

Problem Set 2

February 25, 2025

Exercise 1.

Let $(X_n, n \geq 1)$ be an i.i.d. sequence of random variables (discrete or continuous) such that $\mathbb{E}(|X_1|) < +\infty$, and let $N \in \mathbb{N}$ be fixed. Define $Z_n = X_1 + \dots + X_n$, $Y_n = \frac{1}{n}Z_n$, $R_n = Z_{N-n}$, and $S_n = Y_{N-n}$ for $n \in \{0, \dots, N-1\}$. Show that (S_n) is a martingale relative to (R_n) .

Exercise 2.

A box contains red and green balls. At each step, a ball is drawn at random, then returned to the box along with another ball of the same color. Initially, the box contains one red ball and one green ball. Let R_n be the number of red balls in the box after n steps. Show that

$$\left(S_n = \frac{R_n}{n+2} \right)$$

is a martingale relative to (R_n) .

Exercise 3.

Let Z be a random variable uniformly distributed over $[0, 1]$. For $n \geq 1$ and $k \in \{0, \dots, 2^n\}$, define $X_n = k2^{-n}$ if $k2^{-n} \leq Z < (k+1)2^{-n}$. Let $f : [0, 1] \rightarrow \mathbb{R}$ be a bounded function and $Y_n = 2^n(f(X_n + 2^{-n}) - f(X_n))$. Show that (Y_n) is a martingale relative to (X_n) .

Supplementary Exercise

Exercise 4.

Let $(X_n, n \geq 1)$ and $(Y_n, n \geq 1)$ be a sub- and supermartingale, respectively, relative to (Z_n) . Prove the following statements.

1. If the sequence $(\mathbb{E}[X_n])$ is constant, then (X_n) is a martingale. Establish the same conclusion for (Y_n) .
2. For any $a \in \mathbb{R}$, show that:
 - a) $(\max(a, X_n))$ is a submartingale (relative to (Z_n));
 - b) $(\min(a, Y_n))$ is a supermartingale (relative to (Z_n)).
- (c) Assume that all the X_n have the same law. Show that (X_n) is a martingale (which is called **equidistributed**). [Note. It is possible to show that in fact, $X_1 = X_2 = \dots$]