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Exercise 1.

Let (Bt, t ⩾ 0) be a standard Brownian motion.

(a) Given a > 0 and b < a, show that
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= e−2a(a−b).

(b) Show that the left-hand side (and hence the right-hand side as well) is equal to
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.

Exercise 2.

Let (Bt, t ⩾ 0) be a standard Brownian motion. Show that
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{∃ t ⩾ n : Bt = 0}

}
= 1.

Exercise 3.

Let (Bt, t ⩾ 0) be a standard Brownian motion. For k ∈ N∗, define
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∫ π
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sin(kt) dt.

(a) Compute E(Ck) and E(CkCℓ) for k, ℓ ∈ N.

(b) Determine the distribution of Ck for k ∈ N.

(c) Are the random variables (Ck, k ∈ N) independent? Are they independent of Bπ?

(d) Let (Zk, k ∈ N) be i.i.d. N(0, 1) random variables. Define
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…
2
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k
Zk.

Show that (Xt) and (Bt) have the same law. (In particular, (Xt) is a Brownian
motion. This formula is the Paley-Wiener representation of Brownian motion.)
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