

Solution to Problem Set 10

April 29, 2025

Exercise 1.

The reflected Brownian motion is nothing other than the process $W_t = |B_t|$, where (B_t) is a standard Brownian motion. The computation of the expectation is straightforward. We have, since the integrand is an even function,

$$\begin{aligned}\mathbb{E}[W_t] &= \int_{-\infty}^{+\infty} |x| p(x, t) dx \\ &= 2 \int_0^{+\infty} x \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{x^2}{2t}\right) dx \\ &= \sqrt{\frac{2}{\pi t}} \left[-t \exp\left(-\frac{x^2}{2t}\right) \right]_0^{+\infty} \\ &= \sqrt{\frac{2t}{\pi}}.\end{aligned}$$

The computation of the variance is done via the formula $\text{Var}(W_t) = \mathbb{E}[W_t^2] - (\mathbb{E}[W_t])^2$. Thus,

$$\begin{aligned}\mathbb{E}[W_t^2] &= \mathbb{E}[|B_t|^2] \\ &= t.\end{aligned}$$

We deduce that the variance of W_t is $t - \frac{2t}{\pi}$.

Exercise 2.

Before finding the conditional density, we will first determine the joint density of the variables $X_t = \min_{0 \leq u \leq t} B_u$ and B_t . Note that for $c < a \wedge b$,

$$\begin{aligned}\mathbb{P}\{B_u \neq c \text{ for } 0 \leq u \leq t, B_t > b \mid B_0 = a\} &= \mathbb{P}_a\{X_t > c, B_t > b\} \\ &= \mathbb{P}_a\{B_t > b\} - \mathbb{P}_a\{X_t \leq c, B_t > b\}.\end{aligned}$$

Using the reflection principle with respect to the level c , the second term becomes

$$\mathbb{P}_a\{X_t \leq c, B_t > b\} = \mathbb{P}_a\{B_t < -b + 2c\}.$$

By a translation property of B_t and the fact that for a standard Brownian motion, $(-B_t)$

and (B_t) have the same law, we obtain that for $c < a \wedge b$,

$$\begin{aligned}
& \mathbb{P}\{B_u \neq c \text{ for } 0 \leq u \leq t, B_t > b \mid B_0 = a\} \\
&= \mathbb{P}_a\{B_t > b\} - \mathbb{P}_a\{B_t < -b + 2c\} \\
&= \mathbb{P}_0\{B_t > b - a\} - \mathbb{P}_0\{B_t < -a - b + 2c\} \\
&= \mathbb{P}_0\{B_t > b - a\} - \mathbb{P}_0\{B_t \geq a + b - 2c\} \\
&= \int_{b-a}^{a+b-2c} p(u, t) du.
\end{aligned}$$

Since the joint density (of X_t and B_t) is given by

$$f_{X_t, B_t}^a(c, b) = \frac{\partial}{\partial b} \frac{\partial}{\partial c} \mathbb{P}_a\{X_t > c, B_t > b\},$$

we find

$$\begin{aligned}
f_{X_t, B_t}^a(c, b) &= \frac{\partial}{\partial b} \frac{\partial}{\partial c} \int_{b-a}^{a+b-2c} p(u, t) du \\
&= -2 \frac{\partial}{\partial b} p(a + b - 2c, t).
\end{aligned}$$

Thus,

$$\begin{aligned}
f_{X_t \mid B_t = b}^a(c) &= \frac{f_{X_t, B_t}^a(c, b)}{f_{B_t}^a(b)} \\
&= \frac{-2 \frac{\partial}{\partial b} p(a + b - 2c, t)}{p(b - a, t)},
\end{aligned}$$

and therefore

$$\begin{aligned}
\mathbb{P}_a\{X_t > 0 \mid B_t = b\} &= \int_0^{b \wedge a} \frac{-2 \frac{\partial}{\partial b} p(a + b - 2c, t)}{p(b - a, t)} dc \\
&= \frac{[p(a + b - 2c, t)]_{c=0}^{c=b \wedge a}}{p(a - b, t)} \\
&= 1 - \frac{p(a + b, t)}{p(a - b, t)} \\
&= 1 - e^{-\frac{2ab}{t}}.
\end{aligned}$$

Exercise 3.

We begin by noting that by the Markov property of Brownian motion, we have

$$\begin{aligned}
\mathbb{E}[f(B_{t+h}) \mid B_t = x] &= \mathbb{E}[f(B_h) \mid B_0 = x] \\
&= \mathbb{E}[f(x + B_h) \mid B_0 = 0] \\
&= \mathbb{E}_0[f(x + B_h)].
\end{aligned}$$

Thus, by performing a Taylor expansion at the point x , there exists a random variable

$$\theta \in]0, 1[,$$

such that

$$\begin{aligned}
& \frac{1}{h} \left(\mathbb{E}[f(B_{t+h}) \mid B_t = x] - f(x) \right) \\
&= \frac{1}{h} \mathbb{E}[f(x + B_h) - f(x)] \\
&= \frac{1}{h} \mathbb{E} \left[f(x) + B_h f'(x) + \frac{B_h^2}{2} f''(x + \theta B_h) - f(x) \right] \\
&= \frac{1}{h} f'(x) \mathbb{E}[B_h] + \mathbb{E} \left[\frac{\frac{B_h^2}{2} f''(x + \theta B_h)}{h} \right] \\
&= 0 + \mathbb{E} \left[\frac{\frac{B_h^2}{2} f''(x + \theta B_h)}{h} \right] \\
&= \mathbb{E} \left[\frac{B_h^2}{h} \frac{f''(x)}{2} + \mathbb{E} \left[\frac{B_h^2}{2h} (f''(x + \theta B_h) - f''(x)) \right] \right] \\
&= \frac{f''(x)}{2} + \mathbb{E} \left[\frac{B_h^2}{2h} (f''(x + \theta B_h) - f''(x)) \right]. \tag{1}
\end{aligned}$$

