

Problem Set 12

May 13, 2025

Exercise 1.

Let $(B_t, t \geq 0)$ be a standard Brownian motion.

(a) Given $a > 0$ and $b < a$, show that

$$\mathbb{P} \left\{ \sup_{t \geq 0} \frac{b + B_t}{1 + t} \geq a \right\} = e^{-2a(a-b)}.$$

(b) Show that the left-hand side (and hence the right-hand side as well) is equal to

$$\mathbb{P}_0 \left\{ \sup_{0 \leq u \leq 1} B_u \geq a \mid B_1 = b \right\}.$$

Exercise 2.

Let $(B_t, t \geq 0)$ be a standard Brownian motion. Show that

$$\mathbb{P}_0 \left\{ \bigcap_{n \in \mathbb{N}} \{ \exists t \geq n : B_t = 0 \} \right\} = 1.$$

Exercise 3.

Let $(B_t, t \geq 0)$ be a standard Brownian motion. For $k \in \mathbb{N}^*$, define

$$C_k = \frac{2}{\pi} \int_0^\pi \left(B_t - \frac{t}{\pi} B_\pi \right) \sin(kt) dt.$$

(a) Compute $\mathbb{E}(C_k)$ and $\mathbb{E}(C_k C_\ell)$ for $k, \ell \in \mathbb{N}$.
 (b) Determine the distribution of C_k for $k \in \mathbb{N}$.
 (c) Are the random variables $(C_k, k \in \mathbb{N})$ independent? Are they independent of B_π ?
 (d) Let $(Z_k, k \in \mathbb{N})$ be i.i.d. $\mathcal{N}(0, 1)$ random variables. Define

$$X_t = \frac{t}{\sqrt{\pi}} Z_0 + \sqrt{\frac{2}{\pi}} \sum_{k=1}^{\infty} \frac{\sin kt}{k} Z_k.$$

Show that (X_t) and (B_t) have the same law. (In particular, (X_t) is a Brownian motion. This formula is the *Paley-Wiener representation* of Brownian motion.)