

---

**Series 6**

March 25, 2025

---

**Exercise 1.**

Let  $(X_n, n \in \mathbb{N}^*)$  be a sequence of independent random variables whose distributions are defined by

$$\mathbb{P}\{X_n = 1\} = \frac{1}{n} \quad \text{and} \quad \mathbb{P}\{X_n = 0\} = 1 - \frac{1}{n}.$$

Show that  $X_n$  converges to 0 in probability, but that  $X_n$  does not converge almost surely.

**Exercise 2.**

Let  $(S_n)$  be a martingale (with respect to  $(X_n)$ ) such that

$$\mathbb{E}[|S_n|^p] < +\infty,$$

for every  $n \in \mathbb{N}$ , where  $p > 1$ . Show that

$$\mathbb{E} \left[ \max_{0 \leq k \leq n} |S_k|^p \right] \leq \left( \frac{p}{p-1} \right)^p \mathbb{E}[|S_n|^p].$$

*Supplementary Exercise*

**Exercise 3. Summability of sequences with random signs**

Let  $(a_n)_n$  be a sequence of real numbers. Let  $(X_n, n \geq 1)$  be i.i.d. Bernoulli random variables on  $(\Omega, \mathcal{F}, \mathbb{P})$ , that is,  $\mathbb{P}\{X_n = 1\} = \mathbb{P}\{X_n = -1\} = 1/2$ . Prove that

$$\sum_{n=1}^{\infty} a_n X_n \text{ converges in } L^2(\Omega) \iff \sum_{n=1}^{\infty} a_n^2 < \infty.$$