We must therefore show that

$$\lim_{h \downarrow 0} \mathbb{E} \left[\frac{B_h^2}{2h} (f''(x + \theta B_h) - f''(x)) \right] = 0.$$

Note that by the scaling invariance, we have

$$\begin{aligned}
\mathbb{E} \left[\frac{B_h^2}{2h} \left| f''(x + \theta B_h) - f''(x) \right| \right] &\leq \mathbb{E} \left[\frac{B_h^2}{2h} \sup_{\eta \in]0, 1[} \left| f''(x + \eta B_h) - f''(x) \right| \right] \\
&= \mathbb{E} \left[\frac{B_1^2}{2} \sup_{\eta \in]0, 1[} \left| f''(x + \sqrt{h} \eta B_1) - f''(x) \right| \right].
\end{aligned}$$

Since $x \mapsto f''(x)$ is bounded, there exists a constant C such that

$$\frac{B_1^2}{2} \sup_{\eta \in]0, 1[} \left| f''(x + \sqrt{h} \eta B_1) - f''(x) \right| \leq C B_1^2,$$

with $\mathbb{E}[C B_1^2] = C < \infty$. Moreover, since $x \mapsto f''(x)$ is continuous,

$$\lim_{h \rightarrow 0} \frac{B_1^2}{2} \sup_{\eta \in]0, 1[} \left| f''(x + \sqrt{h} \eta B_1) - f''(x) \right| = 0 \quad \text{a.s.}$$

By the Dominated Convergence Theorem, we obtain the desired result.

Exercise 4.

Note that by the scaling invariance, for any $h > 1$ and $x > 0$, we have

$$\mathbb{P}[\sup_{t \in \mathbb{R}^+} B_t > x] = \mathbb{P}[\sup_{t \in \mathbb{R}^+} B_{ht} > \sqrt{h}x] = \mathbb{P}[\sup_{ht \in \mathbb{R}^+} B_{ht} > \sqrt{h}x] = \mathbb{P}[\sup_{t \in \mathbb{R}^+} B_t > \sqrt{h}x].$$

Thus for any $0 < x < y < \infty$, we have $\mathbb{P}[x < \sup_{t \in \mathbb{R}^+} B_t < y] = 0$, which implies that $\mathbb{P}[\sup_{t \in \mathbb{R}^+} B_t = \infty] = \mathbb{P}[\sup_{t \in \mathbb{R}^+} B_t > 0]$.

On the other hand, we have seen in class that $\mathbb{P}[\sup_{t \in [0,1]} B_t > 0] = 2\mathbb{P}[B_1 > 0] = 1$. Since $\sup_{t \in \mathbb{R}^+} B_t > \sup_{t \in (0,1]} B_t$ almost surely, we conclude that $\mathbb{P}[\sup_{t \in \mathbb{R}^+} B_t = \infty] = \mathbb{P}[\sup_{t \in \mathbb{R}^+} B_t > 0] = 1$. By symmetry we also have $\mathbb{P}[\inf_{t \in \mathbb{R}^+} B_t = -\infty] = 1$.

Exercise 5.

(a) First, we compute

$$\mathbb{E} \left[\sum_n \frac{|Y_n|}{n^2} \right] = \sum_n \frac{1}{n^2} \mathbb{E}[|Y_n|] \leq \sum_n \frac{1}{n^2} < \infty,$$

where we used the fact that $\mathbb{E}[|Y_n|] \leq 1$.

Thus, the random variable $\sum_n \frac{|Y_n|}{n^2}$ is almost surely finite, and so, for $N > M \in \mathbb{N}$, we have

$$\|X^N - X^M\|_\infty \leq \sum_{n=M+1}^N \frac{1}{n^2} |Y_n| \|\sin(n\pi \cdot)\|_\infty = \sum_{n=M+1}^N \frac{|Y_n|}{n^2} \xrightarrow{N, M \rightarrow \infty} 0.$$

Therefore, $(X^N)_N$ is almost surely a Cauchy sequence in $\mathcal{C}[0, 1]$, and we conclude that it converges to a limit denoted by X .

(b) Recall that the limit of a uniformly convergent sequence of continuous functions is again a continuous function. Therefore, the result proved above shows that $(X_t)_{t \in [0,1]}$ is almost surely continuous. The expectation of $X(t)$ is, of course, zero (by Fubini's theorem), and its variance satisfies

$$\mathbb{E}[X(t)^2] = \sum_{n,m} \frac{1}{n^2 m^2} \sin(n\pi t) \sin(m\pi t) \mathbb{E}[Y_n Y_m] = \sum_n \frac{1}{n^4} \sin^2(n\pi t).$$

The same argument as above gives

$$\mathbb{E}[X(t)X(s)] = \sum_{n,m} \frac{1}{n^2 m^2} \sin(n\pi t) \sin(m\pi s) \mathbb{E}[Y_n Y_m] = \sum_n \frac{1}{n^4} \sin(n\pi t) \sin(n\pi s).$$

Thus we have the covariance structure $(C(s, t))_{s,t \in [0,1]} = \left(\sum_n \frac{1}{n^4} \sin(n\pi t) \sin(n\pi s) \right)_{s,t}$.