise 4.

Let $[a, b]$ be an arbitrary non-degenerate interval. If it is an interval of monotonicity, then for any $a = t_1 \leq t_2 \leq \dots \leq t_{n+1} = b$, all the increments $(B_{t_{k+1}} - B_{t_k})_{k=1}^n$ have to have the same sign. But by definition of the BM, these increments are independent, hence this event has probability $2 * 2^{-n}$. By sending n to ∞ , we see that the probability of B being monotone on $[a, b]$ is zero. (One can also see this from the reflection principle.) Since the union of countable zero sets is again a zero set, we can conclude the same result simultaneously for countably many intervals. In particular,

$$\mathbb{P}\left[\bigcup_{0 < a < b \in \mathbb{Q}} \{t \in [a, b] \mapsto B_t \text{ is monotone}\}\right] = 0. \quad (4)$$

But by density of \mathbb{Q} in \mathbb{R} , every non-degenerate interval will contain a non-degenerate interval with rational points. Therefore,

$$\mathbb{P}\left[\bigcup_{0 < a < b \in \mathbb{R}} \{t \in [a, b] \mapsto B_t \text{ is monotone}\}\right] = 0 \quad (5)$$

Exercise 5.

Recall that in the proof of Exercise 4 Sheet 10, we showed that a.s, $\sup_t B_t = +\infty$. The same argument applied to $(-B_t)_t$ implies that $\inf_t B_t = -\infty$ almost surely. This and the continuity of BM directly imply that both $T_{-a,b}$ and T_a are almost surely finite.