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Preface

Continuous optimization (also called nonlinear optimization or nonlinear pro-
gramming) is a branch of applied mathematics concerned withmodeling com-
putational problems in the form minx∈S f(x) where S is a continuous space,
and with designing, analyzing and implementing efficient algorithms to solve
such problems.

The present notes contain some of the material covered in MATH-329
– Continuous Optimization taught at EPFL during the Spring semesters of
2021 and 2022, and the Fall semesters of 2022–2024. They draw on the
reference book of the course, namely,

� J. Nocedal and S. Wright. Numerical optimization. Springer Series
in Operations Research and Financial Engineering. Springer Science &
Business Media, 2 edition, 2006,
https://link.springer.com/book/10.1007/978-0-387-40065-5.

These notes are meant to give a concise summary of all the concepts you
should become comfortable with to succeed in the course. The textbook
provides more context, examples, counter-examples, illustrations etc., which
we also explore during lectures and exercise sessions.

Other sources used quite often in preparing these lecture notes include:

� A.P. Ruszczyński. Nonlinear optimization. Princeton University Press,
Princeton, NJ, 2006,

� D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.

Special thanks to Quentin Rebjock and Axel Séguin who were my TAs
for the first year teaching this course.

These notes are work in progress. Please do let me know about errors,
typos, suggestions for improvements. . . (however small.) Your feedback is
welcome, always.

Nicolas Boumal

1

https://link.springer.com/book/10.1007/978-0-387-40065-5


2 CONTENTS



Chapter 1

Introduction

This course is about solving problems of the form

min
x∈S

f(x)

for a set S and a function f : S → R. That is, we aim to find x ∈ S such
that f(x) is as small as possible.

The following notations are often encountered to describe such a problem:

min
x∈S

f(x), min
x

f(x) subject to x ∈ S, argmin
x∈S

f(x).

The first two also represent the optimal value (that is, the smallest possible
value f(x) can take with x ∈ S). The third one also represents the optimal
set (that is, the set of x ∈ S such that f(x) is minimal.)

The next section highlights the point that almost every computational
task can be written as an optimization problem. But of course, many com-
putational tasks are really, really hard to solve. Therefore, it must be that
optimization in general is hard. The key then is (a) to require mathematical
structure we could exploit (that is, make some assumptions about S and
f), and (b) to adjust our targets (unfortunately, the sky is not the limit in
general, but sometimes good things happen).

In this course, we assume that S is a continuous (as opposed to discrete)
subset of a Euclidean space, and that f is differentiable. This provides ample
mathematical structure for a first dive into continuous optimization.

Exercise 1.1. What if what we want is to maximize a function g : S → R?
Check that the problems maxx∈S g(x) and minx∈S f(x) have the same set of
solutions if we let f = −g, and check how their optimal values are related.
For this reason, we almost exclusively discuss minimization problems. This
convention will be particularly convenient when we get to convexity and to
second-order optimality conditions later on.
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4 CHAPTER 1. INTRODUCTION

Remark 1.2. We should bear in mind that f might not actually attain a
minimal value on S, in which case the ‘argmin’ is empty and the ‘min’ should
really be an ‘inf’ (infimum). However, because optimization problems make
the most sense when they have a solution, it is habitual to just write ‘min’
while keeping the possibility of an empty solution set in mind at all times.

1.1 Optimization is a powerful modeling tool

Optimization problems in general come in mostly two flavors:

1. Discrete problems: the set S is discrete. It contains a finite or count-
ably infinite number of elements. In principle, we could evaluate f
for each element of S in turn, but typically that is impossibly expen-
sive computationally. The game then is to devise clever algorithms to
explore more promising parts of S first. This is the terrain of combi-
natorial mathematics.

2. Continuous problems: the set S is continuous. It is fundamentally
impossible to enumerate all possible solutions for the same reason that
the real numbers cannot be enumerated. What complicates matters
further is that S is typically a subet of a high dimensional space (say,
Rn with large n). The game then is to devise iterative algorithms that
hopefully converge to interesting points in S. This is the terrain of
numerical analysis.

Discrete optimization comes up when we must make discrete choices
(on/off, yes/no, select a particular subset of objects in a bigger set, order
objects in a certain way, ...) and we have a clear way to assign a value to
each possible choice. Typical examples include:

� Facility location selection (e.g., warehouses, drop-off points),

� Scheduling (e.g., trains, deliveries, traffic lights, exams),

� Path finding on graphs (e.g., google maps, NPCs in video games),

� . . .

We do not discuss these at all in this course.
Continuous optimization comes up when the variables are best described

using real numbers (signals, images, distances, orientations, intensities, flows,
voltages, statistical features, hyper-parameters, fractions, ...) and we have a
clear way to assign a value to each possible choice. Here are typical examples:
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� Regression is the task of finding a function g which approximately
interpolates pairs (xi, yi) so that g(xi) ≈ yi. We want this to hold both
on given examples used to choose g (training) and on unseen, new
examples (generalization). This describes much of machine learning,
but is much older than that. The unknown here is a function g: that
is uncomfortable. Instead, we choose a class of functions that can be
described using a finite number of real parameters. For example, we
can use polynomials. Alternatively, we can fix a certain architecture
for a neural network, then what remains is to choose the weights of the
neurons: these are real numbers. Finding the best function g in the
chosen class amounts to finding real parameters that correspond to the
best function: there is our optimization problem. How do we choose the
class of functions? That is application-specific. In machine learning,
engineers use deep neural networks of all kinds for different purposes;
outside of machine learning, people also use different function classes.

� Classification is closely related to regression. A classical approach to
this problem is support vector machines, which admits a clean formu-
lation as a continuous optimization problem where the unknown is a
plane separating two classes of objects (possibly nonlinearly mapped to
a feature space first, to improve the chances that the two classes can be
separated by a plane). A plane can be represented by a normal vector,
and that vector has real components: those are our variables.

� In inverse problems, we are interested in a signal x∗ (it could be an
image in medical imaging, a 3-D shape in microscopy for structural
biology, a message emitted through a distorted radio channel), and we
obtain some measurements y = Φ(x∗), where Φ captures a physical
model. Recovering x∗ from y looks like a standard problem in numeri-
cal analysis, namely, solving (possibly nonlinear) equations. However,
such tasks are often ill-conditioned, in the sense that there could exist
x1 and x2 very different yet such that Φ(x1) ≈ Φ(x2) ≈ y. If that is so,
it looks like both x1 and x2 might be reasonable estimators for x∗, but
they are so different from each other... which one should we trust? In
such situations, it is more fruitful to incorporate some prior knowledge
we may have about x∗ (for example, that it has sharp edges, or that it is
elongated, or that it is low-pass) by finding x that simultaneously agrees
with the measurements as much as possible (Φ(x) ≈ y) and is compat-
ible with our prior. This is typically done through regularization; the
problem might look something like this: minx∈S ∥Φ(x)− y∥2 + λR(x),
with a well-chosen R.
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� Statistical estimation problems: these are similar to inverse prob-
lems, only with a statistical model on top, often leading to optimization
via maximum likelihood estimation. There, a likelihood function L as-
sesses how likely a particular x is given the measurements we have,
the statistical model that relates the true unknown and those measure-
ments, and any prior beliefs we have about the latter (think Bayes).

� Resource allocation: assuming your resources are continuous or
nearly so—as may be the case for money or computational power—
allocate a fraction of it to each of a number of options to optimize
something (returns, balance between returns and risk, probability of
success of a certain project, . . . ).

� Optimal control: choose which commands to send to motors, actua-
tors, fans, heating devices, etc. so as to get a machine to do something
optimally (e.g., drive something autonomously, produce glass panels
with an industrial oven, air-condition a building). This is often done in
a real-time loop with input from various sensors, and it involves a great
deal of modeling to relate those inputs to the overall state of the system
we aim to control. A prime example of optimization-based control is
embodied by model predictive control.

� . . .

We focus on continuous optimization. You will encounter simple applications
for homework.

It should be noted that complex optimization problems as they come up
in industry can easily involve a mix of continuous and discrete optimization
variables (e.g., one may have to optimize the flow of gas through a distribu-
tion network of pipes, with the ability to switch particular compressors on
or off to boost pressure where most needed). The data and models used to
phrase these problems are also often affected by noise and uncertainty. And
it is rather common to have to re-solve them repeatedly over time as the data
evolve. Accordingly, consider this course an invitation; an introduction to a
much bigger story.

1.2 With great generality comes great difficulty

Our hope is always to find a global minimizer.

Definition 1.3. A global minimizer of f : S → R is a point x∗ ∈ S such
that f(x) ≥ f(x∗) for all x ∈ S.
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This, however, turns out to be too much to ask in most situations.
A less ambitious hope could be to find a local minimizer. To define this

concept, we need a notion of what “local” means, that is, we need a topology
on S.1 It will always be clear from context which topology we use. For
example, if S is a vector space such as Rn, we use the usual topology. If S
is a subset of a vector space, we use the subspace topology: a subset of S is
open if it is the intersection of S with some open set of the vector space.

Definition 1.4. A neighborhood of x ∈ S is an open subset of S which
contains x.2

Definition 1.5. A local minimizer of f : S → R is a point x∗ ∈ S such that
f(x) ≥ f(x∗) for all x in a neighborhood of x∗ in S.

In many practical situations, it is perfectly reasonable to hope that we
might be able to find a local minimizer. However, even this is computationally
hard in general.3 One reason is that f might have wide, flat areas, where
there are no local minimizers, yet f almost doesn’t vary. Another reason is
that it can be difficult to check (computationally) whether a given point x
is or is not a local minimizer. In subsequent chapters, we introduce an even
weaker class of points, using the concept of necessary optimality conditions.

We close this section with two additional definitions: they are subtly
different restrictions on the concept of local minimizer. During precept, you
will explore how they differ.

Definition 1.6. A strict local minimizer of f : S → R is a local minimizer
x∗ of f such that f(x) > f(x∗) for all x ̸= x∗ in a neighborhood of x∗ in S.

Definition 1.7. An isolated local minimizer of f : S → R is a local mini-
mizer x∗ of f such that, in some neighborhood of x∗, there are no other local
minimizers of f .

Based on the above definitions, we similarly define the notions of global
maximizer, local maximizer, strict local maximizer and isolated local maxi-
mizer.

1We always assume that S is equipped with a Hausdorff, second-countable topology. If
these words mean nothing to you, it’s safe to ignore this footnote.

2Many authors define a neighborhood of x as a set which contains an open set which
itself contains x; then, they would call our neighborhoods “open neighborhoods.” We
always work with open neighborhoods, so we prefer the concise naming convention.

3See for example the following wide-audience article in Quanta Magazine: https:

//www.quantamagazine.org/surprising-limits-discovered-in-quest-for-optim

al-solutions-20211101/.

https://www.quantamagazine.org/surprising-limits-discovered-in-quest-for-optimal-solutions-20211101/
https://www.quantamagazine.org/surprising-limits-discovered-in-quest-for-optimal-solutions-20211101/
https://www.quantamagazine.org/surprising-limits-discovered-in-quest-for-optimal-solutions-20211101/
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Part I

Unconstrained optimization
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Chapter 2

The setup, the rules, the goal

In this first part of the course, we focus on solving unconstrained optimization
problems, that is, we wish to compute a solution of

min
x∈E

f(x), (P)

where E is a Euclidean space and f : E → R is our cost function. If f is
k-times continuously differentiable on E , we say f is of class Ck and we write
f ∈ Ck(E). Unless otherwise stated, we always assume f is continuously
differentiable, that is, f ∈ C1(E).

As we already discussed in the previous chapter, it is in general too diffi-
cult to find a global minimizer of (P). A notable exception to that sad state
of affairs is the case where (P) is convex: more on that later. For now, we
must content ourselves with a more modest goal.

Our revised goal is merely to find a point x ∈ E which satisfies certain
necessary optimality conditions, defined below. The conditions are designed
such that all minimizers (local and global) satisfy them.

Our hope is that, in doing so, we will actually often find a local or even
a global minimizer—but only under special circumstances will we be able to
guarantee that this hope is realized.

The rules of the game are that we may evaluate f at any point x ∈ E
that we like. We are also allowed to evaluate the derivatives of f at any
point: the gradient, but also the Hessian if it exists. However, we very much
would like to “query” as few points as possible. The reason is simple really:
evaluating f and its derivatives requires computational power and time; we
have a limited amount of both.1

1In particular, even if f is a function of just one or two variables, we would not simply
“plot the function and look at it.” This is because to plot f we need to evaluate f at very
many point, which is inefficient.

11
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2.1 Reminders about Euclidean space

Let E be a real, finite dimensional vector space (also called a linear space).
We can equip E with an inner product, as defined below. The pair E together
with an inner product is what we call a Euclidean space.

Definition 2.1. An inner product on E (also called a Euclidean metric) is a
map ⟨·, ·⟩ : E×E → R : (u, v) 7→ ⟨u, v⟩ which satisfies the following properties:

1. Symmetry: ⟨u, v⟩ = ⟨v, u⟩ for all u, v ∈ E,

2. Bi-linearity: ⟨αu+ βv, w⟩ = α ⟨u,w⟩ + β ⟨v, w⟩ for all u, v, w ∈ E and
α, β ∈ R,

3. Positive definiteness: ⟨u, u⟩ ≥ 0 for all u ∈ E and ⟨u, u⟩ = 0 if and
only if u = 0.

Definition 2.2. A Euclidean space is a real, finite dimensional vector space
E equipped with an inner product ⟨·, ·⟩. The associated Euclidean norm is
defined by ∥u∥ =

√
⟨u, u⟩ for all u ∈ E.

Example 2.3. The canonical Euclidean space is E = Rn with

⟨u, v⟩ = u⊤v = u1v1 + · · ·+ unvn.

The associated Euclidean norm is the 2-norm: ∥u∥ =
√

u2
1 + · · ·+ u2

n.

Example 2.4. The space of matrices E = Rm×n is also a Euclidean space
when equipped with the trace (or Frobenius) inner product

⟨U, V ⟩ =
m∑
i=1

n∑
j=1

UijVij = Tr(U⊤V ).

The associated Euclidean norm is the Frobenius norm: ∥U∥ =
√∑

i,j U
2
ij.

Example 2.5. Any linear subspace of Rn or Rm×n can be turned into a
Euclidean space with the same inner products as above, only restricted to the
subspace in question. For example, the space of symmetric matrices

E = Sym(n) = {X ∈ Rn×n : X = X⊤}

is a Euclidean space when equipped with the trace inner product.

Theorem 2.6 (Cauchy–Schwarz). We have |⟨u, v⟩| ≤ ∥u∥∥v∥ for all u, v in
E. Moreover, equality is attained exactly when u, v are colinear.
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A bit of linear algebra

Definition 2.7. The norm of a linear map L : E → F is

∥L∥ = max
u∈E,u ̸=0

∥L(u)∥F
∥u∥E

where ∥ · ∥E and ∥ · ∥F denote the norms on the Euclidean spaces E and F ,
respectively. In other words, ∥L∥ is the smallest real number such that

∀u ∈ E , ∥L(u)∥F ≤ ∥L∥∥u∥E .

Definition 2.8. The adjoint of a linear map L : E → F is the linear map
L∗ : F → E defined by the following property:

∀u ∈ E , w ∈ F , ⟨L(u), w⟩F = ⟨u, L∗(w)⟩E ,

where ⟨·, ·⟩E and ⟨·, ·⟩F denote the inner products on the Euclidean spaces E
and F , respectively.

Definition 2.9. A linear map A : E → E on a Euclidean space E is called
symmetric or self-adjoint if A = A∗, that is,

∀u, v ∈ E , ⟨A(u), v⟩ = ⟨u,A(v)⟩ .

Definition 2.10. A basis u1, . . . , un is orthonormal for E if

∀ 1 ≤ i, j ≤ n, ⟨ui, uj⟩ =

{
1 if i = j,

0 otherwise.

Exercise 2.11 (Adjoint and transpose). Let u1, . . . , un form an orthonormal
basis of E. Likewise, let v1, . . . , vm form an orthonormal basis of F . Consider
a linear operator L : E → F . For each 1 ≤ i ≤ n, the vector L(ui) is an
element of F ; therefore, we may expand it in the basis v as follows:

L(ui) =
m∑
j=1

Mjivj,

where we collect the coefficients into a matrix M ∈ Rm×n. This matrix
represents L with respect to the chosen bases. Show that the matrix which
represents L∗ with respect to those same bases is M⊤: the transpose of M .
In particular, a linear map A : E → E is symmetric if the matrix associated
to it with respect to the basis u1, . . . , un is symmetric.
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Theorem 2.12 (Spectral theorem). Let A be a symmetric linear map on
a Euclidean space E. Then, A admits an orthonormal basis of eigenvectors
u1, . . . , un ∈ E associated to real eigenvalues λ1, . . . , λn, that is, A(ui) = λiui

for each i.

Exercise 2.13. Show that for a symmetric linear map A on E with orthonor-
mal basis of eigenvectors u1, . . . , un and associated eigenvalues λ1, . . . , λn we
have:

∀v ∈ E , A(v) =
n∑

i=1

λi ⟨v, ui⟩ui.

Exercise 2.14. Let A be a symmetric linear map on E with eigenvalues
λ1, . . . , λn. Show that, for all u ∈ E, we have:

λmin∥u∥2 ≤ ⟨u,A(u)⟩ ≤ λmax∥u∥2 (2.1)

where λmin = min1≤k≤n λk and λmax = max1≤k≤n λk. Further check the fol-
lowing expression for the operator norm of A:

∥A∥ = max
u∈E,∥u∥=1

|⟨u,A(u)⟩| = max
1≤k≤n

|λk|. (2.2)

Definition 2.15. Let A : E → E be a symmetric linear map. We say:

1. A is positive semidefinite if ⟨u,A(u)⟩ ≥ 0 for all u ∈ E; we write
A ⪰ 0.

2. A is positive definite if ⟨u,A(u)⟩ > 0 for all u ∈ E , u ̸= 0; we write
A ≻ 0.

Exercise 2.16. Show that A ≻ 0 if and only if all eigenvalues of A are
positive. Show that A ⪰ 0 if and only if all eigenvalues of A are nonnegative.

Exercise 2.17. Let L : E → F be a linear map between two Euclidean spaces.
Check that the map A = L∗◦L : E → E is symmetric and positive semidefinite.
Let n = dim E, so that A has n real eigenvalues: denote them λ1 ≥ · · · ≥ λn.
The singular values of L are defined as σi =

√
λi for i = 1, . . . , n. Show that

σmin∥u∥E ≤ ∥L(u)∥F ≤ σmax∥u∥E (2.3)

for all u ∈ E, where σmax = σ1 and σmin = σn. Further check that the operator
norm of L is ∥L∥ = σmax.
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A bit of multivariate calculus

Let E ,F be two Euclidean spaces. Consider a map F : E → F . We say F
is differentiable at x ∈ E if there exists a linear map DF (x) : E → F (called
the differential of F at x) such that

lim
v→0

∥F (x+ v)− F (x)−DF (x)[v]∥F
∥v∥E

= 0, (2.4)

where we write ∥ · ∥E and ∥ · ∥F to distinguish between the Euclidean norms
on E and F respectively. We say F is differentiable if it is so at all x ∈ E .

When F is differentiable at x, all the directional derivatives of F are
defined at x, and we can write:

DF (x)[v] = lim
t→0

F (x+ tv)− F (x)

t
. (2.5)

If F : E → F is differentiable at x ∈ E and G : F → H is differentiable at
F (x) ∈ F , then G ◦ F is differentiable at x, and:

D(G ◦ F )(x) = DG(F (x)) ◦DF (x). (2.6)

Equivalently, we can also write this as:

∀v ∈ E , D(G ◦ F )(x)[v] = DG(F (x))[DF (x)[v]]. (2.7)

This is the chain rule. We use it all the time.
In particular, consider a differentiable function f : E → R. Its differential

at x is a linear map Df(x) from E to R. Through the inner product, this
map can be represented by a unique vector of E , which we call the gradient
of f at x.

Definition 2.18. The gradient of a differentiable function f : E → R on a
Euclidean space E is the map ∇f : E → E defined by the following property:

∀x, v ∈ E , ⟨∇f(x), v⟩ = Df(x)[v].

Exercise 2.19. Show that Definition 2.18 is valid, that is, show that ∇f(x)
exists under the stated conditions, and is unique.

Exercise 2.20. Let E = Rn with the usual inner product. Show that (in this
important particular case) ∇f(x) ∈ Rn is the vector whose entries are the n

partial derivatives of f with respect to x1, . . . , xn: ∇f(x) = [∂f(x)
∂x1

, . . . , ∂f(x)
∂xn

]⊤.
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Exercise 2.21. Consider the following function f : Sym(n) → R, where
Sym(n) is equipped with the trace inner product:

f(X) =
1

2
∥X −M∥2,

where M ∈ Rn×n is not necessarily symmetric. Give an expression for
∇f(X). Be mindful that, by Definition 2.18, ∇f(X) must belong to Sym(n).

We say f : E → R is twice differentiable if ∇f : E → E is differentiable.
When such is the case, the differential of ∇f at x ∈ E , namely, D(∇f)(x) is
a linear operator from E to E , called the Hessian of f at x. For convenience,
we denote it by ∇2f(x).

Definition 2.22. The Hessian at x of a twice differentiable function f : E →
R on a Euclidean space E is the linear map ∇2f(x) : E → E defined by the
following property:

∀v ∈ E , ∇2f(x)[v] = D(∇f)(x)[v] = lim
t→0

∇f(x+ tv)−∇f(x)
t

.

Exercise 2.23. Let E = Rn with the usual inner product. Show that (in
this important particular case) ∇2f(x) can be represented as a matrix of size
n×n whose entry (i, j) is the second-order partial derivative of f with respect

to xi and xj, often written ∂2f(x)
∂xi∂xj

. We know that this matrix is symmetric.

It is well known that the Hessian is a symmetric linear map (in the sense
of Definition 2.9); this is directly related to the well-known fact that partial
derivatives in Rn commute.

Theorem 2.24. The Hessian ∇2f(x) : E → E is a symmetric linear map.

A function f : E → R is twice continuously differentiable if x 7→ ∇2f(x) is
continuous over E . This is equivalent to the property that the map (x, v) 7→
⟨v,∇2f(x)[v]⟩ is continuous over E × E .

We close with some multivariate corollaries of the usual Taylor theorem.

Theorem 2.25 (Taylor’s Theorem). Let f : E → R be continuously differ-
entiable. Given x, u ∈ E, there exists t ∈ (0, 1) such that

f(x+ u) = f(x) + ⟨∇f(x+ tu), u⟩ . (2.8)

Moreover, if f is twice continuously differentiable, we have

∇f(x+ u) = ∇f(x) +
∫ 1

0

∇2f(x+ tu)[u]dt, (2.9)
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and also that there exists t ∈ (0, 1) such that

f(x+ u) = f(x) + ⟨∇f(x), u⟩+ 1

2

〈
u,∇2f(x+ tu)[u]

〉
. (2.10)

Proof. These expressions can be recovered from the “1-D” Taylor theorem
you surely know. Indeed, to establish the first expression, let g(t) = f(x+tu).
By the chain rule, we have:

g′(t) = Df(x+ tu)[u] = ⟨∇f(x+ tu), u⟩ .

Taylor’s theorem provides g(1) = g(0) + g′(t) for some t ∈ (0, 1) (this is
nothing but the mean value theorem). Plug in the expressions for g(1), g(0)
and g′(t) and this becomes (2.8).

Likewise, we have g′′(t) = ⟨∇2f(x+ tu)[u], u⟩. Taylor’s theorem provides
g(1) = g(0) + g′(0) + 1

2
g′′(t) for some t ∈ (0, 1), which becomes (2.10).

To recover (2.9), pick an orthonormal basis v1, . . . , vn of E and define
gi(t) = ⟨∇f(x+ tu), vi⟩ for all i. The fundamental theorem of calculus says:

gi(1) = gi(0) +

∫ 1

0

g′i(t)dt. (2.11)

Equivalently, this means:

⟨∇f(x+ u), vi⟩ = ⟨∇f(x), vi⟩+
∫ 1

0

〈
∇2f(x+ tu)[u], vi

〉
dt. (2.12)

Multiply this identity by vi and sum over i to conclude.

2.2 Optimality conditions

Recall that a point x∗ ∈ E is a local minimizer for (P) exactly if there exists
a neighborhood N of x∗ in E such that f(x) ≥ f(x∗) for all x ∈ N .

When f is differentiable, we can identify certain properties that all local
(and global) minimizers have. We call them necessary optimality conditions.
Points which satisfy those conditions are called critical (or stationary) points,
of first- or second-order.

Theorem 2.26. [Proof for exam 2025]Let f : E → R be continuously differentiable. If x∗ is a local
minimizer for f , then ∇f(x∗) = 0.

Proof. For contradiction, assume ∇f(x∗) ̸= 0. Let u = −∇f(x∗) and define
g(t) = f(x∗ + tu). By the chain rule we have

g′(t) = Df(x∗ + tu)[u] = ⟨∇f(x∗ + tu), u⟩ .
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The fundamental theorem of calculus provides:

f(x∗ + tu) = g(t) = g(0) +

∫ t

0

g′(τ)dτ = f(x∗) +

∫ t

0

⟨∇f(x∗ + τu), u⟩ dτ.

Notice that ⟨∇f(x∗), u⟩ = −∥∇f(x∗)∥2 < 0. Since ∇f is continuous, there
exists a scalar T > 0 such that ⟨∇f(x∗ + tu), u⟩ < 0 for all t ∈ [0, T ]. Thus,

f(x∗ + τu) < f(x∗) for all τ ∈ (0, T ].

This is a contradiction because x∗ is a local minimizer.
Let us be more formal about this last step: By definition, since x∗ is

a local minimizer there exists a neighborhood N of x∗ (that is, an open
set which contains x∗) such that f(x) ≥ f(x∗) for all x ∈ N . The line
c(t) = x∗ + tu intersects N . More precisely, since c is continuous, it holds
that c−1(N ) is open; and since c(0) = x∗ is in N , it holds that c−1(N )
contains 0. Thus, there exists 0 < ε ≤ T such that c(ε) is in N . This
implies f(x∗ + εu) = f(c(ε)) ≥ f(x∗). On the other hand, ε ≤ T implies
f(x∗ + εu) < f(x∗): a contradiction indeed.

Theorem 2.27. Let f : E → R be twice continuously differentiable. If x∗ is
a local minimizer for f , then ∇f(x∗) = 0 and ∇2f(x∗) ⪰ 0.

Proof. By Theorem 2.26, we already know that ∇f(x∗) = 0. For contradic-
tion, assume ∇2f(x∗) is not positive semidefinite. Then, there exists u ∈ E
such that ⟨u,∇2f(x∗)[u]⟩ < 0. Since ∇2f is continuous, there exists a scalar
T > 0 such that ⟨u,∇2f(x∗ + tu)[u]⟩ < 0 for all t ∈ [0, T ]. Moreover, Tay-
lor’s theorem (2.10) tells us that, for all τ > 0, there exists t ∈ (0, τ) such
that

f(x∗ + τu) = f(x∗) +
τ 2

2

〈
u,∇2f(x∗ + tu)[u]

〉
.

We deduce that f(x∗+ τu) < f(x∗) for all τ ∈ (0, T ]. This is a contradiction
because x∗ is a local minizer.

Definition 2.28. A point x ∈ E such that ∇f(x) = 0 is called a (first-order)
critical point. A point x ∈ E such that ∇f(x) = 0 and ∇2f(x) ⪰ 0 is called
a second-order critical point.

Definition 2.29. A saddle point is a critical point which is neither a local
minimizer nor a local maximizer.

Exercise 2.30. Consider f : R2 → R defined by f(x, y) = x2−y2. Show that
(0, 0) is a saddle point but not a second-order critical point. Now consider
f : R2 → R defined by f(x, y) = x2 + y3. Show that (0, 0) is a saddle point
and also a second-order critical point.
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The other way around, we have a sufficient condition for local optimality
if we require a stronger condition on the Hessian.

Theorem 2.31. Let f : E → R be twice continuously differentiable. If
∇f(x∗) = 0 and ∇2f(x∗) ≻ 0, then x∗ is an isolated local minimizer.

Proof. By continuity of ∇2f , we can select r > 0 such that ∇2f(z) ≻ 0 for
all z in the Euclidean ball N = {x ∈ E : ∥x − x∗∥ < r} of radius r and
centered around x∗. Then, by Taylor’s theorem (2.10) we deduce that

∀x ∈ N\{x∗}, f(x) = f(x∗ + (x− x∗))

= f(x∗) +
1

2

〈
x− x∗,∇2f(z)[x− x∗]

〉
for some z ∈ N

> f(x∗).

This confirms that x∗ is a strict local minimizer of f . It is in fact also an
isolated local minimizer for f . Indeed, if there was another local minimizer in
N (call it y), then in particular we would have ∇f(y) = 0. Yet, by Taylor’s
theorem (2.9) we have

∇f(y) = ∇f(x∗) +

∫ 1

0

∇2f(x∗ + t(y − x∗))[y − x∗]dt.

Since x∗ + t(y− x∗) is in N for all t ∈ [0, 1], and since ∇f(y) = ∇f(x∗) = 0,
upon taking an inner product of the above with y − x∗ ̸= 0, it follows that

0 =

∫ 1

0

〈
y − x∗,∇2f(x∗ + t(y − x∗))[y − x∗]

〉
dt > 0,

a contradiction.

Exercise 2.32. Here are functions with surprising properties:

1. One might expect that if a function has two local minima, then some-
where in between them there ought to be a local maximum or a saddle
point. That’s not true.2 Check it with f(x, y) = (x2y−x−1)2+(x2−1)2.

2. Check that f(x, y) = x2+y2(1+x)3 has a single critical point, that this
critical point is a strict local minimum, and yet that it is not a global
minimum.3

2https://www.johndcook.com/blog/2017/10/04/no-critical-point-between-t

wo-peaks/ and https://arxiv.org/abs/1302.0759.
3https://www.math.tamu.edu/~tom.vogel/gallery/node16.html

https://www.johndcook.com/blog/2017/10/04/no-critical-point-between-two-peaks/
https://www.johndcook.com/blog/2017/10/04/no-critical-point-between-two-peaks/
https://arxiv.org/abs/1302.0759
https://www.math.tamu.edu/~tom.vogel/gallery/node16.html
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3. Plot the function f(x, y) = x3 − 3xy2 around the origin. Notice one
can descend away from that saddle point along three directions, not just
two. This is called a monkey saddle.4

4. Consider the function f(x, y) = (y2 − x3)(y2 − 4x3). Check that (0, 0)
is not a local minimizer for f . And yet, check that if c : R → R2 is
any curve which is twice continuously differentiable and which satisfies
c(0) = (0, 0) and c′(0) ̸= (0, 0) then t = 0 is a local minimizer for
f ◦ c : R → R. Hint: Taylor expand c. (This is not true if we only
require one continuous derivative for c.)5

5. One might expect that if x is not a local minimum then it is possible to
move away from it in such a way that the cost function value only goes
down (not strictly). That’s not true. Indeed, let f(x) = sin(1/x)x2.
Check that f is continuously differentiable and that x = 0 is not a
local minimum. Yet, show that there does not exist a continuous curve
c : [0, 1]→ R such that c(0) = 0 and f(c(t)) ≤ f(0) for all t ∈ [0, 1].

4https://en.wikipedia.org/wiki/Monkey_saddle
5See Udriste’s 1994 book, Thm. 8.8 + remarks, https://tinyurl.com/2tm59a6d.

Already in the first textbook on optimization (Harris, 1917), a similar observation is made
about the fact that it is insufficient to study f along straight lines. Harris gives historical
notes pointing to the fact that Lagrange himself made that mistake, and many after him
as a result: https://archive.org/details/theoryofmaximami00hancuoft/page/32/m
ode/2up, page 33. According to Harris, it is Peano who set the record straight.

https://en.wikipedia.org/wiki/Monkey_saddle
https://tinyurl.com/2tm59a6d
https://archive.org/details/theoryofmaximami00hancuoft/page/32/mode/2up
https://archive.org/details/theoryofmaximami00hancuoft/page/32/mode/2up


Chapter 3

Gradient descent

Optimization algorithms are iterative: they require an initial point (often
called an initial guess) x0, and they use this initial point to generate a se-
quence of points x0, x1, x2, . . . Our goal is to design the algorithm in such a
way that the sequence (xk)k≥0 converges to—or at least admits accumula-
tion points which are—points of interest for our purpose. The absolute best
scenario is if we can find a global minimizer. More commonly we should
be content to find a local minimizer. And for theoretical purposes, we will
already be happy if we can guarantee that we find critical points.

Gradient descent (GD) is probably the most famous and most versatile
optimization algorithm to (try to) solve problem (P). Given an initial point
x0 ∈ E , GD iterates the following:

xk+1 = xk − αk∇f(xk), (GD)

where αk > 0 is called the step-length or step-size. There are several possible
strategies to choose the step-length.

GD is also called steepest descent because, locally, following the negative
gradient induces the steepest decrease in the cost function f (up to first order
approximation). Indeed, on the one hand Cauchy–Schwarz tells us that

Df(x)[v] = ⟨∇f(x), v⟩ ≥ −∥∇f(x)∥

for all v ∈ E with ∥v∥ = 1, and on the other hand we can verify that this
bound is attained when we set v = − 1

∥∇f(x)∥∇f(x).

3.1 Lipschitz continuous gradients

GD bases its decisions on the gradient of f . Specifically, if the current iterate
is xk ∈ E , then xk+1 is constructed using ∇f(xk). If ∇f is discontinuous,

21
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Algorithm 3.1 Gradient descent

1: Input: x0 ∈ E
2: for k in 0, 1, 2 . . . do
3: Pick a step-length αk (we discuss several options)
4: xk+1 = xk − αk∇f(xk)
5: end for

or even if it is continuous but varies in a wild manner, then these decisions
are unstable, in the sense that if xk had been a little bit different, then xk+1

might end up being very different. For the purpose of analyzing GD, it would
be uncomfortable to allow such behavior. The following definition captures
a condition under which the gradient of f does not vary too fast.

Definition 3.1. The gradient of f is L-Lipschitz continuous if 1

∀x, y ∈ E , ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, (3.1)

where L ≥ 0 is a constant.

Many cost functions f encountered in practice satisfy (3.1), though per-
haps not for all x, y ∈ E . This is fine: we really only need (3.1) to hold in the
regions that our algorithms explore. Let us keep that in mind, and proceed
with (3.1) as stated to keep things simple.

When f has Lipschitz continuous gradient, we get excellent control over
its local behavior. The following theorem is tremendously useful: it gives us
uniform control over the error term in first-order Taylor expansions of f .

Theorem 3.2.[Proof for exam 2025] Let f : E → R be continuously differentiable. If ∇f is L-
Lipschitz continuous, then

∀x, u ∈ E , f(x+ u) ≤ f(x) + ⟨∇f(x), u⟩+ L

2
∥u∥2.

Proof. With c(t) = x + tu, consider the function g = f ◦ c : R → R. This
function satisfies g(0) = f(x) and g(1) = f(x + u). Moreover, g is contin-
uously differentiable. This allows us to invoke the fundamental theorem of
calculus to claim:

g(1)− g(0) =

∫ 1

0

g′(t)dt =

∫ 1

0

Df(c(t))[c′(t)]dt =

∫ 1

0

⟨∇f(c(t)), c′(t)⟩ dt.

1In the research literature, especially in computer science, this is often referred to
as L-smoothness, and some authors define smoothness as meaning “Lipschitz continuous
gradient”; we reserve the word “smooth” for functions that are infinitely many times
differentiable (C∞).
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Plugging in our expressions for g(0), g(1), c(t) and c′(t) = u, it follows that:

f(x+ u)− f(x) =

∫ 1

0

⟨∇f(x+ tu), u⟩ dt

= ⟨∇f(x), u⟩+
∫ 1

0

⟨∇f(x+ tu)−∇f(x), u⟩ dt.

The integrand is easily bounded using Cauchy–Schwarz and Lipschitzness:

⟨∇f(x+ tu)−∇f(x), u⟩ ≤ ∥∇f(x+ tu)−∇f(x)∥∥u∥ ≤ L∥tu∥∥u∥ = L|t|∥u∥2.

It follows that

f(x+ u)− f(x)− ⟨∇f(x), u⟩ ≤ L∥u∥2
∫ 1

0

tdt =
L

2
∥u∥2.

Since x, u are arbitrary, this completes the proof.

The following result shows that the inequalities in Theorem 3.2 essentially
characterize the Lipschitz gradient property. Moreover, we get a convenient
criterion to establish that property: it is sufficient to check that the Hessian
of f has bounded norm.

Theorem 3.3. Let f : E → R be twice continuously differentiable. Then, the
following properties are equivalent:

(a) ∥∇2f(x)∥ ≤ L for all x ∈ E,

(b) ∇f is L-Lipschitz continuous,

(c) |f(x+ u)− f(x)− ⟨∇f(x), u⟩| ≤ L
2
∥u∥2 for all x, u ∈ E.

Proof. To see that (b) implies (c), reconsider the proof of Theorem 3.2: only
minor tweaks are necessary.

To see that (c) implies (a), consider the following Taylor expansion:

f(x+ tu) = f(x) + t ⟨∇f(x), u⟩+ t2

2

〈
u,∇2f(x)[u]

〉
+ o(t2).

(The notation o(t2) stands for a quantity such that o(t2)/t2 → 0 when t→ 0,
i.e., it tends to zero faster than t2.) Rearrange the above then take absolute
values to see that:

1

2
|⟨u,∇2f(x)[u]⟩| = |f(x+ tu)− f(x)− ⟨∇f(x), tu⟩|

t2
+ o(1).
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Property (c) tells us that the numerator on the right-hand side is bounded
by L

2
∥tu∥2. Therefore,

1

2
|⟨u,∇2f(x)[u]⟩| ≤ L

2
∥u∥2 + o(1).

This holds for all t; thus, we may take t → 0, at which point o(1) van-
ishes (by definition). Since ∇2f(x) is a symmetric linear map, the property
|⟨u,∇2f(x)[u]⟩| ≤ L∥u∥2 for all u is equivalent to the property ∥∇2f(x)∥ ≤ L
(see (2.2)).

It remains to show that (a) implies (b). To this end, we use Taylor’s
theorem, specifically, eq. (2.9), to see that

∥∇f(x+ u)−∇f(x)∥ =
∥∥∥∥∫ 1

0

∇2f(x+ tu)[u]dt

∥∥∥∥
≤
∫ 1

0

∥∥∇2f(x+ tu)[u]
∥∥ dt

≤
∫ 1

0

∥∥∇2f(x+ tu)
∥∥ ∥u∥dt

≤ L∥u∥.

It is to reach the last inequality that we used property (a).

3.2 GD with constant step-length: global behavior

We are now ready to analyze a first version of GD. Let us make the two
following assumptions about f : E → R.

A1. There exists flow ∈ R such that f(x) ≥ flow for all x ∈ E.

A2. The gradient of f is L-Lipschitz continuous.

Using the constant L from A2, we define GD with constant step-length
1/L as follows: given an arbitrary x0 ∈ E , iterate

xk+1 = xk −
1

L
∇f(xk). (3.2)

Theorem 3.4.[Proof for exam 2025] Under assumptions A1 and A2, GD with constant step-length
1/L generates a sequence (xk)k≥0 ⊂ E with the following properties:

1. Descent: f(xk+1) ≤ f(xk) for all k,
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2. Rate: for all K, min0≤k≤K−1 ∥∇f(xk)∥ ≤
√

2L(f(x0)− flow)
1√
K
,

3. Accumulation points (if any) are critical: limk→∞ ∥∇f(xk)∥ = 0.

Proof. Let uk = 1
L
∇f(xk). Through Theorem 3.2, the Lipschitz gradient

assumption A2 provides us with the following inequalities for all k:

f(xk+1) = f(xk − uk) ≤ f(xk)− ⟨∇f(xk), uk⟩+
L

2
∥uk∥2.

Plugging in the expression for uk and reorganizing, we get

f(xk)− f(xk+1) ≥
1

L
∥∇f(xk)∥2 −

L

2

1

L2
∥∇f(xk)∥2 =

1

2L
∥∇f(xk)∥2. (3.3)

Not only does this show that the value of f is decreasing along the sequence
(xk), but also it shows that the value of f decreases by some substantial
amount at each iteration where the gradient is not small.

Now using assumption A1 together with (3.3), a classic telescoping sum
argument gives, for all K,

f(x0)− flow ≥ f(x0)− f(xK)

=
K−1∑
k=0

f(xk)− f(xk+1)

≥
K−1∑
k=0

1

2L
∥∇f(xk)∥2 (3.4)

≥ K

2L
min

0≤k≤K−1
∥∇f(xk)∥2.

Reorganize to get the rate claim.
For the final claim, consider (3.4) again, namely:

2L(f(x0)− flow) ≥
K−1∑
k=0

∥∇f(xk)∥2.

This inequality holds for all K. The left-hand side is a constant (independent
ofK). Thus, takingK →∞, the series on the right-hand side must converge.
In particular, the summands must converge to zero, i.e., ∥∇f(xk)∥2 → 0.
Assume x is an accumulation point of (xk), that is, there exists a subsequence
(xkℓ) of (xk) which converges to x. Then, by continuity of the function
x 7→ ∥∇f(x)∥ we see that

∥∇f(x)∥ = ∥∇f( lim
ℓ→∞

xkℓ)∥ = lim
ℓ→∞
∥∇f(xkℓ)∥ = 0.

In other words: accumulation points of (xk) are critical points for f .
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A few remarks are in order to make sure we understand precisely what
the above theorem does and does not say.

Remark 3.5. The rate result can be restated equivalently as follows: for all
ε > 0, there exists k ≤ ⌈2L(f(x0) − flow)

1
ε2
⌉ such that ∥∇f(xk)∥ ≤ ε. This

can be very slow! And yet, one can show that it is unimprovable unless we
make more assumptions about f . We should remember that this statement is
about the worst-case behavior: in practice, GD can perform quite a bit better.

Remark 3.6. Notice how the rate
√

2L(f(x0)− flow)/
√
K is independent

of the dimension of E. That is, insofar as the worst-case is concerned, it
does not seem to matter whether we are minimizing a function of one, two
or one billion variables! This is rather remarkable, and indeed provides some
explanation as to why we can routinely solve high-dimensional optimization
problems in applications (think machine learning models with billions of pa-
rameters). However, we should remember that computing f and its gradient
is likely to incur a cost which grows with the dimension of E. Moreover, it
is not uncommon for L (the Lipschitz constant of the gradient) to grow with
dimension too.

Remark 3.7. Let us stress this: there are no assumptions on x0. On the
other hand, the theorem only guarantees that all accumulation points of the
sequence of iterates are critical points. It does not guarantee that the se-
quence converges: it might have more than one accumulation point, and it
might even not have any accumulation point at all!

Remark 3.8. Even when GD converges to a single point, Theorem 3.4 most
certainly does not guarantee that the limit points are local minimizers, let
alone global minimizers. In principle, GD could converge to saddle points.
However, such situations are unstable. While it is true that GD can slow
down significantly in the vicinity of saddle points, it usually manages to
escape them “eventually.” This is why in casual conversation people often
say that GD converges to local minima: it is not mathematically correct in
full generality, but it is “true in spirit.”

Remark 3.9. Theorem 3.4 is called a global convergence result for GD. This
can be deceptive, and it is somewhat abusive:

1. In numerical analysis, we say an iterative method enjoys “global con-
vergence” if the sequences it generates converge regardless of x0, that
is: however we initialize the algorithm, it will converge. This has noth-
ing to do with global optimality. Let us stress this again: when we say
that an optimization algorithm enjoys global convergence, we are not
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saying that it converges to global optima. We are only saying that it
converges regardless of how it is initialized. And indeed, Theorem 3.4
does not involve any assumptions on x0. That being said:

2. Theorem 3.4 does not prove that sequences generated by GD converge.
However, it takes such a weird function f and initialization x0 for GD
not to converge to a single point that it is common in oral discussions
and (to a lesser extent) in the literature to say that GD enjoys global
convergence. A convenient turn of phrase is to say: “GD converges to
critical points” (note the plural)—this way, if GD admits more than
one accumulation point, we are in the clear. It is often easy to ensure
that GD has at least one accumulation point, hence that turn of phrase
is satisfactory for most purposes.

Exercise 3.10. Consider GD with constant step-length α, as: xk+1 = xk −
α∇f(xk). Working through the proof of Theorem 3.4, verify that α = 1/L
leads to the best rate.

Exercise 3.11. Consider f : R→ R with f(x) = 1
1+e−x (plot it). Show that

f satisfies assumptions A1 and A2, and specify constants flow and L. Check
that GD with constant step-length 1/L generates a sequence which doesn’t
have any accumulation points, regardless of x0.

Exercise 3.12. Let f : E → R be continuously differentiable. Assume {x ∈
E : f(x) ≤ f(x0)} is bounded and ∇f is L-Lipschitz continuous. Show
that GD with step-length 1/L generates a sequence which has at least one
accumulation point (and that all accumulation points are critical points).

3.3 GD with constant step-length: local behavior

When is it the case that GD actually converges to a point? Assuming it
does so, how fast is the convergence? Let us first review the notion of local
convergence rate.

Definition 3.13. Let θ0, θ1, θ2, . . . be a sequence converging to θ in R. We
say (θk) converges to θ at least linearly if there exists r ∈ (0, 1) and there
exist ε0, ε1, ε2, . . . > 0 such that

εk → 0, |θk − θ| ≤ εk, and lim
k→∞

εk+1

εk
= r.

The above is called (at least) linear convergence for the following reason:
if we plot log |θk − θ| against the iteration count k, then the resulting points
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are (asymptotically) upper-bounded by a line. The slope of that line is given
by

lim
k→∞

log(εk+1)− log(εk)

(k + 1)− k
= lim

k→∞
log

(
εk+1

εk

)
= log(r). (3.5)

This type of convergence is sometimes called “geometric” or “exponential”.

Exercise 3.14. Show that if (θk) converges to θ at least linearly then there
exist constants C ≥ 0 and σ ∈ (0, 1) such that |θk − θ| ≤ Cσk for all k ≥ 0.
In particular, deduce that |θk− θ| drops below any desired tolerance ε > 0 for
k larger than O(log(1/ε)).

Theorem 3.15. Assume f : E → R is twice continuously differentiable and
has L-Lipschitz continuous gradient (A2). Suppose x∗ is a strict local mini-
mizer satisfying ∇f(x∗) = 0 and ∇2f(x∗) ≻ 0.

Consider the sequence (xk) generated by GD with constant step-length
1/L. There exists a neighborhood U of x∗ such that if xk is in U for some k
then all subsequent iterates xk+1, xk+2, . . . are also in U .

In that scenario, the sequence (xk) converges to x∗. Moreover, the quan-
tity f(xk) converges to f(x∗) at least linearly, with rate r = 1− 1

κ
where κ is

the condition number of ∇2f(x∗), that is, the ratio of its largest to smallest
singular values. Additionally, ∥∇f(xk)∥ converges to 0 at least linearly, with
rate r =

√
1− 1/κ ≈ 1− 1

2κ
.

Remark 3.16. The global convergence rate in Theorem 3.4 suggests that it
might take as many as O(1/ε2) iterations to find a point x where ∥∇f(x)∥ ≤
ε. That turns out to be true (i.e., there exist functions for which GD is
indeed that slow). If GD were typically that slow, it would be almost useless.
Fortunately, Theorem 3.15 reveals that, while GD can be slow initially, it can
also speed up eventually: Once the linear convergence rate kicks in, we can
find points which satisfy ∥∇f(x)∥ ≤ ε with merely O(log(1/ε)) additional
iterations. See also Remark 4.35.

3.4 Practical versions of GD

In practice, we rarely (if ever) run GD with a constant step-length. We
almost always want to use a form of line-search method to choose the step
size, thus iteration

xk+1 = xk − αk∇f(xk), (3.6)
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Algorithm 3.2 Backtracking line-search. Typical values: ρ = 1
2
, c = 10−4.

1: Input: x ∈ E
2: Parameters: ᾱ > 0, ρ ∈ (0, 1), c ∈ (0, 1)
3: Set α← ᾱ ▷ Initialize with some step
4: while f(x)− f(x− α∇f(x)) < cα∥∇f(x)∥2 do
5: Set α← ρα ▷ Make α smaller
6: end while
7: Return α.

where αk is determined by line-search, that is, by investigation of the 1-D
function ϕ(·;xk) : R→ R defined by

ϕ(t;x) = f(x− t∇f(x)). (3.7)

One particularly simple method is called the backtracking line-search method,
see Algorithm 3.2. The spirit is:

1. We try with some step-length ᾱ (it may be bad: we have little infor-
mation for now);

2. Then we check whether using that step-length makes the value of f
decrease sufficiently. What is sufficient? That is decided by the so-
called Armijo criterion (see the algorithm).

3. If yes, we return that step-length. If not, we make the tentative step-
length smaller (multiplying our current guess by a constant ρ ∈ (0, 1)),
and we repeat until success.

Assuming f has L-Lipschitz continuous gradient, it’s easy to see based on
a drawing that there exists a whole interval of values for α that satisfy the
Armijo condition. Therefore, either ᾱ is already in that interval and we stop
immediately, or the process of iteratively making α smaller will eventually
lead us to that interval and we will stop.

You should read more about line-search methods in [NW06, Ch. 3] (Algo-
rithm 3.1 in that book corresponds to Algorithm 3.2 here.) You will experi-
ment with this in exercise sessions and homework. The essential guarantees
we have obtained for GD with constant step-length (namely, global and local
convergence results) still hold when we use a proper line-search method.

Another point of importance in practice when using any iterative algo-
rithm is: when do we stop? That is: what do we use as a stopping criterion?
One needs to be pragmatic about this. Popular options include combinations
of any or all of the following (in no particular order):
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� Maximum run time,

� Maximum number of iterations,

� Threshold on the gradient norm,

� Threshold on the cost function value,

� Threshold on the amount of change in cost function value or gradient
norm amortized over the last few iterations (i.e.: stop if it seems we
are no longer making substantial progress),

� ...

Tuning such stopping criteria is part of the algorithm design. It is a bit of
an art.



Chapter 4

Convex functions

Much can go wrong when we try to minimize a function f : E → R. Ulti-
mately, that is because we only get local access to f : we can evaluate f and
its derivatives at a point x, and that gives us valuable information about
what f looks like at and around x, but it tells us little of value about the
global behavior of f . This is the main reason why optimization algorithms
typically face the risk of getting stuck at a local minimum of f : blind-spots.

To overcome such difficulties, we must know something more about f : we
need additional assumptions.

One particularly fruitful assumption we can make is that of convexity.
Graphically, the definition below expresses the requirement that the graph
of f lies below its chords.

Definition 4.1. Let E be a linear space. A function f : E → R is convex if

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

for all x, y ∈ E and all t ∈ [0, 1].

There are several reasons why convexity is a delightful property to have
in optimization. One of them is that convex functions do not have non-global
local minima.

Theorem 4.2. [Proof for exam 2025]If f is convex and x∗ is a local minimum for f , then x∗ is a
global minimum for f .

Proof. For contradiction, assume x∗ is not a global minimum of f . Then,
there exists a point y ∈ E such that f(y) < f(x∗). Convexity implies that
the value of f is strictly decreasing along the line segment going from x∗ to
y. Indeed, for all t ∈ (0, 1]:

f((1− t)x∗ + ty) ≤ (1− t)f(x∗) + tf(y) < (1− t)f(x∗) + tf(x∗) = f(x∗).

This contradicts the fact that x∗ is a local minimum.

31
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Thus, we need not worry about optimization algorithms getting trapped
in local minima of a convex f .

This is already great as such, but it doesn’t do much for us unless (a)
convex functions come up in applications, and (b) convex functions are easy
to recognize. As it turns out, we can check both of these boxes.

In this chapter, we review some basic examples and properties of convex
functions: this allows us to “spot” convexity in applications. Then, we study
the behavior of algorithms on convex functions.

Convex analysis is a broad field which is of interest to mathematicians
in both fundamental and applied research also beyond optimization. Refer-
ences for this chapter include [BV04, Roc70] and lecture notes by Stephen J.
Wright.1

4.1 Basic definitions

In Definition 4.1, we stated what it means for a real-valued function f on a
linear space E to be convex. Let us add a few additional related terms to our
lexicon.

Definition 4.3. A function f : E → R is strictly convex if

f((1− t)x+ ty) < (1− t)f(x) + tf(y)

for all x, y ∈ E distinct and all t ∈ (0, 1).

Exercise 4.4. It is clear that if f is strictly convex then it is convex. On the
other hand, give an example of a function which is convex yet is not strictly
convex.

Definition 4.5. Assume E is a Euclidean space with norm ∥ · ∥. A function
f : E → R is µ-strongly convex if x 7→ f(x)− µ

2
∥x∥2 is convex with µ > 0.

Exercise 4.6. Show that if f is µ-strongly convex then f is strictly convex.
On the other hand, check that f(x) = x4 from R to R is strictly convex yet
not strongly convex.

Definition 4.7. A function f : E → R is concave if −f is convex. Likewise,
f is strictly or µ-strongly concave if −f is strictly or µ-strongly convex,
respectively.

Exercise 4.8. Show that f is simultaneously convex and concave if and only
if f is an affine function, that is, f(x) = ⟨w, x⟩ + b for some w ∈ E and
b ∈ R.

1http://www.optimization-online.org/DB_FILE/2016/12/5748.pdf

http://www.optimization-online.org/DB_FILE/2016/12/5748.pdf
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Exercise 4.9. Show that f : E → R is convex if and only if the restriction
of f to lines is convex, that is, the univariate functions t 7→ f(x+ t(y − x))
are convex from R to R for all x, y ∈ E. Argue the same for strict convexity.
What can you say on this topic regarding strong convexity? What does that
imply for line-search algorithms in optimization?

Exercise 4.10. Show that if f is convex then it satisfies what is called
Jensen’s inequality, namely:

f(a1x1 + . . .+ anxn) ≤ a1f(x1) + · · ·+ anf(xn)

for all x1, . . . , xn ∈ E and weights a1, . . . , an ≥ 0 such that a1 + · · ·+ an = 1.
Hint: proceed by induction on n.

Comment: We call a1x1 + · · ·+ anxn a convex combination of the points
x1, . . . , xn; notice that it is a kind of weighted average. Thus, the inequality
says that the value of f at the weighted average of the base points is not more
than the same weighted average of the values of f at the base points. This
extends to continuous averages as well, into a powerful inequality of the form
f(EX) ≤ Ef(X), where X is a random variable and E denotes expectation.

Exercise 4.11. The arithmetic-mean–geometric-mean inequality states that

∀x1, . . . , xn > 0,
1

n
(x1 + · · ·+ xn) ≥ n

√
x1 · · ·xn. (AM-GM)

Can you prove (AM-GM) using Jensen’s inequality?

4.2 Recognizing convex functions

Beyond the absence of non-global local minima, part of the power of convexity
for optimization is that it is often easy to spot. This is because many well-
known functions are convex, and many common operations on such functions
preserve their convexity. In this section, we consider such examples and
operations.

For now, we only discuss convexity for functions whose domains are a
whole linear space E . Later in the course, we will discuss convex functions
defined on subsets (which are themselves convex in a sense we shall define):
that will further enhance our collection of convex functions.

Exercise 4.12. Show that the following functions from R to R are convex.

1. f(x) = ex

2. f(x) = x2, f(x) = x4, f(x) = x6, . . .
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3. f(x) = |x|a with a ≥ 1

Show that the following functions from a Euclidean space E to R are convex.

4. f(x) = ⟨w, x⟩+ b with w ∈ E , b ∈ R

5. f(x) = 1
2
⟨x,Ax⟩ + ⟨b, x⟩ + c with A : E → E a symmetric positive

semidefinite linear map, b ∈ E, c ∈ R.

Among all of these functions, which are strictly convex? Which are µ-strongly
convex and with which constant µ? (You might find this exercise easier to
solve after reading the section about convexity and derivatives.)

Exercise 4.13. Show that if f1, f2 are two convex functions on E and a1, a2 ≥
0 are two nonnegative real numbers then f = a1f1 + a2f2 defined by

f(x) = a1f1(x) + a2f2(x)

is a convex function on E. Extend the claim to f = a1f1 + · · ·+ akfk. What
can you say about strict or strong convexity of f depending on properties of
f1, . . . , fk?

Exercise 4.14. Show that if f1, f2 are two convex functions on E, then the
max of those two functions, f = max(f1, f2) defined by

f(x) = max(f1(x), f2(x)),

is convex. Extend your reasoning to f = max(f1, . . . , fk). Deduce that the
function f(x) = |x| is convex.

Exercise 4.15. Using some of the exercises above, show that the function
f : Rn → R which to each vector x associates the sum of the k largest entries
of x is convex.

Exercise 4.16. Based on some of the exercises above, show that the log-
sum-exp function is convex (t > 0 is a fixed, real parameter):

f(x) = t log

(
k∑

i=1

exi/t

)
. (4.1)

(You might find this exercise easier to solve after reading the section about
convexity and derivatives.)
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This function is often used in applications because it is a smooth approx-
imation of the maximum function. Indeed, with x̄ = maxi xi show that

x̄ ≤ f(x) = x̄+ t log

(
k∑

i=1

e
xi−x̄

t

)
≤ x̄+ t log(k). (4.2)

Thus, the smaller t is, the better the approximation. However, from an op-
timization perspective (for example, if we plan to use gradient descent), can
you see a reason why we should not take t too small?

Note: on a computer, it is necessary to use expression (4.2) rather than
expression (4.1) to compute f (and its derivatives). Indeed, expression (4.1)
can lead to overflow when t is small because it involves computing exponen-
tials of possibly large numbers. In contrast, expression (4.2) only involves
exponentials of nonpositive numbers.

Exercise 4.17. Let E ,F be two linear spaces. Let f : E → R be convex.
Further let L : F → E be a linear map and let b ∈ E be arbitrary. Show
that the function g : F → R defined by g(y) = f(Ly + b) is convex. In other
words: convexity is preserved under affine transformations.

Recall that a norm on a linear space E is a map ∥ · ∥□ : E → R satisfying
the following properties:

1. ∥αx∥□ = |α|∥x∥□ for all x ∈ E , α ∈ R,

2. ∥x+ y∥□ ≤ ∥x∥□ + ∥y∥□,

3. ∥x∥□ ≥ 0 for all x and ∥x∥□ = 0 ⇐⇒ x = 0.

This include the Euclidean norm if E is equipped with a Eulidean structure
of course, but also any other norm (e.g., the 1-norm and ∞-norm on Rn.)

Exercise 4.18. Show that any norm on a linear space E is convex.

Exercise 4.19. Let L ∈ Rm×n and b ∈ Rm be arbitrary. Using some of the
exercises above, show that the functions

fp(x) = ∥Lx− b∥p, p ∈ {1, 2,∞}

are convex on Rn, where ∥u∥1 = |u1| + · · · + |um| is the 1-norm on Rm,
∥u∥2 =

√
u2
1 + · · ·+ u2

m is the 2-norm on Rm (which we usually simply denote
by ∥ · ∥ as it is the Euclidean norm for Rm with the usual inner product) and
∥u∥∞ = max(|u1|, . . . , |um|) is the infinity-norm on Rm.
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Exercise 4.20. Consider functions g : E → R and h : R → R. Let f =
h ◦ g : E → R be their composition. Show the following claims:

1. f is convex if: h is convex and nondecreasing and g is convex;

2. f is convex if: h is convex and nonincreasing and g is concave;

3. f is concave if: h is concave and nondecreasing and g is concave;

4. f is concave if: h is concave and nonincreasing and g is convex.

(To develop some confidence in the claim, you may find it convenient to
consider the case where both h and g are twice differentiable, and to use some
of the results presented below regarding convexity and second derivatives.)

In particular, argue that if g is convex and nonnegative then f(x) = g(x)2

is convex.

4.3 Convexity and derivatives

We can learn much about a function’s derivatives if we know that it is convex.
The other way around, we can learn much about a function’s convexity by
looking at its derivatives.

The first such result is a typical local-to-global property of convexity.
Namely: the gradient of f at x (which is a local quantity) provides us with
a global lower-bound on f . That global piece of information immediately
translates into a striking result, namely, that the first-order necessary opti-
mality condition is also a sufficient condition for global optimality when f is
convex.

Theorem 4.21. Assume f : E → R is differentiable on a Euclidean space E.
Then, f is convex if and only if

∀x, y ∈ E , f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ .

Moreover, f is strictly convex if and only if

∀x, y ∈ E , x ̸= y, f(y) > f(x) + ⟨∇f(x), y − x⟩ .

The proof strategy for Theorem 4.21 is to lean on Exercise 4.9. Indeed,
we can use the latter to reduce the question to one about univariate func-
tions: this is often useful when trying to establish properties of convexity.
Accordingly, let us start with the following lemma, which is nothing but
Theorem 4.21 but restricted to the univariate case.
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Lemma 4.22. Let g : R→ R be differentiable. Then, g is convex if and only
if

∀x, y ∈ R, g(y) ≥ g(x) + g′(x)(y − x).

Moreover, g is strictly convex if and only if

∀x, y ∈ R, x ̸= y, g(y) > g(x) + g′(x)(y − x).

Proof of Lemma 4.22. Let us consider the case of convexity first (we will
handle strict convexity afterwards.) Assume the inequalities hold. Then, for
x, y ∈ R and t ∈ [0, 1] arbitrary, define z = (1 − t)x + ty. Our assumption
implies that both of the following inequalities hold:

g(x) ≥ g(z) + g′(z)(x− z), g(y) ≥ g(z) + g′(z)(y − z).

Add them up with weights 1− t and t, respectively:

(1− t)g(x) + tg(y) ≥ g(z) + g′(z)
(
(1− t)(x− z) + t(y − z)

)
= g(z)

= g((1− t)x+ ty).

This shows that g is convex. The other way around, if g is convex, then for
all x, y ∈ R and t ∈ (0, 1] we have

g(x+ t(y − x)) = g((1− t)x+ ty)

≤ (1− t)g(x) + tg(y) = g(x) + t(g(y)− g(x)).

Move g(x) to the left-hand side and divide by t to find:

g(y) ≥ g(x) +
g(x+ t(y − x))− g(x)

t
.

Since this holds for all x, y, t as prescribed and since g is differentiable at x,
we can take the limit for t → 0 and conclude that the sought inequalities
hold.

Let us now turn to the case of strict convex. If the strict inequalities in
the lemma statement hold, then it is easy to show that g is strictly convex
using the argument above with minimal changes. For the other direction,
assume g is strictly convex. Then, it lies strictly below its chords, that is, for
all x, y distinct in R,

∀t ∈ (0, 1), g((1− t)x+ ty) < (1− t)g(x) + tg(y).
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Since g is (in particular) convex, it also lies above its first-order approximations—
that is what we proved above:

∀t ∈ [0, 1], g(x+ t(y − x)) ≥ g(x) + g′(x)t(y − x).

The left-hand sides of those inequalities coincide. Combine them to find:

∀t ∈ (0, 1), (1− t)g(x) + tg(y) > g(x) + g′(x)t(y − x).

Subtract g(x) on both sides and divide by t to conclude.

Proof of Theorem 4.21. Let x, y ∈ E be arbitrary, with x ̸= y (the case x = y
is easily treated separately). These two points define a line in E parameterized
by

γ(t) = (1− t)x+ ty.

Restricting f to that line by composition with γ, we get a univariate function:

g(t) = f(γ(t)), g′(t) = Df(γ(t))[γ′(t)] = ⟨∇f(γ(t)), y − x⟩ .

We have in particular that g(0) = f(x), g(1) = f(y) and g′(0) = ⟨∇f(x), y − x⟩.
Thus, the following two inequalities are equivalent:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ , g(1) ≥ g(0) + g′(0).

This is the main observation en route to our conclusion, which we reach as
follows:

1. If f is convex, then g is convex (Exercise 4.9) and Lemma 4.22 tells us
that g(1) ≥ g(0) + g′(0), which in turn confirms that f(y) ≥ f(x) +
⟨∇f(x), y − x⟩. This holds for arbitrary x, y.

2. If f(ỹ) ≥ f(x̃) + ⟨∇f(x̃), ỹ − x̃⟩ holds for all x̃, ỹ, then it holds in
particular for x̃ = γ(t0) and ỹ = γ(t1) with t0, t1 ∈ R arbitrary. Since

f(x̃) = f(γ(t0)) = g(t0), ỹ − x̃ = (t1 − t0)(y − x),

f(ỹ) = f(γ(t1)) = g(t1), ⟨∇f(x̃), ỹ − x̃⟩ = g′(t0)(t1 − t0),

we deduce that

∀t0, t1 ∈ R, g(t1) ≥ g(t0) + g′(t0)(t1 − t0).

Lemma 4.22 tells us that g is convex. Since this holds for arbitrary
lines, we conclude that f is convex (Exercise 4.9).
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The argument for strict convexity follows as above with minimal changes.

Corollary 4.23. [Proof for exam 2025;

to invoke
Theorem 4.21 you
must state its claim
explicitly but you do
not need to prove it.]

Let f be convex and differentiable on a Euclidean space.
Then x is a global minimum for f if and only if ∇f(x) = 0.

Proof. We already know from Theorem 2.26 that if x is a global minimum
then ∇f(x) = 0. The other way around, if ∇f(x) = 0, then Theorem 4.21
tells us that

∀y ∈ E , f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ = f(x),

that is, x is a global minimum for f .

Recall Theorem 3.2: that result gave us (convex) quadratic upper bounds
on functions with Lipschitz continuous gradients. We have seen just now that
convexity gives us linear lower -bounds. For strongly convex functions, we get
(convex) quadratic lower-bounds as well.

Corollary 4.24. Assume f : E → R is differentiable. Then f is µ-strongly
convex if and only if

∀x, y ∈ E , f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2.

Proof. By definition, f is µ-strongly convex if and only if the function g(x) =
f(x)− µ

2
∥x∥2 is convex. Theorem 4.21 further tells us that g is convex if and

only if

∀x, y ∈ E , g(y) ≥ g(x) + ⟨∇g(x), y − x⟩ .

Plugging in the expression for g and for ∇g(x) = ∇f(x) − µx, we see that
this is equivalent to the following statement:

∀x, y ∈ E , f(y)− µ

2
∥y∥2 ≥ f(x)− µ

2
∥x∥2 + ⟨∇f(x)− µx, y − x⟩ .

We reach the claim by reorganizing the terms.

The second class of results we state regarding convexity and differentia-
bility relate the spectrum of the Hessian of f to its convexity properties.

Theorem 4.25. Assume f : E → R is twice differentiable on a Euclidean
space E. Then,

1. f is convex if and only if ∇2f(x) ⪰ 0 for all x ∈ E;
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2. If ∇2f(x) ≻ 0 for all x ∈ E then f is strictly convex (but the converse
need not hold);

3. f is µ-strongly convex if and only if ∇2f(x) ⪰ µI for all x ∈ E.

Proof. For the second claim, notice that f(x) = x4 from R to R is strictly
convex yet ∇2f(0) = f ′′(0) = 0 is not positive definite. The rest of the proof
is left as an exercise. You may use Theorem 4.21, and you may want to
proceed with a similar strategy (that is, exploiting Exercise 4.9 to reduce the
theorem to a lemma about univariate functions first.)

Exercise 4.26. Consider f(x) = x1x2 from R2 to R. Show that f is not
convex, even though it is a convex function of x1 (with x2 fixed) and it is also
a convex function of x2 (with x1 fixed). This shows that joint convexity in
Rn (being convex in all n variables simultaneously) is more demanding than
simply being convex in the n individual variables separately.

4.4 Global minima of convex functions

It is an exercise to check that the set of global minima of a convex function
can be empty, that it can be a singleton, and that it can contain more than
one point (we will have more to say about this in Section 9.2).

Strictly convex functions may or may not have a global minimum. How-
ever, they never have more than one.

Theorem 4.27.[Proof for exam 2025] If f : E → R is strictly convex, then there exists at most
one global minimum x∗ ∈ E for f .

Proof. For contradiction, assume x, y ∈ E are distinct global minima of f , so
that f(x) = f(y) = fmin and f(z) ≥ fmin for all z ∈ E . Then, for all t ∈ (0, 1)
we have

fmin ≤ f((1− t)x+ ty) < (1− t)f(x) + tf(y) = fmin,

where the first inequality holds because fmin is the minimal value of f and the
second inequality holds because f is strictly convex. This is a contradiction.

Strongly convex functions admit a unique global minimum.

Theorem 4.28. If f : E → R is strongly convex, then there exists exactly
one global minimum x∗ ∈ E for f .
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Proof. By Theorem 4.27, we know f admits at most one global minimum.
It remains to show that it also admits at least one global minimum. Let us
sketch the proof by assuming the following:2

1. f is continuous; and

2. There exists at least one point (call it x) where f is differentiable.

Using differentiability at x, Corollary 4.24 tells us that

∀y ∈ E , f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2.

Define the ball B = {y ∈ E : ∥y − x∥ ≤ r} with r = 4∥∇f(x)∥
µ

. Then,

∀y ∈ E , y /∈ B, f(y) ≥ f(x)− ∥∇f(x)∥∥y − x∥+ µ

2
∥y − x∥2

= f(x) +
µ

2
(∥y − x∥2 − 1

2
r∥y − x∥)

≥ f(x) +
µr2

4
.

(The first inequality is Cauchy–Schwarz; the equality is by substituting the
definition of r to replace ∥∇f(x)∥; and the last inequality holds because
∥y − x∥ ≥ r.) Since B is compact and f is continuous, Weierstrass tells
us that f attains its minimum in B, that is, there exists x∗ ∈ B such that
f(y) ≥ f(x∗) for all y ∈ B. Moreover, x is in B. Thus, we can also say for all
y /∈ B that f(y) ≥ f(x) ≥ f(x∗). We summarize those statements as: there
exists x∗ such that f(y) ≥ f(x∗) for all y ∈ E , that is, f admits a global
minimum.

Exercise 4.29. Give an example of a smooth convex function which has more
than one global minimum. Give an example of a smooth convex function
which has exactly one global minimum.

Exercise 4.30. Give an example of a smooth, strictly convex function which
is bounded below yet does not have any local minimum.

2Though it would take some work to prove so, those assumptions are actually always
satisfied: convexity for f : E → R implies that f is continuous, and that it is continuously
differentiable on a dense subset of E [Roc70, Cor. 10.1.1,Thm. 25.5].



42 CHAPTER 4. CONVEX FUNCTIONS

4.5 Gradient descent for strongly convex functions

If f : E → R is lower-bounded and differentiable with L-Lipschitz continuous
gradient, we know that GD with constant step-size 1/L produces a sequence
of iterates (xk) in E whose accumulation points (if any) are critical points
of f . Moreover, we know that if f is convex, then its critical points are its
global minima. Thus, in this setting, all accumulation points of GD (if any)
are global optima. This remains true if we implement a reasonable line-search
algorithm to replace the fixed step-size 1/L.

If f is also strongly convex, then we can make a much stronger claim.
Indeed, we know that f has a unique minimum (Theorem 4.28), and moreover
GD converges to that minimum at least linearly.

Theorem 4.31.[Proof for exam 2025;

to invoke
Corollary 4.24 you
must state its claim
explicitly but you do
not need to prove it.]

Let f : E → R be µ-strongly convex and have L-Lipschitz

continuous gradient. Define κ = L
µ
. Let x∗ be the (unique) global minimizer

of f . Given an arbitrary x0 ∈ E, gradient descent with constant step-size
1/L, that is, xk+1 = xk − 1

L
∇f(xk) produces a sequence (xk) which satisfies

f(xk)− f(x∗) ≤
(
1− 1

κ

)k

(f(x0)− f(x∗)),

that is, f(xk) converges at least linearly to the optimal value f(x∗).

Proof. Through Theorem 3.2, L-Lipschitz continuous gradients give us the
following upper-bounds on f :

∀x, y ∈ E , f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2.

In the general analysis of GD (Theorem 3.4), we used those upper-bounds
to ensure that the value of f decreases by some non-trivial amount at each
iteration, namely, we established (3.3):

f(xk)− f(xk+1) ≥
1

2L
∥∇f(xk)∥2. (4.3)

Now equipped with the additional assumption of µ-strong convexity, we will
show that ∥∇f(xk)∥ is quite large as long as we are far away from the global
minimizer. We do so with the help of Corollary 4.24, which gives us the
following lower-bounds on f :

∀x, y ∈ E , f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2. (4.4)

Think of x being fixed. Since the inequality holds for all y, it holds in
particular if we minimize each side of the inequality with respect to y. The
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left-hand side is minimized when we set y = x∗. The right-hand side (a
quadratic) is minimized when we set y = x− 1

µ
∇f(x). When we plug these

into the inequality, we learn the following:

∀x ∈ E , f(x∗) ≥ f(x)− 1

µ
⟨∇f(x),∇f(x)⟩+ µ

2

1

µ2
∥∇f(x)∥2

= f(x)− 1

2µ
∥∇f(x)∥2.

Stated differently,

∀x ∈ E , ∥∇f(x)∥2 ≥ 2µ(f(x)− f(x∗)). (4.5)

Combine (4.3) and (4.5) with x = xk to reveal that

f(xk+1) ≤ f(xk)−
1

2L
∥∇f(xk)∥2 ≤ f(xk)−

µ

L
(f(xk)− f(x∗)).

Subtract f(x∗) on both sides to conclude that

f(xk+1)− f(x∗) ≤
(
1− µ

L

)
(f(xk)− f(x∗)),

as announced. (Conclude by induction on k.)

Corollary 4.32. In the setup of Theorem 4.31, we also have that (xk) con-
verges to x∗ at least linearly, and that ∥∇f(xk)∥ converges to zero at least
linearly. More precisely,

∥xk − x∗∥ ≤
√

2

µ
(f(x0)− f(x∗))

√
1− 1

κ

k

,

∥∇f(xk)∥ ≤
√

2L(f(x0)− f(x∗))

√
1− 1

κ

k

.

(For κ large, note that
√

1− 1
κ
≈ 1− 1

2κ
.)

Proof. From (4.3) we know that

1

2L
∥∇f(xk)∥2 ≤ f(xk)− f(xk+1) ≤ f(xk)− f(x∗). (4.6)

From (4.4) with x = x∗ (noting that ∇f(x∗) = 0) and y = xk, we learn that:

µ

2
∥xk − x∗∥2 ≤ f(xk)− f(x∗). (4.7)

Conclude using Theorem 4.31 to bound the right-hand sides.
Notice what happened here: for strongly convex functions with Lipschitz-

continuous gradient, the optimality gap f(xk) − f(x∗) is indicative of both
our distance to the optimum and of the norm of the gradient.
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Remark 4.33. We call κ = L
µ
the condition number of f . The reason for

this is that if f is a quadratic, namely,

f(x) =
1

2
⟨x,Ax⟩ − ⟨b, x⟩+ c,

then f is µ-strongly convex and has L-Lipschitz gradient if and only if µI ⪯
A ⪯ LI (where I is the identity on E). Therefore, we can set µ = λmin(A)
and L = λmax(A): the smallest and largest eigenvalues of A, respectively.
Since A is positive definite, its eigenvalues coincide with its singular values.
Then, the condition number of A (in the usual linear algebra sense of the
word, i.e., the ratio of its largest to smallest singular values) is precisely κ.
The gradient of f is ∇f(x) = Ax−b. Therefore, the unique global minimizer
of f is the solution of the linear system of equations Ax = b. We know from
linear algebra that solving such a linear system is more complicated when the
condition number of A is large. Here, we see that likewise minimizing f may
be slower if the condition number of A is large.

Remark 4.34. Gradient descent is not the best gradient-based algorithm
to minimize strongly convex functions with Lipschitz continuous gradients.
There exist other methods, often generically called “accelerated gradient meth-
ods” which enjoy linear convergence to x∗ at a rate controlled by 1− 1√

κ
instead

of 1− 1
κ
. In concrete terms, if κ ≈ 106, we could expect accelerated methods

to converge about a thousand times faster than standard GD. It is possible to
show that no gradient-based algorithm can overcome a dependency on

√
κ.

Remark 4.35. Theorem 3.15 states (without proof) that GD enjoys at least
linear convergence locally around critical points where the Hessian is positive
definite. Theorem 4.31 sheds some light on that claim, as follows. Even if f
is not convex globally, the following is true: if x∗ is critical and ∇2f(x∗) is
positive definite (say, all eigenvalues larger than µ), then there exists a ball
around x∗ in which the eigenvalues of the Hessian remain larger that .99µ.
Therefore, f is 0.99µ-strongly convex in that ball. It is possible to formalize
the claim that once GD enters such a ball then it does not leave it. Thus,
once it enters the ball, GD would only “see” a region where f is strongly
convex: the fact that f lacks (strong) convexity outside of the ball no longer
has any effect on the behavior of GD. In essence, this is why GD then enjoys
at least linear convergence to x∗.



Chapter 5

Newton’s method

Let f : E → R be differentiable with L-Lipschitz continuous gradient on a
Euclidean space E . We can think of gradient descent with constant step-size
1/L as doing the following: given x0, iterate for k = 0, 1, 2, . . .:

xk+1 = argmin
x∈E

m̃k(x)

with

m̃k(x) = f(xk) + ⟨∇f(xk), x− xk⟩+
L

2
∥x− xk∥2.

Indeed, the function m̃k : E → R is a (strongly) convex quadratic whose
unique minimizer is attained at xk − 1

L
∇f(xk). We can think of m̃k as a

quadratic model (an approximation) of f around xk. (We also know from
Theorem 3.2 that m̃k is an upper-bound on f .)

If f is twice differentiable, then Taylor’s theorem suggests that we could
consider a more accurate model for f around xk. Namely, let us now consider

mk(x) = f(xk) + ⟨∇f(xk), x− xk⟩+
1

2

〈
x− xk,∇2f(xk)[x− xk]

〉
. (5.1)

If ∇2f(xk) is positive definite, then mk is again a strongly convex quadratic.
In that scenario, we know that the unique minimizer of mk is attained at the
point x where the gradient of mk vanishes, that is:

0 = ∇mk(x) = ∇f(xk) +∇2f(xk)[x− xk].

The above defines a linear system of equations in E where uk = x− xk is the
unknown in E :

∇2f(xk)[uk] = −∇f(xk). (5.2)

45



46 CHAPTER 5. NEWTON’S METHOD

Algorithm 5.1 Newton’s method

1: Input: x0 ∈ E
2: for k in 0, 1, 2 . . . do
3: Solve the Newton system ∇2f(xk)[uk] = −∇f(xk) for uk ∈ E
4: xk+1 = xk + uk

5: end for

Equation (5.2) is called the Newton system at xk. Newton’s method iterates
the following given x0 ∈ E :

For k = 0, 1, 2, . . . , xk+1 = xk + uk, (5.3)

with uk the solution of the Newton system (5.2). By design, this amounts to
letting xk+1 be the unique global minimizer of mk. See Algorithm 5.1.

5.1 Lipschitz continuous Hessians

For gradient descent, xk+1 depends on ∇f evaluated at xk. If ∇f is dis-
continuous, or if it is continuous but can vary wildly nonetheless, then it
is difficult to imagine how we could control the behavior of the iteration.
This is why back then we introduced the assumption of Lipschitz continuous
gradients A2.

For Newton’s method, iteration (5.3) is mathematically equivalent to the
following:1

xk+1 = xk + uk = xk − (∇2f(xk))
−1[∇f(xk)]. (5.4)

In the same spirit as above, in order to analyze the behavior of the iteration,
we need some control over the continuity of ∇f and ∇2f . To this end, we
introduce the following notion.

Definition 5.1. The Hessian of f is L′-Lipschitz continuous if

∀x, y ∈ E , ∥∇2f(x)−∇2f(y)∥ ≤ L′∥x− y∥, (5.5)

where L′ ≥ 0 is a constant. Note: the norm on the left-hand side is the
operator norm in the Euclidean space E; see the reminders in Section 2.1,
specifically eq. (2.2).

1In practice that is not how we compute xk+1, but more on this later.
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Many cost functions f encountered in practice satisfy (5.5), though per-
haps not for all x, y ∈ E . This is fine: we really only need (5.5) to hold in
the regions that our algorithms explore.

When f has Lipschitz continuous Hessian, we get excellent control over its
local behavior. The following theorem gives us uniform control over the error
term in second-order Taylor expansions of f , and also (more importantly for
our purpose) over the error term in first-order Taylor expansions of ∇f .
Indeed, the theorem below states (in a precise fashion) that

∇f(x+ u) = ∇f(x) +∇2f(x)[u] +O(∥u∥2).

Ordered differently, it states that

∇2f(x)[u] = ∇f(x+ u)−∇f(x) +O(∥u∥2).

Both are useful perspectives, compatible with the definition of ∇2f(x)[u] as
being the directional derivative of ∇f at x along u.

Theorem 5.2. [Proof for exam 2025;

only the part proved
here.]

Let f : E → R be twice continuously differentiable. If ∇2f is
L′-Lipschitz continuous, then

∀x, u ∈ E , f(x+ u) ≤ f(x) + ⟨∇f(x), u⟩+ 1

2

〈
u,∇2f(x)[u]

〉
+

L′

6
∥u∥3.

Moreover,

∀x, u ∈ E ,
∥∥∇f(x+ u)−∇f(x)−∇2f(x)[u]

∥∥ ≤ L′

2
∥u∥2.

Proof. With c(t) = x + tu, consider the function G = ∇f ◦ c : R → E .
This function satisfies G(0) = ∇f(x) and G(1) = ∇f(x + u). Moreover,
G is continuously differentiable. This allows us to invoke the fundamental
theorem of calculus to claim:2

G(1)−G(0) =

∫ 1

0

G′(t)dt =

∫ 1

0

D(∇f)(c(t))[c′(t)]dt =
∫ 1

0

∇2f(c(t))[c′(t)]dt.

Plugging in our expressions for G(0), G(1), c(t) and c′(t) = u, it follows that:

∇f(x+ u)−∇f(x) =
∫ 1

0

∇2f(x+ tu)[u] dt

= ∇2f(x)[u] +

∫ 1

0

∇2f(x+ tu)[u]−∇2f(x)[u] dt.

2If you are uncomfortable integrating vector-valued functions, you can also pick an
orthonormal basis e1, . . . , ed for E and write G′(t) =

∑d
i=1 hi(t)ei with hi(t) = ⟨G′(t), ei⟩.

Then, apply the reasoning to each hi : R → R separately, and combine using linearity of
integration.
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Let us bound the norm of the integrand using the definition of operator norm
and our Lipschitzness assumption:

∥∇2f(x+ tu)[u]−∇2f(x)[u]∥ = ∥(∇2f(x+ tu)−∇2f(x))[u]∥
≤ ∥∇2f(x+ tu)−∇2f(x)∥∥u∥
≤ L′∥x+ tu− x∥∥u∥
= |t|L′∥u∥2.

It then follows from above that

∥∇f(x+ u)−∇f(x)−∇2f(x)[u]∥ ≤
∥∥∥∥∫ 1

0

∇2f(x+ tu)[u]−∇2f(x)[u] dt

∥∥∥∥
≤
∫ 1

0

∥∥∇2f(x+ tu)[u]−∇2f(x)[u]
∥∥ dt

≤ L′∥u∥2
∫ 1

0

t dt

=
L′

2
∥u∥2.

This establishes the second set of inequalities in the theorem statement.
Proving the first set of inequalities is left as an exercise.

Exercise 5.3. Prove the first set of inequalities in Theorem 5.2.

5.2 Local convergence

Recall Definition 3.13 about linear convergence rates. When all goes accord-
ing to plan, Newton’s method can convergence much faster. Convergence
rates as described in the following definitions are called superlinear.

Definition 5.4. Let θ0, θ1, θ2, . . . be a sequence converging to θ in R. We
say (θk) converges to θ with at least order q > 1 if there exists r > 0 and a
sequence ε0, ε1, ε2, . . . > 0 such that

εk → 0, |θk − θ| ≤ εk, and lim
k→∞

εk+1

εqk
= r.

If the inequalities hold with equality, we say convergence is with order q; if
this holds with q = 2, the convergence is quadratic.

A couple of remarks are in order:

1. There is no need to require r < 1 since q > 1 (think about it.)
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2. It makes no sense to discuss the rate of convergence of a sequence to θ if
that sequence does not converge to θ, which is why the definition above
requires that the sequence converges to θ as an assumption. Indeed,
consider the following sequence: θk = 2 for all k, and consider the limit
limk→∞

|θk+1−0|
|θk−0|2 = 1

2
> 0. Of course, we cannot conclude from this that

θ0, θ1, θ2 . . . converges to 0 quadratically, since it does not even converge
to 0 in the first place. In fewer words: always secure convergence to θ
before you discuss the rate of convergence to θ.

Exercise 5.5. Show that if (θk) converges to θ with at least order q > 1 then
in particular it converges to θ at least linearly, with arbitrarily good rate.
This is why we call the above superlinear convergence.

We now proceed to show that, under some assumptions, Newton’s method
converges at least quadratically (that is, with at least order two).

A3. The Hessian of f is L′-Lipschitz continuous.

Theorem 5.6. [Proof for exam 2025]Let f : E → R satisfy assumption A3, and let x∗ ∈ E be
a critical point of f (i.e., ∇f(x∗) = 0) where ∇2f(x∗) ≻ 0—in particular,
x∗ is a strict local minimum. There exists r > 0 such that, if x0 is in
B = {x ∈ E : ∥x − x∗∥ ≤ r}, then Newton’s method generates a sequence
(xk)k≥0 ⊂ B which converges at least quadratically to x∗.

Proof. We must show

1. that (xk) remains in some non-empty ball B around x∗ (to be con-
structed) if x0 is in B,

2. that (xk) then converges to x∗, and

3. that the convergence rate is then at least quadratic.

By assumption, ∇2f(x∗) is positive definite, that is, its eigenvalues are
all (strictly) positive. To fix notation, let µ > 0 be such that all eigenvalues
of ∇2f(x∗) are at least 3

2
µ. Let

B = {x ∈ E : ∥x− x∗∥ ≤ r} with r =
µ

2L′ .

Then, for all x ∈ B and for all u ∈ E with ∥u∥ = 1,〈
u,∇2f(x)[u]

〉
=
〈
u,∇2f(x∗)[u]

〉
+
〈
u, (∇2f(x)−∇2f(x∗))[u]

〉
≥ 3

2
µ− ∥∇2f(x)−∇2f(x∗)∥

≥ 3

2
µ− L′∥x− x∗∥

≥ µ,
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where we used the Lipschitz Hessian assumption A3 and ∥x−x∗∥ ≤ r = µ
2L′ .

In particular, for all x ∈ B we have that ∇2f(x) is invertible. More precisely,
we have that all of its eigenvalues are at least µ.

Assume xk is in B for some k. Let us show that xk+1 is also in B. Then,
it will follow by induction that the sequence remains in B. Since the goal is
to control the distance between xk and x∗ as a function of k, let us start by
writing the Newton iteration and subtracting x∗ on both sides:

xk+1 − x∗ = xk − x∗ − (∇2f(xk))
−1[∇f(xk)].

Multiply the equation by ∇2f(xk):

∇2f(xk)[xk+1 − x∗] = ∇2f(xk)[xk − x∗]−∇f(xk).

On the one hand, xk ∈ B implies that3

∥∇2f(xk)[xk+1 − x∗]∥ ≥ µ∥xk+1 − x∗∥. (5.6)

On the other hand,

0 = ∇f(x∗) = ∇f(xk + (x∗ − xk)) = ∇f(xk) +∇2f(xk)[x
∗ − xk] + vk,

(5.7)

where ∥vk∥ ≤ L′

2
∥xk − x∗∥2 owing to our Lipschitz Hessian assumption A3

and Theorem 5.2. Therefore,

∥∇2f(xk)[xk+1 − x∗]∥ = ∥vk∥ ≤
L′

2
∥xk − x∗∥2.

Combining these observations, we can write:

∥xk+1 − x∗∥ ≤ L′

2µ
∥xk − x∗∥2. (5.8)

Since xk is assumed to be in B, we know ∥xk − x∗∥ ≤ r so that

∥xk+1 − x∗∥ ≤ L′

2µ
∥xk − x∗∥ · ∥xk − x∗∥

≤ L′

2µ

µ

2L′ · ∥xk − x∗∥

=
1

4
∥xk − x∗∥.

3This is because for positive semidefinite matrices the eigenvalues and the singular
values coincide.
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From this inequality, we deduce that xk+1 is in B. Then, under the as-
sumption that x0 is in B, it follows by induction that the whole sequence
x0, x1, x2 . . . is in B and that it converges at least linearly to x∗. Moreover,4

the convergence is at least quadratic owing to (5.8).

Exercise 5.7. Modify the proof of Theorem 5.6 to show that the claim still
holds if ∇f(x∗) = 0 and ∇2f(x∗) is invertible (as opposed to requiring the
stronger condition ∇2f(x∗) ≻ 0). You may find the following inequality
useful:5 for all linear maps A,B between Euclidean spaces, it holds that

σmin(A+B) ≥ σmin(A)− σmax(B).

Why is this bad news for optimization with Newton’s method?

5.3 Global convergence?

In general, Newton’s method does not converge, even if f is µ-strongly convex
with L-Lipschitz continuous gradient and L′-Lipschitz continuous Hessian
(see Exercise 5.8). However, in this generous setup, it is possible to modify
Newton’s method to ensure convergence.6 The idea is to introduce a line-
search procedure. We let

xk+1 = xk − tk · ∇2f(xk)
−1[∇f(xk)]

where tk is chosen to ensure sufficient improvement in each step. If tk = 1
allows us to obtain this target improvement, then we set tk = 1. Otherwise,
we can use a backtracking-type of line-search method to select a smaller
value of tk. Eventually, xk will be close enough to x∗, and from that point
on we will always select tk = 1, so that the method will become equivalent
to standard Newton. In this fashion, we can ensure global convergence and
preserve the local quadratic convergence rate.

The approach described above is called damped Newton. However, we
should keep in mind that if f is not µ-strongly convex, then this fix may
not work. In particular, the Hessian of f may fail to be positive definite at

4Inequality (5.8) is not sufficient to claim quadratic convergence. It is necessary first
to prove that the sequence converges, and then to claim that the convergence rate is at
least quadratic. As an example, consider the sequence defined by t0 = 2 and tk+1 = t2k: it
does not converge quadratically; it diverges!

5See for example https://math.stackexchange.com/questions/3091423/.
6https://mdav.ece.gatech.edu/ece-6270-spring2021/notes/08-newtons-metho

d.pdf

https://math.stackexchange.com/questions/3091423/
https://mdav.ece.gatech.edu/ece-6270-spring2021/notes/08-newtons-method.pdf
https://mdav.ece.gatech.edu/ece-6270-spring2021/notes/08-newtons-method.pdf
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some iterate xk, in which case the Newton direction may fail to be a descent
direction, or it could even be undefined when the Hessian is not invertible.

Soon enough, we will discuss a much more reliable fix to Newton’s method:
the trust-region method.

Exercise 5.8. Check that the function f(x) = 1
10
x2 +

√
x2 + 1 is strongly

convex, that its gradient (f ′) is Lipschitz continuous, and yet that Newton’s
method on f initialized at x0 = 2 does not converge to the minimizer of
f . Further check that even f ′′ is Lipschitz continuous. Hint: check this
numerically first to gain some intuition; check that f is C2, so that the first
part of the exercise reduces to studying f ′′.

5.4 Solving Newton systems: conjugate gradients

Consider Algorithm 5.1 again. The Newton step at x ∈ E is the vector u ∈ E
such that

∇2f(x)[u] = −∇f(x), (5.9)

assuming ∇2f(x) is invertible. This is simply a linear system of equations.
In principle, we could use any standard algorithm to solve it: Gaussian
elimination (implemented as LU factorization), QR factorization, Cholesky
factorization. . . Those algorithms require a matrix representation, that is,
∇2f(x) should be available as a matrix.

In practice however, we rarely have access to ∇2f(x) as a matrix. More
often, we can access the Hessian as an operator, that is: we can write code
which, given v ∈ E , computes ∇2f(x)[v]. In principle, we could use that code
to construct a matrix representation of ∇2f(x) which we could then give to
one of the aforementioned factorization-based algorithms, but that tends to
be expensive.

Exercise 5.9. Say you have computer code to compute ∇2f(x)[v], that is,
you have a function (in Matlab for example) which takes as input a point
x and a vector v, and outputs the vector ∇2f(x)[v]. For the special case
E = Rd, how do you use that code to compute a matrix of size d × d which
corresponds to the Hessian of f at x? How many times do you need to call
the above function, that is, how many different vectors v do you need to pass
to that function?

Algorithms which solve linear systems using computations of the form
∇2f(x)[v] but which do not require access to a matrix representation of
∇2f(x) are called matrix-free solvers.
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First idea: gradient descent on the model

Fix a point x ∈ E : this is our current iterate. Our original goal is to compute
a vector u ∈ E such that f(x+ u) is small, and the idea of Newton’s method
is to base this decision on the second-order Taylor approximation of f around
x, namely,

f(x+ u) ≈ m(u) ≜ f(x) + ⟨∇f(x), u⟩+ 1

2

〈
u,∇2f(x)[u]

〉
,

and we choose u to be the minimizer of m. To further simplify notation, let

H = ∇2f(x), b = −∇f(x),

so that we wish to minimize

m(u) ≜
1

2
⟨u,Hu⟩ − ⟨b, u⟩ .

(The constant f(x) has no effect since x is fixed, so we discard it.)
Under the assumptions we made when designing Newton’s method, the

Hessian H = ∇2f(x) is positive definite. Thus, the quadratic model m is
strongly convex: it has a unique minimizer which coincides with its critical
point: 0 = ∇m(u) = Hu− b. This is what led us to state the formula for u
as u = −∇2f(x)−1[∇f(x)] = H−1b: the solution of a linear system.

Let us take a few steps back: since the goal is to find the minimizer of
m, why not run an optimization algorithm on m directly? For example, we
could run gradient descent (GD) on m. Up to (important) details regarding
step-size selection, we know that GD can behave well on strongly convex
functions. Also, we are allowed to initialize anywhere we want, because
there are no local optima: we will always converge to the same (optimal) u.

Accordingly, a first idea is to proceed as follows. Initialize v0 = 0 (this is
the initial iterate, chosen arbitrarily). We would now run GD on m starting
from v0. More generally, let us choose a direction p0 and a step-size α1 and
let

v1 = v0 + α1p0.

The standard choice for p0 is to let

p0 = −∇m(v0) = b−Hv0,

but let us keep the notation more general for now. We will iterate this
procedure, so, more generally the update rule shall be

vn = vn−1 + αnpn−1,
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where p0, p1, p2, . . . are the (nonzero) directions we chose to use for our up-
dates. (Again, GD would simply set pn = b−Hvn for all n.)

What should we do for the step-sizes αn? Generally, we would want to
run a line-search algorithm such as backtracking. But here, the cost function
m is a simple quadratic: we can easily select the optimal step-size! Here’s
how. Let α be “free” for now, and let us check the model value for all possible
choices of α:

m(vn−1 + αpn−1) =
1

2
⟨vn−1 + αpn−1, H(vn−1 + αpn−1)⟩ − ⟨b, vn−1 + αpn−1⟩

= m(vn−1) +
α2

2
⟨pn−1, Hpn−1⟩

+
α

2
⟨pn−1, Hvn−1⟩+

α

2
⟨vn−1, Hpn−1⟩ − α ⟨b, pn−1⟩

= m(vn−1) +
α2

2
⟨pn−1, Hpn−1⟩ − α ⟨b−Hvn−1, pn−1⟩ .

(5.10)

(To reach the last equality, we used the fact that H is symmetric so that
⟨u,Hv⟩ = ⟨Hu, v⟩ for all u, v.)

The expression (5.10) is quadratic in α, and the coefficient in front of
α2 is positive because H is positive definite. Thus, that function of α is
strongly convex: the optimal α is obtained by setting the derivative to zero.
Explicitly, the derivative of (5.10) with respect to α is

α ⟨pn−1, Hpn−1⟩ − ⟨b−Hvn−1, pn−1⟩ .

The best possible choice for αn is the root of that expression, namely,

αn =
⟨b−Hvn−1, pn−1⟩
⟨pn−1, Hpn−1⟩

.

Notice in the numerator that b − Hvn−1 = −∇m(vn−1). We shall find it
convenient to give a name to the sequence of these (negative) gradients of
the model along our sequence of iterates v0, v1, v2, . . ., so let

rn = −∇m(vn) = b−Hvn for n = 0, 1, 2, . . .

Overall, the somewhat general procedure we have described looks as fol-
lows:

� Let v0 = 0, r0 = b−Hv0 = b.

� Choose some p0; for example, GD would set p0 = r0.
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� For n = 1, 2, 3 . . .

– Compute αn = ⟨rn−1,pn−1⟩
⟨pn−1,Hpn−1⟩ .

– Let vn = vn−1 + αnpn−1.

– Let rn = b−Hvn.

– Maybe decide to stop; for example, if ∥rn∥ = ∥∇m(vn)∥ is small.

– Choose the next direction pn; GD would set pn = rn.

This is not bad. In particular, notice that in each iteration we only need
to compute two Hessian-vector products, namely, Hpn−1 to compute αn and
Hvn to compute rn. We can even better with little effort. Indeed, notice
that rn can be computed recursively as follows:

rn = b−Hvn = b−H(vn−1+αnpn−1) = b−Hvn−1−αnHpn−1 = rn−1−αnHpn−1.

This is great because now the product Hvn has been replaced by Hpn−1,
which we already had to compute anyway. So, the improved algorithm is as
follows:

� Let v0 = 0, r0 = b−Hv0 = b.

� Choose some p0; for example, GD would set p0 = r0.

� For n = 1, 2, 3 . . .

– Compute Hpn−1 (this is the only use of H in this iteration).

– Compute αn = ⟨rn−1,pn−1⟩
⟨pn−1,Hpn−1⟩ .

– Let vn = vn−1 + αnpn−1.

– Let rn = rn−1 − αnHpn−1.

– Maybe decide to stop; for example, if ∥rn∥ is small.

– Choose the next direction pn; GD would set pn = rn.

You could run this as is. But we will do better still. A lot better in fact,
for almost the same computational cost per iteration.

Upgrade: from GD to CG

The algorithm we are about to describe is called conjugate gradients. To
see how you could have discovered it yourself, reconsider the GD algorithm



56 CHAPTER 5. NEWTON’S METHOD

above, and observe what happens if we expand the iterates vn simply by
following what the algorithm does:

v0 = 0,

v1 = v0 + α1p0 = α1p0,

v2 = v1 + α2p1 = α1p0 + α2p1,

v3 = v2 + α3p2 = α1p0 + α2p1 + α3p2, . . .

Clearly, each vn is a linear combination of the directions p0, . . . , pn−1 we chose
to use. Moreover, the coefficients α1, α2, . . . were chosen one by one to be
optimal along one specific direction.

Here is an idea: at each iteration, perhaps we could reconsider all the
“step-sizes”, that is, all the coefficients used to form vn as a linear combina-
tion of all the directions we have generated so far?

Here is how this would go. At iteration n, we let

vn = αn,1p0 + . . .+ αn,npn−1, (5.11)

for some coefficients αn,1, . . . , αn,n to be determined. (They have two indices
now, because the coefficient of, say, p0 to form v0 may not be the same as
the coefficient of p0 to form v1, etc.: let’s keep our options open for now.)
The value of the model at this vn is as follows:

m(vn) = m

(
n∑

i=1

αn,ipi−1

)

=
1

2

n∑
i=1

n∑
j=1

αn,iαn,j ⟨pi−1, Hpj−1⟩ −
n∑

k=1

αk ⟨b, pk−1⟩

=
1

2
a⊤Ma− c⊤a,

where a ∈ Rn, M ∈ Rn×n and c ∈ Rn are defined by

ai = αn,i, Mij = ⟨pi−1, Hpj−1⟩ , ck = ⟨b, pk−1⟩ .

This is a quadratic in the vector of coefficients a that we need to select.
Notice the following linear algebra fact:

As long as the vectors p0, . . . , pn−1 are linearly independent, and
since we assume H is positive definite, the matrix M ∈ Rn×n is
positive definite too.
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(To verify this, go back to the calculation above and check that a⊤Ma ≥ 0
for all a, and that this is zero if and only if a = 0.) This means that the
quadratic a 7→ 1

2
a⊤Ma − c⊤a is strongly convex, so we can find the optimal

a simply by setting the gradient to zero. The gradient of the quadratic is
Ma− c (make sure you know how to find this), and hence the optimal choice
of coefficients is obtained by solving the linear system

Ma = c.

This is certainly doable, but there are a few caveats:

1. The linear system at iteration n is of size n×n; so the more we iterate,
the more expensive the iterations become.

2. Also, in order to form vn, we need to “remember” (store in memory) all
the vectors p0, p1, p2 etc. generated so far, and to compute their linear
combination from scratch each time: this means a lot of memory use
and a lot of computations if the dimension of E is large.

Fortunately, we can resolve all of that with a clever choice of directions pi.
The initial intuition is that we might aim to make the linear system

Ma = c easy to solve. Specifically, let us aim for M to be diagonal. This is
the case exactly if

Mij = ⟨pi−i, Hpj−i⟩ = 0 for all i ̸= j.

In words: M is diagonal if the directions p0, p1, p2, . . . are H-orthogonal, that
is, orthogonal with respect to the inner product

⟨u, v⟩H ≜ ⟨u,Hv⟩ .

This is indeed an inner product because H is positive definite (make sure
this makes sense to you).

In the gradient descent version of the algorithm, we simply chose the
vectors r0, r1, r2, . . . to be the optimization directions. There is no reason a
priori that these should just happen to be H-orthogonal. However, we can
modify them in order to produce new directions that are H-orthogonal: this
is exactly what the Gram–Schmidt algorithm is for.

Concretely, the plan is as follows: let

p0 = r0,

and then, for each n > 0, let pn be the part of rn that is H-orthogonal to the
subspace spanned by all previous vectors generated so far:

pn = rn −
n−1∑
i=0

⟨rn, Hpi⟩
⟨pi, Hpi⟩

pi.
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Here is a first remarkable fact:

It so happens that all the coefficients ⟨rn,Hpi⟩
⟨pi,Hpi⟩ are zero, except the

one for pn−1.

We skip the proof (it is not entirely trivial). Thus, the above expression for
pn simplifies to

pn = rn −
⟨rn, Hpn−1⟩
⟨pn−1, Hpn−1⟩

pn−1.

This is particularly nice, as it means that computing pn only requires us
to “remember” pn−1 (the earlier vectors in that sequence can be forgotten).
Also, this computation is rather cheap compared to a linear combination of
n vectors.

Here is another particularly convenient fact. Now that M is diagonal, the
linear system Ma = c has a simple, explicit solution:

αn,i = ai =
ci
Mii

=
⟨b, pi−1⟩

⟨pi−1, Hpi−1⟩
.

Notice how this expression actually does not depend on n. Thus, we can
legitimately rename them αi:

αi =
⟨b, pi−1⟩

⟨pi−1, Hpi−1⟩
.

Going back to (5.11), we have

vn = α1p0 + . . .+ αnpn−1.

For the same reason, the previous iterate is

vn−1 = α1p0 + . . .+ αn−1pn−2.

Thus, vn can be obtained with the following recursion:

vn = vn−1 + αnpn−1.

Here too, we see that the computation is cheap, and it only requires us to
have access to pn−1: the older vectors can safely be forgotten.

Overall, starting from the GD algorithm above and making the necessary
changes, the algorithm looks like this:

� Let v0 = 0, r0 = b.
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� Let p0 = r0.

� For n = 1, 2, 3 . . .

– Compute Hpn−1 (this is the only use of H in this iteration).

– Compute αn = ⟨b,pn−1⟩
⟨pn−1,Hpn−1⟩ .

– Let vn = vn−1 + αnpn−1.

– Let rn = rn−1 − αnHpn−1.

– Maybe decide to stop; for example, if ∥rn∥ is small.

– Compute βn = − ⟨rn,Hpn−1⟩
⟨pn−1,Hpn−1⟩ .

– Let pn = rn + βnpn−1.

That’s it. The only other technical thing is that the coefficients αn and
βn are usually computed with different formulas, as follows:

αn =
∥rn−1∥2

⟨pn−1, Hpn−1⟩
, βn =

∥rn∥2

∥rn−1∥2
.

It is not obvious why these formulas are equivalent to the ones above, but
they are the preferred ones for numerical reasons. The final algorithm is
known as the conjugate gradients method (CG): see Algorithm 5.2.

By construction, it is clear that

� GD and CG have the same first iterate v1.

� For all subsequent iterates, CG can only do better than GD (and typ-
ically does so by a lot).

� Yet, the computational cost of one iteration of CG is essentially the
same as that of GD.

There is a lot more to say about CG, but we won’t have enough time in this
course. The next section is there if you are interested—feel free to skip it.

Additional notes about CG (optional)

CG is an iterative algorithm: it produces a sequence v0, v1, v2, . . . in E whose
iterates are increasingly better approximations of the solution u to the linear
system Hu = b. Here, “better” is measured with respect to a special norm.

Indeed, instead of measuring the distance from vn to u in the usual Eu-
clidean norm, ∥v∥ =

√
⟨v, v⟩, CG tries to reduce the approximation error in

the H-norm, defined as:

∥v∥H =
√
⟨v,Hv⟩. (5.12)
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Exercise 5.10. Verify that ∥ · ∥H is a norm, using H ≻ 0.

The (squared) approximation error for a vector v ∈ E then obeys:

∥v − u∥2H = ⟨v − u,H(v − u)⟩
= ⟨v,Hv⟩ − ⟨u,Hv⟩ − ⟨v,Hu⟩+ ⟨u,Hu⟩
= ⟨v,Hv⟩ − 2 ⟨v, b⟩+ ⟨u,Hu⟩ ,

where we used that H is symmetric and Hu = b. Define g : E → R as

g(v) =
1

2
⟨v,Hv⟩ − ⟨v, b⟩ . (5.13)

Then, we have found that

∥v − u∥2H = 2g(v) + ⟨u,Hu⟩ . (5.14)

Since the last term on the right-hand side is independent of v, we conclude
that minimizing ∥v − u∥H is equivalent to minimizing g(v).

CG (Algorithm 5.2) rests on this last observation: it is an optimization
algorithm specifically designed to minimize g(v). In so doing, it actually
minimizes ∥v − u∥H , but notice an important fact: if you were asked to
minimize h(v) = ∥v − u∥H , it would not be clear how to do it, because u is
the object we are trying to find: we do not have access to it yet, so how would
we compute h, its gradient etc. which we would likely need to minimize h?
In contrast, we know how to compute g and its gradient: this is why it’s
possible to minimize it.

Here is a little bit more context for how CG works. The claims below are
not obvious: they should help you understand how CG works, but we omit
proofs: see [NW06, §5.1]. As you can see from Algorithm 5.2, CG iteratively
generates a sequence of vectors

p0, p1, p2, . . . ∈ E .

Under our assumption that H is positive definite, one can show that these
vectors are linearly independent.7 Moreover, they are orthogonal with respect
to the special inner product ⟨u, v⟩H ≜ ⟨u,Hv⟩, that is,

∀i ̸= j, ⟨pi, pj⟩H = 0. (5.15)

7To be a bit more precise: it can be shown that the algorithm necessarily stops af-
ter a finite number of iterations; for example, it stops at iteration n, having generated
p0, . . . , pn−1. Then, the claim is that p0, . . . , pn−1 are linearly independent.
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We say that the vectors p0, p1, p2 . . . are H-conjugate directions.
Say we are at iteration n in CG. By linear independence, the vectors

p0, . . . , pn−1 span a linear subspace of dimension n in E . The algorithm is
designed in such a way that vn has the following property:

vn = argmin
v∈span(p0,...,pn−1)

g(v), (5.16)

that is, vn is the (unique) global minimizer of g restricted to the subspace
spanned by the available directions p0, . . . , pn−1.

It is then clear that, by the time we get to iteration n = dim E , the
directions p0, . . . , pn−1 must form a basis for the whole space E , and therefore
vn is a global minimizer of g over the whole space E , that is: vn is the solution
to our problem, and the algorithm necessarily stops.

One can show a rather more sophisticated guarantee using Chebyshev
polynomials:

Algorithm 5.2 Conjugate gradients

Input: positive definite linear map H on E and b ∈ E

Set v0 = 0, r0 = b, p0 = r0

For n = 1, 2, . . .

Compute Hpn−1 (this is the only call to H)

αn = ∥rn−1∥2
⟨pn−1,Hpn−1⟩

vn = vn−1 + αnpn−1

rn = rn−1 − αnHpn−1

If rn = 0, output u = vn: the solution of Hu = b

βn = ∥rn∥2
∥rn−1∥2

pn = rn + βnpn−1

Theorem 5.11. CG terminates in n iterations if H has only n distinct
eigenvalues. More generally, if λmin and λmax denote the smallest and largest
eigenvalues of H, then κ = λmax

λmin
is the condition number of H, and

∥vn − u∥H ≤ ∥u∥H · 2
(√

κ− 1√
κ+ 1

)n

, (5.17)
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so that the error decreases exponentially fast as CG iterates (we have at least
linear convergence), and it eventually hits zero after at most dim E iterations.

The fact that CG terminates in at most dim E iterations is of little prac-
tical relevance, in part because numerical round-off errors typically preempt
this. However, the progressive improvement of the iterates vn as predicted
by (5.17) is borne out empirically, and the role of the condition number κ is
indeed critical.

In practice, CG is terminated after a set number of iterations, or when
a target relative tolerance is met. For example, it is standard to replace the
stopping criterion rn = 0 with

∥rn∥ ≤ εtolerance∥b∥. (5.18)

This makes sense because

rn = b−Hvn = −∇g(vn) (5.19)

that is, rn is the residue of the linear system at iteration n, and it is also the
(negative) gradient of g at vn, both of which are zero when vn is the solution.
Moreover, b = r0 is the initial residue, so that it is natural to use it as the
“scale” against which to judge whether rn has become sufficiently small.

Remark 5.12. A simple alternative to CG is to run gradient descent with
fixed step-size on g(v) (5.13). Since g is a convex quadratic, it is easy to check
that it has L-Lipschitz continuous gradient with L = λmax(H). Using previous
facts in these lectures notes, one can show that running vn+1 = vn− 1

L
∇g(vn)

with v0 = 0 leads to ∥vn−u∥ ≤ e−n/κ∥u∥ where κ = λmax(H)
λmin(H)

. In contrast, CG

guarantees ∥vn−u∥H ≤ 2e−n/
√
κ∥u∥H . The square root is a big improvement.



Chapter 6

Trust-region methods

Gradient descent methods enjoy global convergence under reasonable as-
sumptions. This is highly desirable, but on the flip side they can be fairly
slow overall. In particular, if convergence is to a critical point where the
Hessian is positive definite but has poor conditioning, then even the linear
convergence phase may be slow. Newton’s method essentially solves the slow
linear convergence issue, but it suffers from a much graver issue: it does not
have any reasonable global behavior.

Trust-region methods (TR) form a family of algorithms which have the
ability to combine the best of both worlds. TR is sometimes called a global-
ization of Newton’s method, because (in its main incarnation) the purpose
of TR is to wrap Newton’s method with safe-guards so that it enjoys global
convergence properties akin to those of GD, while preserving the quadratic
local convergence rate of Newton’s.

What makes Newton’s method fail? Essentially, it is its blind trust in
Taylor expansions of f . Indeed, Newton’s method sets xk+1 to be the critical
point of the second-order Taylor expansion of f around xk with the hope (a)
that this critical point is a minimizer of the quadratic, and (b) that it is a good
idea to move to that minimizer. However, part (a) fails if the Hessian of f at
xk is not positive definite, and part (b) can fail even when ∇2f(xk) is positive
definite. The latter is because the minimizer of the second-order Taylor
approximation of f at xk may be far from xk, yet the Taylor approximation
is a good approximation to f only locally.

TR methods fix the above issues as follows. They still use quadratic mod-
els to approximate f locally (and these models may or may not be second-
order Taylor expansions of f), but they are careful to trust those models
only locally. The region in which TR trusts the model is a ball whose radius
is adapted automatically and dynamically. Moreover, rather than blindly
jumping to critical points of quadratics in the hope that the critical points

63
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are minimizers, TR methods actively aim (at least approximately) to mini-
mize the quadratics in the trust regions. This last point makes it possible to
accommodate non-convex quadratic models.

A typical iteration of TR entails the following steps:

1. Approximately minimize a quadratic model of f around xk inside the
current trust region, producing a tentative next point x+

k .

2. Decide whether to accept the tentative step (xk+1 = x+
k ) or to reject it

(xk+1 = xk).

3. Regarding the radius of the trust region: decide whether to increase it,
decrease it or leave it unchanged.

The first step requires what is called a subproblem solver. We have a lot
of leeway in choosing how we want to proceed here. It is important to
remember the big picture: the goal is to minimize f ; solving the subproblem
is only a means to an end. Therefore, we should try not to invest too much
computational effort in it unless it is promising. Many TR methods are
designed to carefully transition from behaving mostly like GD (when we are
far from a minimizer and it makes no sense to work too hard minimizing the
model quadratics) to behaving mostly like Newton’s method (when we are
close to a minimizer and we have reasonable hope to trigger a quadratic local
convergence rate by putting in more effort.)

The bible of TR methods is an almost 1000-page book by Conn, Gould
and Toint [CGT00]. In these notes, we discuss just a couple of variations
that offer a mix of insight and practicality. Section 6.3 is based on [CGT00,
§7.5].

6.1 The trust-region mechanism

As always, our goal is to minimize a (differentiable) cost function f : E → R.
To this end, TR methods produce two sequences: a sequence of iterates
x0, x1, x2, . . . ∈ E and a sequence of trust-region radii ∆0,∆1,∆2, . . . > 0.

At the iterate xk, we define the quadratic model

mk(v) = f(xk) + ⟨∇f(xk), v⟩+
1

2
⟨v,Hk(v)⟩ (6.1)

where Hk : E → E is a symmetric linear map for us to choose. For example,
we may want to set Hk = ∇2f(xk) as then mk is the second-order Taylor
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expansion of f around xk. We pick the tentative next iterate x+
k as xk + uk

such that the step uk approximately solves the trust-region subproblem:

min
v∈E

mk(v) subject to ∥v∥ ≤ ∆k, (6.2)

where ∆k is the radius of the trust region at iteration k. What does “ap-
proximately” mean? We will be specific later, but at the very least mk(uk)
should be smaller than mk(0), that is: at the very least, the model should
judge that the step we chose is better than not moving at all. Ideally, we
will do a whole lot better than that though.

The step is accepted (xk+1 = x+
k ) or rejected (xk+1 = xk) based on the

performance of x+
k as judged by the actual cost function f , compared to the

expected improvement as predicted by the model. This is measured using the
ratio ρk (6.3).

Depending on how the two compare, the trust-region radius may also
be adapted. In particular, if the step was rejected, then we certainly want
to reduce the trust-region radius for the next iterate (what might happen
if we don’t?) Even if the step was accepted, we may want to reduce the
trust-region radius if we find that the model prediction was substantially off
compared to the actual cost decrease. If agreement between the model and
the cost is excellent and our selected step uk hits the boundary of the trust
region (that is, ∥uk∥ = ∆k), then we may decide to increase the trust-region
radius (though never beyond a fixed upper-bound ∆̄ set ahead of time.) In
all other situations, we just keep the radius unchanged. See Algorithm 6.1.

Remark 6.1. The parameter ∆̄ and the initial radius ∆0 must be set by the
user, and they may depend on the application. Generic values I like to use for
no particularly good reason other than “they often work” are: ∆̄ =

√
dim E

and ∆0 = ∆̄/8.

Remark 6.2. As innocuous as it may seem, computing ρk (6.3) can be tricky
numerically when we are close to convergence. Indeed, the vector uk is then
often very small, so that xk and x+

k are almost identical. As a result, f(xk)
and f(x+

k ) are also almost identical. This is problematic numerically because
to compute ρk we have to compute f(xk)−f(x+

k ): a difference of two numbers
which, individually, might be large, but whose difference is small. A common
heuristic to reduce such issues is to add

max(1, |f(xk)|) · 10−13

both to the numerator and to the denominator when computing ρk, where
10−13 is a parameter: a value somewhat larger than the machine precision.

Exercise 6.3. How do you compute the denominator of ρk, namely, mk(0)−
mk(uk), to avoid the issues laid out above for f(xk)− f(x+

k )?
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Algorithm 6.1 TR: trust-region method

Parameters: maximum radius ∆̄ > 0, threshold ρ′ ∈ (0, 1/4)

Input: x0 ∈ E , ∆0 ∈ (0, ∆̄]

For k = 0, 1, 2, . . .

Pick a symmetric linear map Hk : E → E to define mk (6.1).

Approximately solve the subproblem (6.2), yielding uk.

The tentative next iterate is x+
k = xk + uk.

Compute the ratio of actual to model improvement:

ρk =
f(xk)− f(x+

k )

mk(0)−mk(uk)
. (6.3)

Accept or reject the tentative next iterate:

xk+1 =

{
x+
k if ρk > ρ′ (accept),

xk otherwise (reject).
(6.4)

Update the trust-region radius:

∆k+1 =


1
4
∆k if ρk <

1
4
,

min(2∆k, ∆̄) if ρk >
3
4
and ∥uk∥ = ∆k,

∆k otherwise.

(6.5)
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6.2 The least we can do for global convergence

In this section,1 we determine the minimal effort we should put into choosing
the models (6.1) (that is, into choosing Hk) and into approximately solving
the subproblems (6.2) in order to ensure TR enjoys the same kind of “global
convergence” guarantees as GD, namely: if we run O(1/ε2) iterations, we
can expect to find a point where the gradient is smaller than ε.

As we shall see, with minimalist effort TR does not do better than GD—
it also does not require more efforts to run. The gains lie in the flexibility
of the TR framework: we have the liberty to put in much more effort at
each iteration than what is described below, and that can lead to substantial
improvements. Specifically, it is possible to obtain superlinear convergence.
The cherry on top is that this can all be achieved with rather limited param-
eter tuning.

At a point x, we consider a quadratic model for f(x+ v) ≈ m(v),

m(v) = f(x) + ⟨∇f(x), v⟩+ 1

2
⟨v,Hv⟩ , (6.6)

where H is some symmetric linear map on E of our choice. The subproblem
consists in minimizing m(v) in the ball of radius ∆ > 0 around x, called
the trust region. Of course, the vector v = 0 belongs to the trust region; it
attains the model value m(0) = f(x). In the following lemma, we consider
a more interesting (yet trivially computable) point in the trust region which
attains a lower model value.

Definition 6.4. The Cauchy step for the model m(v) with respect to the
radius ∆ is the vector uC defined by

uC = −tC · ∇f(x) with tC ∈ argmin
0≤t≤ ∆

∥∇f(x)∥

m(−t · ∇f(x)). (6.7)

In words: uC is the minimizer of m(v) in the trust region restricted to the
negative gradient direction.

Lemma 6.5. Write g = ∇f(x) for short. The Cauchy step uC = −tC ·g can
be computed with

tC =

{
min

(
∥g∥2

⟨g,Hg⟩ ,
∆
∥g∥

)
if ⟨g,Hg⟩ > 0,

∆
∥g∥ otherwise.

(6.8)

1In spirit, the analysis of TR presented here takes after the one in [CGT12]. In that
reference, the authors also show how to ensure TR finds approximate second-order critical
points in a bounded number of iterations.



68 CHAPTER 6. TRUST-REGION METHODS

As a result, the Cauchy step leads to the following decrease in model value:

m(0)−m(uC) ≥ 1

2
min

(
∆,
∥g∥
∥H∥

)
∥g∥, (6.9)

where as usual ∥H∥ is the operator norm of H with respect to the Euclidean
norm on E.

Exercise 6.6. Give a proof of Lemma 6.5. Hint: notice that tC is the mini-
mizer of a 1-D quadratic restricted to a closed interval.

Recall our analysis of GD with constant step-size in Theorem 3.4. It was
based on showing that the value of f decreases by some amount at each
iteration; that amount was dictated by the current gradient norm. We plan
to use a similar strategy here.

Let uC
k be the Cauchy step for the model mk (6.1) at iterate xk with

trust-region radius ∆k. Assume the step uk is chosen such that it does at
least as well as the Cauchy step:

A4. For all k, the trial step uk is at least as good as the Cauchy step, that
is, ∥uk∥ ≤ ∆k and:

mk(uk) ≤ mk(u
C
k ). (6.10)

Assumption A4 leaves us with a lot of freedom. For example, we could
attempt to compute a true minimizer of mk in the trust region: that would
certainly satisfy the above condition. As another example, we could compute
both the Newton step and the Cauchy step: if the Newton step is inside of the
trust region and it outperforms the Cauchy step, then we select the Newton
step as our uk; otherwise we select the Cauchy step as a fall back. Either
way, it follows from (6.10) and (6.9) that

mk(0)−mk(uk) ≥ mk(0)−mk(u
C
k ) ≥

1

2
min

(
∆k,
∥∇f(xk)∥
∥Hk∥

)
∥∇f(xk)∥.

(6.11)

As prescribed in (6.4), the step is accepted if ρk > ρ′. In that case, xk+1 = x+
k

and equation (6.3) for ρk tells us that

f(xk)− f(xk+1) = ρk · (mk(0)−mk(uk))

≥ ρ′

2
min

(
∆k,
∥∇f(xk)∥
∥Hk∥

)
∥∇f(xk)∥. (6.12)

We learn a lot from (6.12). Indeed, that inequality tells us that if ∥∇f(xk)∥
is still large and
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1. ∥Hk∥ is not too large,

2. ∆k is not too small, and

3. Iteration k is successful (that is, the step is accepted),

then the value of the cost function decreases substantially from xk to xk+1.
(Compare the amount of decrease in (6.12) to that we obtained for a regular
gradient step in (3.3): they are similar.)

From the list above, we understand that we need to ensure that

1. ∥Hk∥ remains bounded above,

2. ∆k remains bounded away from zero, and

3. A large number of iterations are successful.

For the first item, we must introduce an assumption (indeed, so far we have
given the user complete freedom in choosing the models).

A5. There exists a constant L ≥ 0 such that ∥Hk∥ ≤ L for all k.

Remark 6.7. The following are two simple ways to ensure A5 holds with
constant L:

1. Set Hk = L · I, where I is the identity map on E (e.g., for E = Rn, I
is the identity matrix of size n). (What is the Cauchy step then?)

2. If f is twice differentiable and its gradient is L-Lipschitz continuous,
set Hk = ∇2f(xk). The claim then follows from Theorem 3.3.

For the other items on the list above, we have the following two lemmas.
We require the same assumptions as for GD, namely, A1 (f is lower-bounded
by flow) and A2 (∇f is L-Lipschitz continuous). The first lemma below states
that ∆k cannot become arbitrarily small. In a nutshell, this happens because
mk is at least a first-order approximation of f : when ∆k is very small, mk

does a good job approximating f , and therefore ρk is close to 1. In particular,
ρk ≥ 1/4 and so the trust-region radius is not reduced further: ∆k+1 is not
smaller than ∆k.

Lemma 6.8. Let assumptions A2 and A5 hold with the same constant L.2

Further require assumption A4. If ∥∇f(xk)∥ > ε for all k ∈ {0, . . . , K − 1},
then

∀k ∈ {0, . . . , K − 1}, ∆k ≥ min
(
∆0,

ε

16L

)
. (6.13)

2If they hold separately but with two distinct constants L1 and L2, we can always set
L = max(L1, L2) so that both assumptions hold with L.
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Proof. The plan is to show that if ∆k is small, then ρk is large. Because of
how Algorithm 6.1 works, a large ρk implies that ∆k+1 ≥ ∆k. By definition
of ρk (6.3), and then using mk(0) = f(xk) and x+

k = xk + uk, we have

1− ρk = 1− f(xk)− f(x+
k )

mk(0)−mk(uk)
=

f(xk + uk)−mk(uk)

mk(0)−mk(uk)
. (6.14)

The numerator of (6.14) is upper-bounded because mk is at least a first-order
Taylor approximation of f around xk:

f(xk + uk)−mk(uk) = f(xk + uk)− f(xk)− ⟨∇f(xk), uk⟩︸ ︷︷ ︸
A2+Theorem 3.2

−1

2
⟨uk, Hk(uk)⟩

≤ 1

2
(L+ ∥Hk∥︸ ︷︷ ︸

A5

)∥uk∥2

≤ L∥uk∥2.

The denominator of (6.14) is lower-bounded owing to our assumption A4
that uk does at least as well as the Cauchy step. Indeed, by (6.11) and
plugging in ∥Hk∥ ≤ L as above, we have:

mk(0)−mk(uk) ≥
1

2
min

(
∆k,
∥∇f(xk)∥

L

)
∥∇f(xk)∥.

We combine the bounds on the numerator and denominator of (6.14) to find
(also plugging in the facts that ∥uk∥ ≤ ∆k and ∥∇f(xk)∥ > ε):

1− ρk ≤
2L∆2

k

ε

1

min
(
∆k,

ε
L

) . (6.15)

Recall that we want to show that if ∆k is small then ρk is large. To this end,
consider the case where

∆k ≤
ε

4L
. (6.16)

(Otherwise, eq. (6.13) already holds.) Plugging this into the above inequality
twice in a row (first to resolve the min, second to bound the remaining ∆k)
we deduce:

1− ρk ≤
2L∆k

ε
≤ 1

2
. (6.17)

Therefore, ρk ≥ 1
2
. The mechanism (6.5) in Algorithm 6.1 then implies

that ∆k+1 ≥ ∆k. It now takes a simple proof by induction to conclude.
(Specifically: in light of mechanism (6.5), consider why we must have ∆0 in
the bound (6.13), and why we must have a further factor 1/4 in there as
compared to (6.16).)
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Say we let TR runK iterations, visiting points x0, . . . , xK−1. It is useful to
partition {0, . . . , K−1} into successful and unsuccessful iterations according
to (6.4), as follows:

SK = {k ∈ {0, . . . , K − 1} : ρk > ρ′},
UK = {k ∈ {0, . . . , K − 1} : ρk ≤ ρ′}.

The following theorem states that if TR enjoys a large number of successful
iterations then at least one of the iterates is a point where the gradient is
small.

Theorem 6.9. Let assumptions A2 and A5 hold with the same constant L.
Further require assumptions A4 and A1 (the latter states f(x) ≥ flow for
all x). For any 0 < ε ≤ 16L∆0, if the number |SK | of successful iterations
among the first K iterations of Algorithm 6.1 satisfies

|SK | >
32L(f(x0)− flow)

ρ′
1

ε2
,

then there exists k < K such that ∥∇f(xk)∥ ≤ ε.

Proof. Assume for contradiction that ∥∇f(xk)∥ > ε for all k ∈ {0, . . . , K −
1}. Then, combine Lemma 6.8 with eq. (6.12), ∥Hk∥ ≤ L and ε ≤ 16L∆0 to
find that if k is a successful iteration then

f(xk)− f(xk+1) ≥
ρ′

2
min

(
∆0,

ε

16L

)
ε =

ρ′

32L
ε2. (6.18)

On the other hand, if k is an unsuccessful iteration then xk+1 = xk so that
f(xk) − f(xk+1) = 0. Therefore, using the same telescoping sum argument
as when we studied GD but this time being careful to split the sum over
successful and unsuccessful iterations, we find:

f(x0)− flow ≥ f(x0)− f(xK)

=
K−1∑
k=0

f(xk)− f(xk+1)

=
∑
k∈SK

f(xk)− f(xk+1)

≥
∑
k∈SK

ρ′

32L
ε2

= |SK |
ρ′

32L
ε2.

Rearrange to conclude.
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Theorem 6.9 leaves one rather important question open: can we be certain
that Algorithm 6.1 will enjoy many successful steps? Could it not happen
that the algorithm will experience an overwhelming number of unsuccessful
steps, in which case that theorem would be meaningless? Fortunately, that
cannot happen. In a nutshell, the reason is that every time we suffer an
unsuccessful step, the trust-region radius is decreased. Yet, we know from
Lemma 6.8 that the trust-region radius cannot become arbitrarily small un-
less we encounter points with small gradient. Thus, each radius reduction by
a factor 1/4 (which may or may not be unsuccessful) must be compensated
by at least two radius increases by a factor 2 (which must be successful).
Overall, we find that at least two thirds of iterations must be successful
(asymptotically).

Lemma 6.10.[Proof for exam 2025;

The algorithm, the
assumptions, and the

conclusion of
Lemma 6.8 would be

provided as reminders.]

Let assumptions A2 and A5 hold with the same constant L.
Further require assumption A4. Let 0 < ε ≤ 16L∆0 be such that ∥∇f(xk)∥ >
ε for all k ∈ {0, . . . , K − 1}. Then

|SK | ≥
2

3
K − 1

3
log2

(
16L∆0

ε

)
.

Proof. Consider the trust-region radius update mechanism (6.5). We have
∆k+1 ≤ 2∆k if k is a successful step and ∆k+1 ≤ 1

4
∆k if k is unsuccessful.

By induction, we deduce that (to reach the last step use |SK |+ |UK | = K):

∆K ≤ 2|SK | 1

4|UK |∆0 = 2|SK |−2|UK |∆0 = 23|SK |−2K∆0.

On the other hand, by Lemma 6.8:

∆K ≥ min
(
∆0,

ε

16L

)
.

Combine the two inequalities to see that

23|SK |−2K ≥ min

(
1,

ε

16L∆0

)
=

ε

16L∆0

.

Take the log in base 2 on both sides to reveal that

3|SK | ≥ 2K + log2

(
ε

16L∆0

)
.

Rearrange to conclude.



6.3. TRUNCATED CONJUGATE GRADIENTS 73

Theorem 6.11. Let assumptions A2 and A5 hold with the same constant L.
Further require assumptions A4 and A1. For any 0 < ε ≤ 16L∆0, if

K >
48L(f(x0)− flow)

ρ′
1

ε2
+

1

2
log2

(
16L∆0

ε

)
,

then there exists k < K such that ∥∇f(xk)∥ ≤ ε.

Proof. This is a corollary of Theorem 6.9 and Lemma 6.10.

Though it is not immediately clear from the statement for Theorem 6.11,
it is also the case that ∥∇f(xk)∥ goes to zero in the limit as k → ∞. (Do
you see why this is not obvious from the theorem statement?) See [NW06,
Thm. 4.6] if you are interested in the details.

Remark 6.12. Comparing with Theorem 3.4 for gradient descent with con-
stant step-size 1/L, it would seem trust-regions is worse than GD in two
ways: (a) the constant 48 is not as good, and (b) there is an additional log
term. For (a), no need to worry: these constants have little meaning. For
(b), notice that the trust-region method here does not need to know the con-
stant L: the trust-region radius adapts automatically. The computational
price of this automatic tuning is captured by the log term. In contrast, GD
with step-size 1/L requires knowing the constant L. When we replace the
constant step-size of GD with a line-search procedure, there is, in fact, also
a log term.

6.3 Truncated conjugate gradients

To compute Newton steps, we used Conjugate Gradients (CG), Algorithm 5.2.
Recall from Section 5.4 that CG is effectively an iterative method to minimize

g(v) =
1

2
⟨v,Hv⟩ − ⟨b, v⟩ ,

under the assumption that H is positive definite. For Newton’s method, we
applied CG with H = ∇2f(x) and b = −∇f(x).

For the trust-region method, we need to (approximately) solve the trust-
region subproblem, that is, we must approximately minimize a model of the
form (6.6) with the trust region:

m(v) = f(x) + ⟨∇f(x), v⟩+ 1

2
⟨v,Hv⟩ , subject to ∥v∥ ≤ ∆,
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Algorithm 6.2 tCG: truncated conjugate gradients

Input: symmetric linear map H on E , b ∈ E and radius ∆ > 0

Output: approximate minimizer u of m(v) = 1
2
⟨v,Hv⟩−⟨b, v⟩ subject

to ∥u∥ ≤ ∆, and Hu as a by-product

Set v0 = 0, r0 = b, p0 = r0

For n = 1, 2, . . .

Compute Hpn−1 (this is the only call to H)

Compute ⟨pn−1, Hpn−1⟩

αn = ∥rn−1∥2
⟨pn−1,Hpn−1⟩

v+n−1 = vn−1 + αnpn−1

If ⟨pn−1, Hpn−1⟩ ≤ 0 or ∥v+n−1∥ ≥ ∆

Set vn = vn−1 + tpn−1 with t ≥ 0 such that ∥vn∥ = ∆

(See Exercise 6.15 for how to compute t.)

output u = vn and Hu = b− rn−1 + tHpn−1

Else

vn = v+n−1

rn = rn−1 − αnHpn−1

If ∥rn∥ ≤ ∥r0∥min(∥r0∥, 0.1)
output u = vn and Hu = b− rn

βn = ∥rn∥2
∥rn−1∥2

pn = rn + βnpn−1
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and it is typical to setH = ∇2f(x). Notice that for the purpose of minimizing
m(v) with respect to v, the presence of the constant term f(x) is irrelevant
(remember: for a subproblem, x is fixed).

Thus, minimizing m(v) within the trust region is the same problem that
CG solves in the context of computing Newton steps, up to two distinctions:

1. We are no longer allowed to assume H ≻ 0.

2. We must remain in the trust region.

Accordingly, the key idea of the truncated conjugate gradients algorithm
(tCG) is as follows:

In order to solve trust-region subproblems, let’s run CG while

1. Keeping an eye out for signs that H is not positive definite,

2. Making sure we stay in the ball of radius ∆, and

3. Not working too hard, because after all we do not really care
about solving the subproblem: we care about minimizing f .

See Algorithm 6.2: this is a modification of CG. The parts of tCG that are
different from CG are highlighted.

We now justify the modifications that distinguish tCG from CG, with
numbering as above. Remember that the iterates of CG are the vectors
v0, v1, v2, . . . while the vectors p0, p1, p2, . . . are the so-called conjugate direc-
tions.

1. When running CG, at iteration n, we consider the conjugate direction
pn−1 and we compute the quadratic form ⟨pn−1, Hpn−1⟩. If that number
is positive, then great. However, if it is negative, then this is proof that
H is not positive definite. When this happens, we realize that the
model m(v) goes to −∞ along the line that passes through vn−1 with
direction pn−1; indeed,

h(t) = m(vn−1 + tpn−1)

= c2t
2 + c1t+ c0 (6.19)

is a quadratic with some coefficients c0, c1, c2 ∈ R (what is their value?),
and h(t) goes to −∞ when we take t → ∞ (why?). Since our goal is
to make m(v) small, and since we are not really sure what to do when
H is not positive definite, we do the following: move along that line as
far as we can, that is, until we reach the boundary of the trust region.
Explicitly, that means: choose t ≥ 0 such that vn ≜ vn−1 + tpn−1
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Figure 6.1: This is Figure 7.5.1 in [CGT00], describing different possible
scenarios for tCG. (a) The model is convex and the solution is inside the
trust region: we find it and stop there (in practice, it is more likely that we
would find a point nearby and decide that it is good enough to stop); (b)
the model is convex but the solution is outside the trust region and one of
the iterates of tCG exits the ball: we move back, up to the boundary and
stop; (c) the model is not convex: we detect negative curvature and move
all the way to the boundary, where we stop. Note that other scenarios are
possible. For example, the model might not be convex but we stop before
“discovering” that fact.

is on the boundary: ∥vn∥2 = ∆2. This is easy to do: the equation
∥vn∥2 = ∆2 is a quadratic in t which has one positive root and one
negative root; just set t to be the positive root. (See Exercise 6.15.)
We stop here.

2. At iteration n, assume ⟨pn−1, Hpn−1⟩ > 0 so that the situation we just
described does not occur. We have already computed vn−1 and pn−1,
and we would like to go to our next iterate, vn. Our hope is to let
vn be equal to the usual CG iterate, which for now we call v+n−1 =
vn−1 + αnpn−1. But what if this point is outside of the trust region,
that is, what if ∥v+n−1∥ > ∆? Then we are in a bit of a pickle. Perhaps
if we keep iterating, eventually, the iterates would come back inside the
trust region? Or maybe not? In fact, it can be shown that the norm
of the iterates can only grow: if H is positive definite, then

0 = ∥v0∥ < ∥v1∥ < ∥v2∥ < · · ·

Thus, baring the possibility that H is not positive definite (in which
case we would act as described above), if v+n−1 is outside the trust
region, then there is no point in continuing the iteration: we’re not
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going to come back to the trust region. Because of this, the strategy of
tCG is as follows: vn−1 was inside the trust region, and v+n−1 is outside
the trust region (or perhaps exactly on the boundary). Certainly, the
line segment connecting vn−1 to v+n−1 intersects the boundary of the
trust region at a single point. Let us set vn to be that point. Here
is a convenient observation: to find vn, we need to move away from
vn−1 toward v+n−1 until we hit the boundary of the trust region. The
direction v+n−1 − vn−1 is the same as pn−1 (because αn > 0—why?).
Thus, to find vn, we must choose t ≥ 0 such that vn−1+ tpn−1 has norm
∆. But this is exactly the same as in the previous situation! Therefore,
we can use the same code for both situations. We stop here.

3. If neither of the situations above occur at iteration n, then we set
vn = v+n−1, as we normally would in a CG iteration. Notice that if we
make it this far, it means that the special events above have never oc-
curred (as otherwise we would have stopped). Thus, so far, everything
has happened exactly as for a “normal” CG algorithm with a positive
definite H.

We now have the important task of deciding: should we keep working on
this subproblem, or should we stop here and let the trust-region method
(the “outer iteration”) resume control? To this end, recall from (5.19)
that rn (as produced by the algorithm) is in fact the residue of the
equation Hu = b that CG is trying to solve:

rn = b−Hvn = −∇m(vn).

We know that rn converges to zero as vn converges to the solution.
Notice moreover that

∥r0∥ = ∥b∥ = ∥∇f(xk)∥. (6.20)

The stopping criterion for tCG is designed on the following principle:

(a) If ∥∇f(xk)∥ is still large, we should not work too hard on sub-
problems (after all, TR is probably still far from convergence).

(b) On the other hand, if ∥∇f(xk)∥ is small, we should work hard: it’s
possible that we are close to convergence, so we should make steps
that look more and more like Newton steps, to aim for quadratic
convergence.

This principle is encoded in the stopping criterion3

∥rn∥ ≤ ∥r0∥min(∥r0∥, 0.1). (6.21)

3The constant 0.1 is a parameter one could tune; in my experience, it is fine as is.
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If ∥∇f(xk)∥ > 0.1, tCG terminates as soon as ∥rn∥ ≤ 0.1 · ∥∇f(xk)∥:
it’s not very ambitious. On the other hand, if ∥∇f(xk)∥ ≤ 0.1, then
tCG terminates only once ∥rn∥ ≤ ∥∇f(xk)∥2—this is ambitious: as
∇f(xk) becomes smaller and smaller, this stopping criterion is rapidly
forcing tCG to compute a solution that is very close to the Newton
step (unless one of the events above occurs first.)

Let us end this section with a claim, two important exercises, and numer-
ical remarks.

Proposition 6.13. As tCG iterates, the value of the model can only decrease:

m(v0) ≥ m(v1) ≥ m(v2) ≥ · · ·

Proof sketch. This holds because the same is true for CG, and because the
changes we made to get tCG were carefully crafted so that this is still true.

Exercise 6.14. Verify that the first iterate of tCG, that is, v1 as produced
by Algorithm 6.2, is exactly the Cauchy step (Definition 6.4). What can you
conclude regarding global convergence of the trust-region method with tCG?
Hint: use Proposition 6.13 and Theorem 6.11.

Exercise 6.15. Consider again the definition vn ≜ vn−1 + tpn−1 and the
equation ∥vn∥2 = ∆2, where the unknown is t ∈ R. Show that the equation
is indeed a quadratic equation in t and that, in the context above, it has one
positive root and one negative root. How do you compute the positive root?
Why do we choose the positive root and not the negative one? (There is a
corner case where the root is double; what happens then? Why is it not an
issue?)

Remark 6.16. A numerical comment: TR (Algorithm 6.1) makes certain
decisions based on the norm of uk; namely, it checks whether ∥uk∥ = ∆k or
not. Numerically, this is tricky: it is a bad idea to write code of the form
if norm(u k) == Delta k for example, because of round-off errors. A much
more robust approach is to do the following: when running tCG, we know
whether the solution we return, namely, u, satisfies ∥u∥ = ∆ or not. Thus,
arrange your code so that tCG also returns that information (as a boolean
flag), and such that TR uses that information to make decisions.

Remark 6.17. As always with iterative algorithms, it is a good idea to in-
clude a bound on the maximum number of iterations, and to stop the loop
if that bound is attained. Better this than to get stuck in an infinite loop
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due to some numerical issues. For tCG in particular, while it is true that
mathematically the algorithm always terminates in at most dim E iterations
(mostly, because CG has that property), in practice, things can get more com-
plicated. A reasonable value for the maximum number of iterations in tCG
is therefore dim E; sometimes, it is helpful to set it much lower; sometimes,
it even makes sense to set it larger.

6.4 Local convergence behavior

If we use the true Hessian in the model mk (6.1), that is, Hk = ∇2f(xk)
(which is indeed the typical choice), then the trust-region method together
with the truncated conjugate gradients algorithm enjoys quadratic local con-
vergence in the same way that Newton’s method does.

Essentially, the reason is this: once we get sufficiently close to a local
minimizer where the Hessian is positive definite, the solution of the trust-
region subproblem is the Newton step (that is because eventually steps stop
being rejected, so that the trust-region radius stabilizes and the Newton steps
are smaller than that radius), and the ambitious stopping criterion of tCG
ensures that tCG terminates with a solution that is either exactly the Newton
step, or very close to it.

Compare the following statement with Theorem 5.6 (local convergence
of Newton’s method). This result and Exercise 6.14—together—support the
following claim: trust-region methods combine the best of gradient descent
and of Newton’s method.

Theorem 6.18. Let f : E → R satisfy assumptions A2 and A3 (Lipschitz
continuous gradient and Hessian). Let x∗ be a critical point of f (i.e.,
∇f(x∗) = 0) where ∇2f(x∗) ≻ 0. There exists a neighborhood of x∗ such
that if the sequence of iterates (xk)k≥0 generated by the trust-region method
with tCG enters that neighborhood, then it stays in that neighborhood and
converges to x∗ at least quadratically.

To be clear: after the convergence theorems for GD and Newton’s method,
we had numerous remarks about the importance of being careful in how to
interpret them. For example, those theorems did not state that GD or New-
ton’s method always converge, or that they converge only to local minima, or
(certainly not!) that they only converge to global minima, etc. All of these
remarks are still in order for the trust-region method: think critically about
the precise statements of the theorems.

Still, we can enjoy the fact that TR with tCG is a really good method in
practice, quite robust to our choices of parameters.
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Constrained optimization
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Figure 6.2: This diagram summarizes many important results we prove about
constrained optimization. Make sure you know where each implication comes
from (which theorems/corollaries). Make sure you understand why some
implications are conditional or are altogether missing: do you have a counter-
example? You should be able to draw this diagram quickly—it’s useful when
you work on some exercises.



84



Chapter 7

General principles:
set constraints

In the first part of the course, we have considered the problem of minimizing
a function f : E → R defined over a Euclidean space E . In this second part of
the course, we consider a more general class of problems: we aim to minimize
f over a set S ⊆ E . We write

min
x∈E

f(x) subject to x ∈ S, (7.1)

or, more compactly,

min
x∈S

f(x). (7.2)

This is called constrained optimization, because the variable x is constrained
to the set S. The set S is called the search space or the feasible set. A point
x ∈ E is called feasible if it is in S.

The special case where S = E corresponds to unconstrained optimization.
We are mainly interested in the case S ⊂ E . We always assume that S
is nonempty and closed. As usual, E is equipped with an inner product
⟨·, ·⟩ and associated norm ∥ · ∥.

In this first chapter, we consider the basics of constrained optimization
at a general level. In particular, we discuss necessary optimality conditions
for (7.2)

Recall the following elementary notions from Section 1.2.

Definition 7.1. A global minimizer of f : S → R is a point x∗ ∈ S such
that f(x) ≥ f(x∗) for all x ∈ S.

Definition 7.2. A set U ⊆ S is open in S if there exists an open set V in
E such that U = S ∩ V .
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In words: a subset of S is open in S if it is the intersection of S with an
open subset of E . A set is closed (in S) if its complement is open (in S).

Definition 7.3. A neighborhood of x in S is an open subset of S which
contains x.

Definition 7.4. A local minimizer of f : S → R is a point x∗ ∈ S such that
f(x) ≥ f(x∗) for all x in a neighborhood of x∗ in S.

In other words: x∗ ∈ S is a local minimizer of (7.2) if there exists a
neighborhood V of x∗ in E such that f(x) ≥ f(x∗) for all x ∈ S ∩ V .

7.1 Tangent cones

Definition 7.5. A set K ⊆ E is a cone if for all v ∈ K and α > 0 we also
have αv ∈ K.

Definition 7.6. A closed cone is a cone which is also a closed set.

Definition 7.7. Consider a point x ∈ S. The vector v ∈ E is a tangent
direction at x for S if there exists a sequence (xk)k≥0 of points in S and a
sequence of positive reals (tk)k≥0 such that:

lim
k→∞

xk = x, lim
k→∞

tk = 0, and lim
k→∞

xk − x

tk
= v.

The set TxS of all tangent directions at x for S is called the tangent cone of
S at x.

Theorem 7.8. Tangent cones are closed cones.

Proof. Let us show that tangent cones are indeed cones. Given v ∈ TxS,
there exist a sequence (xk) ⊆ S convergent to x and a sequence (tk) ⊂ {t ∈
R : t > 0} convergent to zero such that v = limk→∞

xk−x
tk

. We must show
that αv is also in TxS for an arbitrary α > 0. That is indeed the case:
simply consider the same sequence (xk) with the new sequence (t′k) defined
by t′k = tk/α. It is indeed still true that xk → x and that t′k → 0+. Moreover,
limk→∞

xk−x
t′k

= limk→∞ αxk−x
tk

= αv, which confirms that αv is in TxS.

Let us show that the tangent cone is also a closed set, that is, let us
show that if (vi)i≥0 is a sequence of tangent directions and v = limi→∞ vi
exists, then v is also a tangent direction. For contradiction, assume v is
not a tangent direction. Then, in particular, vi ̸= v for all i. For each vi,
we have sequences (xi,k)k≥0 in S and (ti,k)k≥0 such that limk→∞ xi,k = x,
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limk→∞ ti,k = 0+ and limk→∞
xi,k−x

ti,k
= vi. Since ∥vi − v∥ > 0, there exists an

integer ki such that ∥∥∥∥xi,ki − x

ti,ki
− vi

∥∥∥∥ ≤ ∥vi − v∥.

Moreover, we can choose the integers ki in such a way that limi→∞ ki = ∞
(for example, require ki > ki−1 for i = 1, 2, 3 . . .) By a triangular inequality,∥∥∥∥xi,ki − x

ti,ki
− v

∥∥∥∥ ≤ 2∥vi − v∥.

You can now verify using the sequences (xi,ki)i≥0 and (ti,ki)i≥0 that v is in
fact a tangent direction at x: a contradiction.

A convenient way to find tangent directions at x is to consider curves in
S that start at x. This is also a useful perspective for intuition.

Theorem 7.9. [Proof for exam 2025]Given x ∈ S, consider a continuous curve c : [0, ε]→ E with
ε > 0 such that c(0) = x, c(t) ∈ S for all t and c′(0) is well defined. Then,
c′(0) ∈ TxS.

Proof. By assumption, c′(0) = limt→0+
c(t)−c(0)

t
is well defined. Consider the

sequences tk = ε/k and xk = c(tk) for k = 1, 2, . . . Notice that tk > 0 and
xk ∈ S for all k. Moreover, tk → 0+, xk → x, and

lim
k→∞

xk − x

tk
= lim

k→∞

c(tk)− c(0)

tk
= lim

t→0+

c(t)− c(0)

t
= c′(0).

Therefore, c′(0) is in TxS.

The interior of S is the union of all open subsets of E contained in S.

Example 7.10. If x is in the interior of S, then TxS = E. Indeed, for all
v ∈ E, the curve c(t) = x + tv stays in S for t ≥ 0 sufficiently small, and
c′(0) = v.

Example 7.11. Let S be a half-space, that is,

S = {x ∈ E : ⟨w, x⟩ ≥ b}

for some w ∈ E (nonzero) and b ∈ R. The boundary of S is the affine space

∂S = {x ∈ E : ⟨w, x⟩ = b}.

If x is in the interior of S, then TxS = E by Example 7.10. If x is on the
boundary of S, then

TxS = {v ∈ E : ⟨w, v⟩ ≥ 0}.

We can show this in two steps:
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1. If v ∈ TxS, then ⟨w, v⟩ ≥ 0. Indeed, there exist sequences (tk) and
(xk) such that tk → 0+ and xk → x with xk ∈ S for all k and v =
limk→∞

xk−x
tk

. Thus,

⟨w, v⟩ =
〈
w, lim

k→∞

xk − x

tk

〉
= lim

k→∞

⟨w, xk − x⟩
tk

= lim
k→∞

⟨w, xk⟩ − b

tk
≥ 0,

where the inequality follows from the facts that ⟨w, xk⟩ ≥ b and tk > 0
for all k.

2. Given v ∈ E such that ⟨w, v⟩ ≥ 0, we see that the curve c(t) = x + tv
stays in S for all t ≥ 0 because

⟨w, c(t)⟩ = ⟨w, x+ tv⟩ = ⟨w, x⟩+ t ⟨w, v⟩ ≥ b,

so that v = c′(0) ∈ TxS.

Example 7.12. Let S be an affine space defined by k linear equality con-
straints, that is

S = {x ∈ E : L(x) = b}

for some linear map L : E → Rk and b ∈ Rk. (For example, consider the set
{x : ⟨w, x⟩ = 1} which corresponds to k = 1.) The tangent cone at x ∈ S is

TxS = kerL = {v ∈ E : L(v) = 0}.

Indeed, the curve c(t) = x+ tv stays in S for all t when v is in kerL, which
shows that kerL ⊆ TxS. To verify that the reverse inclusion also holds,
consider v ∈ TxS together with sequences (xk) and (tk) as usual. Notice that

L(v) = L

(
lim
k→∞

xk − x

tk

)
= lim

k→∞

L(xk)− L(x)

tk
= lim

k→∞

0

tk
= 0,

where we used linearity of L and L(x) = b, L(xk) = b.

Example 7.13. Let S be the unit ball in E, that is,

S = {x ∈ E : ∥x∥ ≤ 1}. (7.3)

The boundary of S is the unit sphere:

∂S = {x ∈ E : ∥x∥ = 1}. (7.4)

If x is in the interior of the ball (i.e., ∥x∥ < 1), we have TxS = E by
Example 7.10. If x is on the boundary of the ball (i.e., ∥x∥ = 1), we have

TxS = {v ∈ E : ⟨x, v⟩ ≤ 0}.

We show this in three steps:
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1. If v is in TxS, then ⟨x, v⟩ ≤ 0. Indeed, let (tk) and (xk) be sequences
proving that v is in TxS; then

⟨x, v⟩ =
〈
x, lim

k→∞

xk − x

tk

〉
= lim

k→∞

⟨x, xk − x⟩
tk

= lim
k→∞

⟨x, xk⟩ − 1

tk
.

By Cauchy–Schwarz and since both x and xk are in the unit ball, we
have ⟨x, xk⟩ ≤ 1. Combined with tk > 0, we find indeed that ⟨x, v⟩ ≤ 0.

2. If ⟨x, v⟩ < 0, then v ∈ TxS. Indeed, it is easy to check that c(t) = x+tv
remains in the ball for sufficiently small t ≥ 0.

3. It remains to show that if ⟨x, v⟩ = 0 then v ∈ TxS. We can do this in
two different ways:

(a) The short way is to argue that since tangent cones are closed, and
since we already know the tangent cone contains the set {v ∈ E :
⟨x, v⟩ < 0}, the tangent cone must also contain the closure of that
set, i.e., {v ∈ E : ⟨x, v⟩ ≤ 0}.

(b) The explicit way is to construct an appropriate curve c. For ex-
ample, consider c(t) = x+tv

∥x+tv∥ . It is an exercise to check that c is

continuous, that c(t) is in the ball for all t, that c(0) = x and that
c′(0) = v—which confirms v is in TxS.

Example 7.14. Let S be the unit sphere in E, that is,

S = {x ∈ E : ∥x∥ = 1}.

Given x ∈ S, the tangent cone is a linear space:

TxS = {v ∈ E : ⟨x, v⟩ = 0}.

Indeed, reasoning as in Example 7.13 we see that ⟨x, v⟩ = 0 implies v ∈ TxS
using the curve c(t) = x+tv

∥x+tv∥ . The other way around, we can prove that every

tangent direction satisfies ⟨x, v⟩ = 0. Indeed, let (tk) and (xk) be sequences
which prove that v ∈ TxS. Then,

⟨x, v⟩ =
〈
x, lim

k→∞

xk − x

tk

〉
= lim

k→∞

⟨x, xk⟩ − 1

tk
.

Moreover, we know that, for all k:

∥x− xk∥2 = ∥x∥2 + ∥xk∥2 − 2 ⟨x, xk⟩ = 2(1− ⟨x, xk⟩).
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Reorganizing, we get

⟨x, xk⟩ − 1

tk
= −1

2

∥x− xk∥2

tk
.

Notice that

∥v∥ = lim
k→∞

∥xk − x∥
tk

Therefore,

lim
k→∞

∥xk − x∥2

tk
= lim

k→∞
∥xk − x∥∥xk − x∥

tk
= ∥v∥ lim

k→∞
∥xk − x∥ = 0.

Combining, we conclude that ⟨x, v⟩ = 0.

Example 7.15. Let S be the complement of the open unit ball in E, that is,

S = {x ∈ E : ∥x∥ ≥ 1}.

The boundary of S is the unit sphere. If x is in the interior of S (i.e.,
∥x∥ > 1), we have TxS = E by Example 7.10. If x is on the boundary of S
(i.e., ∥x∥ = 1), then

TxS = {v ∈ E : ⟨x, v⟩ ≥ 0}.

Proving this is left as an exercise.

Example 7.16. (This is a side note for the curious, based on [RW98, §6.A].)
Theorem 7.9 tells us that some tangent directions of S at x can be realized
as v = c′(0) with a curve c in S such that c(0) = x. For “reasonable” sets S,
all tangent directions are of that form. When that is the case, S is said to
be geometrically derivable. But not all sets have that property. For example,
consider

S = {(0, 0)} ∪ {(x1, x2) : x1 ̸= 0 and x2 = x1 sin(log(x1))},

a subset of R2: plot it and zoom around the origin. At x = (0, 0), it is easy
to check that the tangent cone is TxS = {(v1, v2) : |v2| ≤ |v1|}. Yet, no
continuous curve in S passes through x, hence none of the tangent directions
at x are of the form c′(0).

Exercise 7.17. Complete the proof for Example 7.15. (Hint: take careful
inspiration from the unit sphere example.)

Exercise 7.18. Let S, S ′ be two subsets of E such that S ⊆ S ′. Show that
TxS ⊆ TxS

′ for all x ∈ S.

Exercise 7.19. Let S1, S2 be two subsets of E, and let x belong to their
intersection. Give an example where Tx(S1 ∩ S2) ̸= (TxS1) ∩ (TxS2).
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7.2 A necessary optimality condition

The most important fact about tangent cones is that they provide us with
necessary optimality conditions for constrained optimization problems.

Theorem 7.20. [Proof for exam 2025]Let f : E → R be differentiable, and S ⊆ E. If x∗ ∈ S is a
local minimum for f constrained to S, then

Df(x∗)[v] ≥ 0 for all v ∈ Tx∗S.

However, the converse does not necessarily hold (exercise).

To prove this theorem, it is convenient to consider a lemma first.

Lemma 7.21. [Proof for exam 2025]Consider x ∈ S and a tangent direction v ∈ TxS. Let (xk)
be a sequence in S convergent to x and let (tk) be a sequence of positive
reals convergent to 0 such that v = limk→∞

xk−x
tk

. Then, if f : E → R is
differentiable at x it holds that

Df(x)[v] = lim
k→∞

f(xk)− f(x)

tk
.

Proof of Lemma 7.21. Since f is differentiable at x, it holds (by definition)
that

lim
w→0

|f(x+ w)− f(x)−Df(x)[w]|
∥w∥

= 0,

where w can approach 0 in an arbitrary way. In particular, let wk = xk − x,
which indeed converges to zero. Plugging into the above, we get:

lim
k→∞

|f(xk)− f(x)−Df(x)[xk − x]|
∥xk − x∥

= 0.

Divide both the numerator and the denominator by tk (this is fine since tk is
nonzero for all k); then:

lim
k→∞

∣∣∣f(xk)−f(x)
tk

−Df(x)
[
xk−x
tk

]∣∣∣∥∥∥xk−x
tk

∥∥∥ = 0.

The denominator goes to ∥v∥ with k →∞. This may or may not be nonzero.
Either way, the numerator must converge to zero, hence:

lim
k→∞

∣∣∣∣f(xk)− f(x)

tk
−Df(x)

[
xk − x

tk

]∣∣∣∣ = 0.

Observe that the second term converges to Df(x)[v], hence the first term
must converge to the same value.
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Now that we have the above lemma, it is easy to prove the main theorem
of this section.

Proof of Theorem 7.20. Since x∗ is a local minimum, there exists a neighbor-
hood U of x∗ in S such that f(x) ≥ f(x∗) for all x ∈ U . For contradiction,
assume Df(x∗)[v] < 0 for some v ∈ Tx∗S. Let (xk) and (tk) be sequences
associated to v as usual. By Lemma 7.21, we know that

lim
k→∞

f(xk)− f(x∗)

tk
= Df(x∗)[v] < 0.

Let ε = −1
2
Df(x∗)[v] > 0. There exists K such that, for all k ≥ K,

f(xk)− f(x∗)

tk
≤ −ε.

Reorganizing these terms, we get:

∀k ≥ K, f(xk) ≤ f(x∗)− tkε < f(x∗).

However, that is a contradiction because the sequence (xk) converges to x∗:
it must eventually enter the neighborhood U , yet we know that for all x ∈ U
we have f(x) ≥ f(x∗).

Using the gradient of f , we can also write the necessary optimality con-
dition as

⟨∇f(x∗), v⟩ ≥ 0 for all v ∈ Tx∗S. (7.5)

This leads to other equivalent ways of phrasing the condition, through the
notions of dual and polar of the tangent cone. Consider the following general
definition first.

Definition 7.22. Let C be a cone in E. The dual of C is the set

C∗ = {w ∈ E : ⟨w, v⟩ ≥ 0 for all v ∈ C}.

The polar of C is the set

C◦ = {w ∈ E : ⟨w, v⟩ ≤ 0 for all v ∈ C}.

It is an exercise to show that C∗ and C◦ are closed cones.

Definition 7.23. By Definition 7.22, the following conditions are equivalent:

1. Df(x∗)[v] ≥ 0 for all v ∈ Tx∗S.
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2. ∇f(x∗) ∈ (Tx∗S)∗.

3. −∇f(x∗) ∈ (Tx∗S)◦.

If x∗ satisfies any (hence all) of them, we call x∗ a critical or a stationary
point for the problem of minimizing f constrained to S.

When we combine Theorem 7.20 with Definition 7.23, we get the following
convenient statement.

Corollary 7.24. Let f : E → R be differentiable, and S ⊆ E. If x∗ ∈ S is a
local minimum for f restricted to S, then x∗ is stationary for that problem.

The polar of the tangent cone has a special name.

Definition 7.25. The normal cone to S at x ∈ S is the set NxS ≜ (TxS)
◦.

Thus, yet another way of defining stationary points, that is, of writing
the necessary optimality conditions, is:

−∇f(x∗) ∈ Nx∗S. (7.6)

This expression is particularly nice to interpret: a point is stationary if the
steepest descent direction at that point lies in the normal cone at that point.

It is important to note that Theorem 7.20 only provides necessary op-
timality conditions. In general, those conditions are not sufficient. It is an
exercise to verify this claim on a specific example.

Exercise 7.26. Show that C∗ and C◦ are closed cones (even if C is not).

Exercise 7.27. Let C,C ′ be two cones in E such that C ⊆ C ′. Show that
(C ′)◦ ⊆ C◦, and likewise that (C ′)∗ ⊆ C∗.

Exercise 7.28. For each example in Section 7.1, draw the set S and the
tangent cones and normal cones at some interesting points. Think about the
meaning of the necessary optimality condition −∇f(x∗) ∈ Nx∗S. Do the
same also for the following sets:

1. The unit square in R2, that is, {x ∈ R2 : 0 ≤ x1, x2 ≤ 1}.

2. The half disk {x ∈ R2 : ∥x∥ ≤ 1 and x1 ≥ 0}.

3. The “opposite” of the half disk, R2\{x ∈ R2 : ∥x∥ < 1 and x1 > 0}.
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Exercise 7.29. Let E = R2. Consider the function f(x) = x2, to be mini-
mized on the set S = {x ∈ R2 : ∥x∥ ≥ 1} (the complement of the open unit
disk). Consider the special point x∗ = (0, 1)⊤. Show that x∗ is stationary
for f on S. Show that x∗ is not a local minimum for f on S. This example
proves that the converse of Theorem 7.20 does not hold in general.

Exercise 7.30. When S = E, the optimization problem is unconstrained.
We already showed that a necessary optimality condition at x∗ in that case
is ∇f(x∗) = 0. Show how we can recover that fact using normal cones of E.

Exercise 7.31. Given a non-empty set Q ⊆ E, the projection of a point
z ∈ E to Q is defined as the set of solutions of

min
x∈Q
∥x− z∥. (7.7)

We let ProjQ(z) denote this set. Fact: if Q is closed, the set ProjQ(z) is
non-empty. However, even then, ProjQ(z) might not be a singleton: give an
example. (See also Exercise 9.17)

Exercise 7.32. Let C be a closed cone. Show that

ProjC(z) = {0} ⇐⇒ z ∈ C◦.

Hint: Notice that the elements of ProjC(z) are the solutions of an optimiza-
tion problem: we know they satisfy certain conditions.

Exercise 7.33. Show that x∗ ∈ S is stationary for f constrained to S if and
only if

ProjTx∗S
(−∇f(x∗)) = {0}.

This provides yet another way to interpret the necessary optimality conditions
for constrained optimization problems: the steepest descent direction vanishes
when we project it to the tangent cone. Hint: solve Exercise 7.32 first.



Chapter 8

Search spaces defined by
equalities and inequalities

It is common for the search space S of an optimization problem

min
x∈E

f(x) subject to x ∈ S

to be defined through equality constraints and inequality constraints, as fol-
lows:

S =
{
x ∈ E : hi(x) = 0, i = 1, . . . , p, and

gi(x) ≤ 0, i = 1, . . . ,m
}
, (8.1)

where h1, . . . , hp : E → R and g1, . . . , gm : E → R are continuously differen-
tiable functions. More compactly, we write

S = {x ∈ E : h(x) = 0 and g(x) ≤ 0}, (8.2)

with h : E → Rp and g : E → Rm defined by

h(x) =

h1(x)
...

hp(x)

 , g(x) =

g1(x)...
gm(x)

 ,

and the notation u ≤ 0 for a vector u ∈ Rm means ui ≤ 0 for i = 1, . . . ,m.
The fundamental necessary optimality conditions are still the same as

those expressed in (7.6), that is: local minima are stationary points, and a
point x∗ ∈ S is stationary if

−∇f(x∗) ∈ Nx∗S = (Tx∗S)◦.

Thus, our goals in this chapter are clear:

95
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1. Figure out nice expressions for the tangent cones of S,

2. Deduce nice expressions for the normal cones of S,

3. Conclude with a nice statement about the necessary optimality condi-
tions for minimization problems constrained to S.

This is not as straightforward as it might first seem to be. We will get there
through a few examples and intermediate steps.

8.1 A single inequality constraint

Let g : E → R be a continuously differentiable function. Consider the set

S = {x ∈ E : g(x) ≤ 0}. (8.3)

Many of the sets we have considered can be described in this fashion. For
example, the unit ball can be described with the function g(x) = ∥x∥2 − 1
(and we could also have picked a different function g to get the same set).

Consider a point x ∈ S. If g(x) < 0, then it is easy to determine the
tangent cone at x.

Theorem 8.1. If g(x) < 0, then TxS = E.

Proof. Since g is continuous, there exists a neighborhood U of x in E such
that g(y) < 0 for all y ∈ U . Thus, x is in the interior of S. It follows from
Example 7.10 that TxS = E .

If g(x) = 0, things can get more complicated: it all depends on the
gradient of the constraint at x. Specifically, it all depends on whether or not
∇g(x) is zero. To build some intuition, consider the two following examples.

Example 8.2. With E = R2, let g(x) = x2
1 + x2

2 − 1. The point x = (1, 0)
satisfies g(x) = 0. Notice that ∇g(x) = (2x1, 2x2)

⊤ = (2, 0)⊤. The tangent
cones and normal cones at x are given by:

TxS = {v ∈ R2 : v1 ≤ 0}, NxS = {v ∈ R2 : v1 ≥ 0 and v2 = 0}.

We can also express these cones as follows:

TxS = {v ∈ E : ⟨∇g(x), v⟩ ≤ 0}, NxS = {λ∇g(x) : λ ≥ 0}.

This is not an accident: you can check that this holds for all x such that
g(x) = 0. We shall see that this extends to other functions g as well.
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Example 8.3. With E = R2, let g(x) = x2
2 − x3

1. The point x = (0, 0)
satisfies g(x) = 0. Notice that ∇g(x) = (−3x2

1, 2x2)
⊤ = (0, 0). Moreover,

TxS = {v ∈ R2 : v1 ≥ 0 and v2 = 0}, NxS = {v ∈ R2 : v1 ≤ 0}.

In this case, we do not have a simple relationship between the gradient ∇g(x)
and the tangent or normal cone. This is because ∇g(x) = 0.

In line with the first example above, if ∇g(x) ̸= 0, then we can get an
expression for the tangent and normal cones to S at x. The second example
above illustrates why we need to restrict our attention to settings where
∇g(x) ̸= 0.

Theorem 8.4. If x ∈ S satisfies g(x) = 0 and ∇g(x) ̸= 0, then

TxS = {v ∈ E : ⟨∇g(x), v⟩ ≤ 0}, NxS = {λ∇g(x) : λ ≥ 0}.

Proof. Consider an arbitrary direction v ∈ E . There are three cases to study:

1. ⟨∇g(x), v⟩ > 0: in this case, we show that v /∈ TxS. Indeed, assume
for contradiction that we can find (xk) → x in S and (tk) → 0+ such
that xk−x

tk
→ v. Then, Lemma 7.21 tells us that

⟨∇g(x), v⟩ = Dg(x)[v] = lim
k→∞

g(xk)− g(x)

tk
≤ 0

because g(x) = 0 and g(xk) ≤ 0, tk > 0 for all k.

2. ⟨∇g(x), v⟩ < 0: let us show that v ∈ TxS. Notice that

g(x+ tv) = g(x) + t ⟨∇g(x), v⟩+ o(t) = t ⟨∇g(x), v⟩+ o(t).

Since ⟨∇g(x), v⟩ < 0, we deduce that for t ∈ [0, ε] with ε > 0 small
enough the points c(t) = x + tv satisfy g(x) ≤ 0. Therefore, c′(0) = v
belongs to TxS (use Theorem 7.9).

3. ⟨∇g(x), v⟩ = 0: Above we have shown that

{v ∈ E : ⟨∇g(x), v⟩ < 0} ⊆ TxS.

Vectors v such that ⟨∇g(x), v⟩ = 0 are in the closure of the left-hand
side. Yet, we know that TxS is closed. Therefore, the closure of the
left-hand side is included in TxS.

It remains to deduce NxS from TxS: this is left as an exercise.

Exercise 8.5. Complete the proof of Theorem 8.4.
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8.2 A single equality constraint

Let h : E → R be a continuously differentiable function. Consider the set

S = {x ∈ E : h(x) = 0}. (8.4)

Here too we can learn a lot about the tangent cones of S by studying the
gradient of h. Let us do so through two examples.

Example 8.6. With h(x) = x2
1 + x2

2 − 1 defined on R2, the set S is the
unit circle in the plane. Notice that ∇h(x) = (2x1, 2x2)

⊤ never vanishes for
x ∈ S: it is always “linearly independent”. As detailed earlier, it is easy to
check that

TxS = {v ∈ E : ⟨∇h(x), v⟩ = 0}, NxS = {µ∇h(x) ∈ E : µ ∈ R}. (8.5)

As we shall see, this observation generalizes well under some conditions.

Example 8.7. With h(x) = x2
2− x3

1 defined on R2, the set S is the so-called
cuspidal cubic. Notice that ∇h(x) = (−3x2

1, 2x2)
⊤ vanishes at x = (0, 0),

which belongs to S. By inspection on a drawing, it is easy to see that for this
choice of x we have:

TxS = {v ∈ E : v1 ≥ 0 and v2 = 0}, NxS = {v ∈ E : v1 ≤ 0}.

These cones are not what we would obtain using the descriptions in (8.5);
that is because ∇h(x) = 0: it is not “linearly independent”.

8.3 Two inequality constraints

Consider the set S ⊆ R2 defined by the two following inequality constraints:

g1(x) ≜ x2
1 + x2

2 − 1 ≤ 0, g2(x) ≜ x1 + x2 − 1 ≤ 0.

The first inequality describes the unit disk in the plane and the second in-
equality defines a half-space; the set S is the intersection of these two sets.

What can we say about the tangent cones to S? There are five scenarios
depending on where the point x is in R2:

1. If g1(x) > 0 or g2(x) > 0 (or both), then x /∈ S: there are no tangent
cones here because x is infeasible.
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2. If g1(x) < 0 and g2(x) < 0, then x is in the interior of S. Indeed, g1 and
g2 are continuous functions: there exists a neighborhood U1 of x such
that g1(y) < 0 for all y ∈ U1, and likewise there exists a neighborhood
U2 of x such that g2(y) < 0 for all y ∈ U2. Therefore, U = U1 ∩ U2 is
a neighborhood of x which is entirely contained in S. It then follows
that TxS = E = R2. We say that neither of the constraints are active.

3. If g1(x) = 0 and g2(x) < 0, then only the first constraint is active. The
second constraint has no effect on what S looks like locally around x.
Therefore, we can ignore the inactive constraint and use everything we
have learned about tangent cones under a single inequality constraint
to treat this case. Explicitly, TxS = {v ∈ R2 : ⟨∇g1(x), v⟩ ≤ 0}.

4. If g1(x) < 0 and g2(x) = 0, then only the second constraint is active:
we can use the same reasoning as above. Explicitly, TxS = {v ∈ R2 :
⟨∇g2(x), v⟩ ≤ 0}.

5. If g1(x) = 0 and g2(x) = 0, then both constraints are active: this is the
most interesting case for us now because it is the most different from
everything else we have considered so far. We reason on this particular
example. Let x = (1, 0): both constraints are indeed active at this
point. Consider the gradients of the constraints at this point:

∇g1(x) =
[
2x1

2x2

]
=

[
2
0

]
, ∇g2(x) =

[
1
1

]
Notice that these gradients are linearly independent: this will be im-
portant. By inspection on a drawing, it is not difficult to convince
ourselves that the following identities hold:

TxS =
{
v ∈ R2 : ⟨∇g1(x), v⟩ ≤ 0 and ⟨∇g2(x), v⟩ ≤ 0

}
,

NxS = {λ1∇g1(x) + λ2∇g2(x) : λ1, λ2 ≥ 0} .

In the sequel, we will formalize this observation in broad generality.

8.4 Linearized feasible directions

To summarize the introductory sections above: We can learn a lot about
S = {x ∈ E : h(x) = 0 and g(x) ≤ 0} by studying the linearization of the
constraints around feasible points. Indeed, consider x ∈ S and an arbitrary
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direction v ∈ E . Taylor expansions of the constraints hi(x) = 0 tell us that1

hi(x+ tv) = hi(x) + t ⟨∇hi(x), v⟩+ o(t)

= t ⟨∇hi(x), v⟩+ o(t).

Thus, if ⟨∇hi(x), v⟩ = 0 then x+tv nearly satisfies the constraint: hi(x+tv) =
o(t) ≈ 0. Likewise, consider a Taylor expansion for one of the inequality
constraints:

gi(x+ tv) = gi(x) + t ⟨∇gi(x), v⟩+ o(t).

If gi(x) < 0, then for small enough t it is the case that gi(x + tv) ≤ 0, and
therefore the constraint remains satisfied: there is no particular condition
on v. On the other hand, if gi(x) = 0 (that is, if this inequality constraint
is active at x), then we must require ⟨∇gi(x), v⟩ ≤ 0 to ensure that x + tv
(nearly) satisfies the inequality constraint for small t ≥ 0.

The above considerations amount to linearizing the active constraints at
x ∈ S. This leads to the notion of linearized feasible directions defined below.
These are nothing but the tangent directions of the linearized constraints.

Definition 8.8. Consider the set S defined by equalities h(x) = 0 and in-
equalities g(x) ≤ 0 as in (8.2). Given x ∈ S, the cone of linearized feasible
directions at x to S with respect to these constraints is the set

FxS =
{
v ∈ E : ⟨∇hi(x), v⟩ = 0, i = 1, . . . , p, and

⟨∇gi(x), v⟩ ≤ 0, i = 1, . . . ,m such that gi(x) = 0
}
. (8.6)

It is an exercise to verify that this is a closed cone.

Theorem 8.9.[Proof for exam 2025] The tangent cone is always included in the cone of linearized
feasible directions, that is,

TxS ⊆ FxS.

However, the two cones are not always equal (exercise).

Proof. Consider a tangent direction v ∈ TxS. By definition, we can select a
sequence (xk) in S and a sequence (tk) of positive reals such that xk → x,
tk → 0+ and xk−x

tk
→ v. For each 1 ≤ i ≤ p, we have hi(x) = 0 and hi(xk) = 0

1Recall that o(t) stands for a quantity which is “much smaller than t when t is small”.
If hi is twice continuously differentiable we can write O(t2) instead of o(t).
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since x and all the points in the sequence (xk) are feasible. It then follows
from Lemma 7.21 that

⟨∇hi(x), v⟩ = Dhi(x)[v] = lim
k→∞

hi(xk)− hi(x)

tk
= 0.

Likewise, for 1 ≤ i ≤ m such that gi(x) = 0 we see that

⟨∇gi(x), v⟩ = Dgi(x)[v] = lim
k→∞

gi(xk)− gi(x)

tk
≤ 0

since gi(xk) ≤ 0 for all points in the sequence (xk).

Remark 8.10. Note the following: tangent cones are a fundamental property
of the set S, whereas cones of linearized feasible directions depend on how we
describe the set S. In other words: TxS depends only on the set S, whereas
FxS can depend on the specific equality and inequality constraints we choose
to define S. Keep that in mind when we use the notation “FxS”.

Exercise 8.11. Verify that FxS is a closed cone.

Exercise 8.12. Consider the set S which is simply the origin in R2. What
is the tangent cone to S at x = (0, 0)? Consider a first way to define this set
S, through two equality constraints h1(x) = 0 and h2(x) = 0 with

h1(x) = x1, h2(x) = x2.

What is the corresponding cone of linearized feasible directions at x? Now
consider a second way to define the set S, through two inequality constraints
g1(x) ≤ 0 and g2(x) ≤ 0 with

g1(x) = (x1 − 1)2 + x2
2 − 1, g2(x) = x1.

What is the corresponding cone of linearized feasible directions at x? Com-
ment on your findings with respect to Theorem 8.9 and Remark 8.10

8.5 Constraint qualifications

Theorem 8.9 tells us that the tangent cone is always included in the cone of
linearized feasible directions, that is, TxS ⊆ FxS, but that these two cones
may not be equal to one another. If they are not equal, then we have learned
little. Indeed,

x∗ is a local minimum =⇒ −∇f(x∗) ∈ (Tx∗S)◦,
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yet

TxS ⊆ FxS =⇒ (FxS)
◦ ⊆ (TxS)

◦.

In general, we cannot conclude anything useful relating −∇f(x∗) to (Fx∗S)◦.
Accordingly, an important topic in constrained optimization is to de-

termine conditions on the equality and inequality constraints that lead to
TxS = FxS. Such conditions are called constraint qualification conditions.
Let us stress again that these are conditions on the way in which we describe
S (that is, conditions on our choices of equality and inequality constraints)—
they are not conditions on the set S itself.

Definition 8.13. Given a set S described by equality and inequality con-
straints as in (8.1), we say that constraint qualification conditions (CQ)
hold at x ∈ S if TxS = FxS.

There exist many different kinds of constraint qualification conditions.
Let us consider a particularly simple one in the theorem below. Define I(x)
as the set of active inequality constraints at x:

I(x) = {i ∈ {1, . . . ,m} : gi(x) = 0} (8.7)

Theorem 8.14. Consider a point x ∈ S where S is defined by (8.1). If the
gradients of the active constraints at x are linearly independent, that is, if

∇h1(x), . . . ,∇hp(x) and ∇gi(x) ∀i ∈ I(x)

are linearly independent vectors in E, then TxS = FxS and we say the linear
independence constraint qualification condition (LICQ) holds at x.

Proof. You can find a proof in [NW06, Lem. 12.2(ii)]. The main ingredient
is the inverse function theorem from multivariate calculus. The proof uses
that theorem to construct curves in S that can be used with Theorem 7.9 to
show that each element of FxS is in TxS.

We mention two further constraint qualification conditions. The first one
below is fairly clear: if the constraints are already linear, then linearizing
them does not create particular issues (in fact, it does nothing at all).

Theorem 8.15. Consider a point x ∈ S where S is defined by (8.1). If
all active constraints at x ∈ S are linear, that is, if all equality constraint
functions h1, . . . , hp and all inequality constraint functions gi with i ∈ I(x)
are affine functions, then TxS = FxS.
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Proof. See [NW06, Lem. 12.7]. The idea is as follows: (a) we already know
that TxS ⊆ FxS from Theorem 8.9; (b) to show that FxS ⊆ TxS, we consider
curves of the form c(t) = x + tv where v ∈ FxS. It suffices to argue that
c(t) ∈ S for all t ∈ [0, ε] with some ε > 0, then to apply Theorem 7.9.

The last constraint qualification we mention is a standard generalization
of LICQ.

Theorem 8.16. Consider a point x ∈ S where S is defined by (8.1). If
the gradients ∇h1(x), . . . ,∇hp(x) are linearly independent and there exists a
point x̄ ∈ E such that

⟨∇hi(x), x̄− x⟩ = 0, for all i = 1, . . . , p and

⟨∇gi(x), x̄− x⟩ < 0, for all i ∈ I(x),

then TxS = FxS and we say the Mangasarian–Fromowitz constraint qualifi-
cation condition (MFCQ) holds at x.

If LICQ holds, then MFCQ holds. However, the converse is not true.
The following technical lemma about MFCQ is sometimes useful.

Lemma 8.17. If MFCQ holds at x, then there exists ϵ > 0 such that for all
v ∈ Rp with ∥v∥ ≤ ϵ there exists x̂ ∈ E satisfying

⟨∇hi(x), x̂− x⟩ = vi, for all i = 1, . . . , p and

⟨∇gi(x), x̂− x⟩ < 0, for all i ∈ I(x).

Proof. Let x̂ = x̄ + w where x̄ is provided by MFCQ and w is to be deter-
mined. The requirements from the equality constraints then state

vi = ⟨∇hi(x), x̄+ w − x⟩ = ⟨∇hi(x), w⟩ for all i = 1, . . . , p.

Since the gradients ∇hi(x) are linearly independent, solutions w exist for
any given v: pick the one of minimal norm. As long as w is small enough,
the inequalities ⟨∇gi(x), x̂− x⟩ < 0 will hold by continuity. The norm of w
is bounded by the norm of v times a constant (that is a general property of
the minimal norm solutions of consistent linear systems). Thus, we get the
result by selecting ϵ > 0 small enough.

Exercise 8.18. Show that if LICQ holds then MFCQ holds.

Exercise 8.19. (See [NW06, Exercise 12.13].) Consider the set S defined
by the following inequality constraints on E = R2:

g1(x) = (x1 − 1)2 + (x2 − 1)2 − 2 ≤ 0,

g2(x) = (x1 − 1)2 + (x2 + 1)2 − 2 ≤ 0,

g3(x) = −x1 ≤ 0.
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Draw the three sets defined by g1(x) ≤ 0, g2(x) ≤ 0 and g3(x) ≤ 0, and
highlight the set S on your drawing. Draw the gradients of the constraints at
the origin. Show that MFCQ holds at the origin yet LICQ does not hold at
the origin.

8.6 Polar of the linearized directions

When constraint qualifications hold at a point x∗, we have the identity
Tx∗S = Fx∗S which allows us to claim:

x∗ is a local minimum =⇒ −∇f(x∗) ∈ (Fx∗S)◦.

Statements of the form “w ∈ (FxS)
◦” are not so convenient to exploit though.

Explicitly, they mean that w satisfies the following conditions:

⟨w, v⟩ ≤ 0 for all v ∈ E such that{
⟨∇hi(x), v⟩ = 0 for i = 1, . . . , p, and

⟨∇gi(x), v⟩ ≤ 0 for i = 1, . . . ,m such that gi(x) = 0.
(8.8)

It would be much more convenient to have an expression stating that w is of
a certain form, such as a linear combination of particular vectors for example.
In other words: we need an explicit description of the polar of FxS.

Based on the examples we have encountered so far, we may surmise that
vectors of the following form merit our attention:

w =

p∑
i=1

µi∇hi(x) +
∑
i∈I(x)

λi∇gi(x), (8.9)

where λi, µi are real coefficients and I(x) indexes the active inequality con-
straints at x as in (8.7). Consider an arbitrary vector v ∈ FxS: it satisfies
the conditions stated in (8.8). Therefore,

⟨w, v⟩ =
p∑

i=1

µi ⟨∇hi(x), v⟩︸ ︷︷ ︸
=0

+
∑
i∈I(x)

λi ⟨∇gi(x), v⟩︸ ︷︷ ︸
≤0

.

In particular, if λi ≥ 0 for all i ∈ I(x) then ⟨w, v⟩ ≤ 0 for all v ∈ FxS, that
is, w ∈ (FxS)

◦. As it turns out, this is a complete description of the polar
of FxS. The tool of choice to complete the proof is the Farkas lemma (see
[NW06, Lem. 12.4] for a proof, or https://arxiv.org/abs/2208.11678 for
a short one in case p = 0.)

https://arxiv.org/abs/2208.11678
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Lemma 8.20 (Farkas lemma). Let u1, . . . , up ∈ E and v1, . . . , vm′ ∈ E be
arbitrary vectors. Consider the cone

K =

{
p∑

i=1

µiui +
m′∑
i=1

λivi : µi ∈ R, λi ≥ 0

}
.

Then, given a vector w ∈ E, exactly one of the following statements is true:

1. Either w ∈ K, or

2. There exists v ∈ E such that ⟨ui, v⟩ = 0 for all i, ⟨vi, v⟩ ≤ 0 for all i,
and ⟨w, v⟩ > 0,

but not both.

Theorem 8.21. The polar of FxS is the following cone:

(FxS)
◦ =


p∑

i=1

µi∇hi(x) +
∑
i∈I(x)

λi∇gi(x) : µi ∈ R, λi ≥ 0

 , (8.10)

where I(x) indexes the active inequality constraints at x, as in (8.7).

Proof. Denote the right-hand side of (8.10) by K: this is the same cone
as in Lemma 8.20 with u1, . . . , up corresponding to ∇h1(x), . . . ,∇hp(x) and
v1, . . . , vm′ corresponding to the gradients of them′ = |I(x)| active inequality
constraints. With this notation and recalling Definition 8.8 for FxS, notice
that

v ∈ FxS ⇐⇒ ⟨ui, v⟩ = 0 for all i and ⟨vi, v⟩ ≤ 0 for all i.

Therefore, the Farkas lemma states the following: given w ∈ E , exactly one
of the following statements is true:

1. Either w ∈ K, or

2. There exists v ∈ FxS such that ⟨w, v⟩ > 0.

However, the latter statement is equivalent to the claim that w /∈ (FxS)
◦.

Let’s write this out once more:

1. If w ∈ K, then it is not true that w /∈ (FxS)
◦, i.e., w ∈ (FxS)

◦.

2. If w /∈ K, then w /∈ (FxS)
◦.

We conclude that K = (FxS)
◦.
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8.7 Karush–Kuhn–Tucker conditions

Combining the results of the last few sections, we obtain a key theorem known
as the KKT theorem, named after Karush, Kuhn and Tucker. To state it, we
first introduce a definition followed by simple facts about that definition.

Throughout this section, we consider the optimization problem

min
x∈E

f(x) subject to x ∈ S (8.11)

where the set S is defined by equality and inequality constraints as

S =
{
x ∈ E : hi(x) = 0, i = 1, . . . , p, and

gi(x) ≤ 0, i = 1, . . . ,m
}
,

and f : E → R, h : E → Rp and g : E → Rm are continuously differentiable.

Definition 8.22. A point x ∈ E is a KKT point for (8.11) if it is feasible
(x ∈ S) and there exist Lagrange multipliers µ ∈ Rp and λ ∈ Rm with λ ≥ 0
satisfying the KKT conditions:

−∇f(x) =
p∑

i=1

µi∇hi(x) +
m∑
i=1

λi∇gi(x) (8.12)

and

λigi(x) = 0 for i = 1, . . . ,m. (8.13)

The conditions (8.13) are also called complementarity conditions.

Lemma 8.23. A point x ∈ S is KKT if and only if −∇f(x) ∈ (FxS)
◦.

Proof. The complementarity conditions (8.13) express the fact that if gi(x) ̸=
0 then we must have λi = 0: this is a convenient way to state that the second
sum in (8.12) must only include indices 1 ≤ i ≤ m for which gi(x) = 0. With
this observation in hand, apply Theorem 8.21 to conclude.

The above lemma yields two corollaries.

Corollary 8.24. If x ∈ S is a KKT point, then it is a stationary point.

Proof. The KKT conditions imply −∇f(x) ∈ (FxS)
◦. Theorem 8.9 tells us

that TxS ⊆ FxS, hence also that (FxS)
◦ ⊆ (TxS)

◦ = NxS (do you see why?).
Thus, the KKT conditions imply −∇f(x) ∈ NxS, i.e., x is stationary.
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Corollary 8.25. If x ∈ S is a stationary point and a constraint qualification
condition holds at x, then x is a KKT point.

Proof. The CQ implies that TxS = FxS. Thus, stationarity of x implies
−∇f(x) ∈ NxS = (TxS)

◦ = (FxS)
◦. It follows that x is a KKT point by

Lemma 8.23.

The above result can be further stated in the following main theorem,
known as the KKT theorem. It is the motivation behind algorithms which
aim to find KKT points, in the hope that these will be local minima.

Theorem 8.26 (KKT). If x∗ ∈ S is a local minimum and a constraint
qualification condition holds at x∗, then x∗ is a KKT point.

Proof. Combine Theorem 7.20 and Corollary 8.25.

Exercise 8.27. Establish the following statements:

1. If LICQ holds at x ∈ S, then there exists at most one valid choice of
Lagrange multipliers to satisfy the KKT conditions.

2. In contrast, without LICQ there might exist more than one valid choice
of Lagrange multipliers.

3. The set of valid Lagrange multipliers at x ∈ S is closed and convex (see
Definition 9.1 for the notion of convex set).

Remark 8.28. This remark is based on notes by Jim Burke.2 Notice that for
the KKT theorem to hold it is sufficient to have (TxS)

◦ = (FxS)
◦. We de-

fined constraint qualifications as any conditions which ensure the (stronger)
property TxS = FxS: this is called Abadie CQ. The somewhat weaker condi-
tion (TxS)

◦ = (FxS)
◦ is called Guignard CQ. You can check on the following

example that Guignard CQ may hold (hence the KKT theorem may apply)
even if Abadie CQ fails:

min
x∈R2

x2
1 + x2

2 s.t. x1, x2 ≥ 0 and x1x2 = 0.

Upon drawing the feasible set, you will see that the most interesting feasible
point is x = (0, 0). In this course, we use “CQ” to mean Abadie CQ.

2https://sites.math.washington.edu/~burke/crs/516/notes/cq_lec.pdf;
More: https://epubs.siam.org/doi/10.1137/1015075 (SIAM Review, Peterson, 1972)

https://sites.math.washington.edu/~burke/crs/516/notes/cq_lec.pdf
https://epubs.siam.org/doi/10.1137/1015075
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8.8 Lagrangian duality

We continue within the same setting as Section 8.7. Consider the following
function, called the Lagrangian of problem (8.11):

L : E × Rp × Rm
+ → R

: (x, µ, λ) 7→ L(x, µ, λ) = f(x) +

p∑
i=1

µihi(x) +
m∑
i=1

λigi(x), (8.14)

where Rm
+ = {λ ∈ Rm : λi ≥ 0 for i = 1, . . . ,m}.

We define a primal function associated with problem (8.11) as follows:

LP (x) = sup
µ∈Rp,λ∈Rm

+

L(x, µ, λ). (8.15)

Formally, LP is a function from E to the extended reals R̄ = R∪{−∞,+∞}.
Indeed, it could very well be that the supremum evaluates to +∞ for certain
values of x. Case in point, it is easy to check (exercise) that

LP (x) =

{
f(x) if x ∈ S,

+∞ otherwise.
(8.16)

Thus, the following problem is equivalent to (8.11)—we call it the primal
problem:

min
x∈E

LP (x). (primal)

Indeed, if S is non-empty then it is always better to pick x ∈ S to minimize
LP ; and if S is empty then it makes sense to assign the value +∞ to the
minimization problem (8.11).

We can also define the so-called dual function associated with (8.11):

LD(µ, λ) = inf
x∈E

L(x, µ, λ). (8.17)

Formally, LD is a function from Rp × Rm
+ to R̄. This allows us to define the

dual problem:

max
µ∈Rp,λ∈Rm

+

LD(µ, λ). (dual)

Notice how the (primal) and the (dual) problems are related by simply swap-
ping the order of minimization over x and maximization over (µ, λ).

In general, the dual function LD may be a complicated object: it is not
always computable. Still, we can make the following observation that should
motivate us to investigate more.
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Theorem 8.29 (weak duality). [Proof for exam 2025]For all x ∈ E and (µ, λ) ∈ Rp×Rm
+ it holds

that LD(µ, λ) ≤ LP (x). In particular,

d∗ ≜

[
max

µ∈Rp,λ∈Rm
+

LD(µ, λ)

]
≤
[
min
x∈E

LP (x)

]
=

[
min
x∈S

f(x)

]
≜ p∗.

Proof. Fix x̄ ∈ E , µ̄ ∈ Rp, λ̄ ∈ Rm
+ arbitrarily. We see that

LD(µ̄, λ̄) =

[
inf
x∈E

L(x, µ̄, λ̄)

]
≤ L(x̄, µ̄, λ̄) ≤

[
sup

µ∈Rp,λ∈Rm
+

L(x̄, µ, λ)

]
= LP (x̄),

as announced. Since the inequality holds at arbitrary points, it also holds at
optimal points or along sequences that realize the extremal values.

Why is Theorem 8.29 relevant? Consider the following issue: You run an
optimization algorithm on (8.11) (equivalently, on the (primal)) and obtain
a tentative solution x̄ ∈ S. How can you convince yourself (or someone else!)
that x̄ is, in fact, optimal? That is: how are we supposed to certify that x̄
is optimal? To certify that x̄ is not optimal, it “suffices” to exhibit a better
point in S. But to certify that no such point exists is a much harder task.
That is where the dual problem may help, as follows: Given any (µ̄, λ̄) ∈
Rp × Rm

+ , Theorem 8.29 tells us that all x ∈ S satisfy f(x) ≥ LD(µ̄, λ̄).
Therefore, if we can find (µ̄, λ̄) ∈ Rp × Rm

+ such that f(x̄) = LD(µ̄, λ̄), we
can be certain that x̄ is a global optimum.

There are two potential pitfalls to the story:

1. The weak duality theorem says only that the optimal value of the dual
is less than the optimal value of the primal: it does not say that the
two coincide. Therefore, there may not exist a (µ̄, λ̄) satisfying f(x̄) =
LD(µ̄, λ̄) even if x̄ is optimal. The difference between the optimal value
of the primal problem and the optimal value of the dual problem is the
duality gap.

2. The dual function LD may be difficult to compute (let alone maximize).

The first pitfall is avoided if we are fortunate enough to have strong dual-
ity, that is, if the duality gap for our problem is zero. This notably happens
under the assumptions laid out in the next theorem. Note the implicit role of
constraint qualifications (to ensure existence of Lagrange multipliers) and the
explicit role of convexity (which we explore much more in the next chapter,
especially Section 9.6).
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Theorem 8.30 (strong duality).[Proof for exam 2025;

Lemma 8.31 is part of
the required proof.]

Assume both of the following:

1. The (primal) problem admits a KKT point x∗ ∈ S with valid Lagrange
multipliers µ∗ ∈ Rp and λ∗ ∈ Rm

+ , and

2. The function x 7→ L(x, µ∗, λ∗) is convex.

Then, we have strong duality, namely:

d∗ =

[
max

µ∈Rp,λ∈Rm
+

LD(µ, λ)

]
=

[
min
x∈E

LP (x)

]
=

[
min
x∈S

f(x)

]
= f(x∗) = p∗.

(8.18)

Moreover, (µ∗, λ∗) is optimal for the (dual) problem and x∗ is optimal for
the (primal) problem as well as for

min
x∈E

L(x, µ∗, λ∗)

which is an unconstrained problem.

Before we get to the proof of Theorem 8.30, let us make a general ob-
servation relating Lagrange multipliers and critical points of the Lagrangian.
Denote the gradient of x 7→ L(x, µ, λ) (that is, the gradient of L with respect
to x only, keeping µ and λ fixed) by ∇xL(·, µ, λ). It is given by:

∇xL(x, µ, λ) = ∇f(x) +
p∑

i=1

µi∇hi(x) +
m∑
i=1

λi∇gi(x). (8.19)

It is easy to deduce the following lemma.

Lemma 8.31. If x̄ is a KKT point of (8.11) with Lagrange multipliers µ̄, λ̄
satisfying the KKT conditions, then

L(x̄, µ̄, λ̄) = f(x̄) and ∇xL(x̄, µ̄, λ̄) = 0. (8.20)

We are now ready for the proof of the strong duality theorem.

Proof of Theorem 8.30. Weak duality (Theorem 8.29) provides d∗ ≤ p∗. It
remains to show that d∗ ≥ p∗. By assumption, x∗ is a KKT point for (8.11)
with associated Lagrange multipliers µ∗ ∈ Rp and λ∗ ∈ Rm

+ satisfying the
KKT conditions at x∗. It follows from Lemma 8.31 that

L(x∗, µ∗, λ∗) = f(x∗) and ∇xL(x
∗, µ∗, λ∗) = 0.
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By assumption, the function x 7→ L(x, µ∗, λ∗) is convex. Since x∗ is a critical
point for that function, it follows from Corollary 4.23 that x∗ is a global
minimizer for x 7→ L(x, µ∗, λ∗). This is all we need to argue our main point:

d∗ = max
µ∈Rp,λ∈Rm

+

LD(µ, λ)

≥ LD(µ
∗, λ∗)

= inf
x∈E

L(x, µ∗, λ∗)

= L(x∗, µ∗, λ∗)

= f(x∗)

≥ p∗ ≥ d∗.

Thus, all inequalities are equalities.

Remark 8.32. Theorem 8.30 only assumes that x∗ is a KKT point, but con-
cludes that it must in fact be a global minimizer of the primal problem. Thus,
the other assumption of the theorem cannot hold unless x∗ is a minimizer of
the primal problem. