
EPFL - SMA MARTINGALES AND APPLICATIONS
Prof. R. Dalang SPRING 2025

Solution to Problem Set 10 April 29, 2025

Exercise 1.

The reflected Brownian motion is nothing other than the process Wt = |Bt|, where (Bt)
is a standard Brownian motion. The computation of the expectation is straightforward.
We have, since the integrand is an even function,

E[Wt] =

∫ +∞

−∞
|x| p(x, t) dx

= 2

∫ +∞

0

x
1√
2πt

exp

Å
−x2

2t

ã
dx

=

…
2

πt

ï
−t exp

Å
−x2

2t

ãò+∞

0

=

…
2t

π
.

The computation of the variance is done via the formula Var(Wt) = E[W 2
t ] −

(
E[Wt]

)2
.

Thus,

E[W 2
t ] = E[|Bt|2]

= t.

We deduce that the variance of Wt is t− 2t
π
.

Exercise 2.

Before finding the conditional density, we will first determine the joint density of the
variables Xt = min0≤u≤tBu and Bt. Note that for c < a ∧ b,

P{Bu ̸= c for 0 ≤ u ≤ t, Bt > b | B0 = a}
= Pa{Xt > c, Bt > b}
= Pa{Bt > b} − Pa{Xt ≤ c, Bt > b}.

Using the reflection principle with respect to the level c, the second term becomes

Pa{Xt ≤ c, Bt > b} = Pa{Bt < −b+ 2c}.

By a translation property of Bt and the fact that for a standard Brownian motion, (−Bt)
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and (Bt) have the same law, we obtain that for c < a ∧ b,

P{Bu ̸= c for 0 ≤ u ≤ t, Bt > b | B0 = a}
= Pa{Bt > b} − Pa{Bt < −b+ 2c}
= P0{Bt > b− a} − P0{Bt < −a− b+ 2c}
= P0{Bt > b− a} − P0{Bt ≥ a+ b− 2c}

=

∫ a+b−2c

b−a

p(u, t) du.

Since the joint density (of Xt and Bt) is given by

fa
Xt,Bt

(c, b) =
∂

∂b

∂

∂c
Pa{Xt > c, Bt > b},

we find

fa
Xt,Bt

(c, b) =
∂

∂b

∂

∂c

∫ a+b−2c

b−a

p(u, t) du

= −2
∂

∂b
p(a+ b− 2c, t).

Thus,

fa
Xt|Bt=b(c) =

fa
Xt,Bt

(c, b)

fa
Bt
(b)

=
−2 ∂

∂b
p(a+ b− 2c, t)

p(b− a, t)
,

and therefore

Pa{Xt > 0 | Bt = b} =

∫ b∧a

0

−2 ∂
∂b
p(a+ b− 2c, t)

p(b− a, t)
dc

=
[ p(a+ b− 2c, t) ]c=b∧a

c=0

p(a− b, t)

= 1− p(a+ b, t)

p(a− b, t)

= 1− e−
2ab
t .

Exercise 3.

We begin by noting that by the Markov property of Brownian motion, we have

E
[
f(Bt+h) | Bt = x

]
= E

[
f(Bh) | B0 = x

]
= E

[
f(x+Bh) | B0 = 0

]
= E0

[
f(x+Bh)

]
.
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Thus, by performing a Taylor expansion at the point x, there exists a random variable

θ ∈ ]0, 1[,

such that

1

h

(
E
[
f(Bt+h) | Bt = x

]
− f(x)

)
=

1

h
E
[
f(x+Bh)− f(x)

]
=

1

h
E
[
f(x) +Bhf

′(x) +
B2

h

2
f ′′(x+ θBh)− f(x)

]
=

1

h
f ′(x)E[Bh] + E

[ B2
h

2
f ′′(x+ θBh)

h

]
= 0 + E

[ B2
h

2
f ′′(x+ θBh)

h

]
= E

[B2
h

h

]f ′′(x)

2
+ E

[B2
h

2h

(
f ′′(x+ θBh)− f ′′(x)

)]
=

f ′′(x)

2
+ E

[B2
h

2h

(
f ′′(x+ θBh)− f ′′(x)

)]
. (1)

We must therefore show that

lim
h↓0

E
[B2

h

2h

(
f ′′(x+ θBh)− f ′′(x)

)]
= 0.

Note that by the scaling invariance, we have

E
[B2

h

2h

∣∣∣f ′′(x+ θBh)− f ′′(x)
∣∣∣] ≤ E

[B2
h

2h
sup

η∈ ]0,1[

∣∣∣f ′′(x+ ηBh)− f ′′(x)
∣∣∣]

= E
[B2

1

2
sup

η∈ ]0,1[

∣∣∣f ′′(x+
√
h ηB1)− f ′′(x)

∣∣∣].
Since x 7→ f ′′(x) is bounded, there exists a constant C such that

B2
1

2
sup

η∈ ]0,1[

∣∣∣f ′′(x+
√
h ηB1)− f ′′(x)

∣∣∣ ≤ C B2
1 ,

with E[C B2
1 ] = C < ∞. Moreover, since x 7→ f ′′(x) is continuous,

lim
h→0

B2
1

2
sup

η∈ ]0,1[

∣∣∣f ′′(x+
√
h ηB1)− f ′′(x)

∣∣∣ = 0 a.s.

By the Dominated Convergence Theorem, we obtain the desired result.

Exercise 4.

Note that by the scaling invariance, for any h > 1 and x > 0, we have

P[ sup
t∈R+

Bt > x] = P[ sup
t∈R+

Bht >
√
hx] = P[ sup

ht∈R+

Bht >
√
hx] = P[ sup

t∈R+

Bt >
√
hx].
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Thus for any 0 < x < y < ∞, we have P[x < supt∈R+ Bt < y] = 0, which implies that
P[supt∈R+ Bt = ∞] = P[supt∈R+ Bt > 0].

On the other hand, we have seen in class that P[supt∈[0,1]Bt > 0] = 2P[B1 > 0] = 1.
Since supt∈R+ Bt > supt∈(0,1]Bt almost surely, we conclude that P[supt∈R+ Bt = ∞] =
P[supt∈R+ Bt > 0] = 1. By symmetry we also have P[inft∈R+ Bt = −∞] = 1

Exercise 5.

(a) First, we compute

E

[∑
n

|Yn|
n2

]
=

∑
n

1

n2
E[|Yn|] ⩽

∑
n

1

n2
< ∞,

where we used the fact that E[|Yn|] ⩽ 1.

Thus, the random variable
∑

n
|Yn|
n2 is almost surely finite, and so, for N > M ∈ N,

we have

∥XN −XM∥∞ ⩽
N∑

n=M+1

1

n2
|Yn|∥ sin(nπ·)∥∞ =

N∑
n=M+1

|Yn|
n2

N,M 7→∞−→ 0.

Therefore, (XN)N is almost surely a Cauchy sequence in C[0, 1], and we conclude
that it converges to a limit denoted by X.

(b) Recall that the limit of a uniformly convergent sequence of continuous functions is
again a continuous function. Therefore, the result proved above shows that (Xt)t∈[0,1]
is almost surely continuous. The expectation of X(t) is, of course, zero (by Fubini’s
theorem), and its variance satisfies

E[X(t)2] =
∑
n,m

1

n2m2
sin(nπt) sin(mπt)E[YnYm] =

∑
n

1

n4
sin2(nπt).

The same argument as above gives

E[X(t)X(s)] =
∑
n,m

1

n2m2
sin(nπt) sin(mπs)E[YnYm] =

∑
n

1

n4
sin(nπt) sin(nπs).

Thus we have the covariance structure (C(s, t))s,t∈[0,1] =
(∑

n

1

n4
sin(nπt) sin(nπs)

)
s,t
.
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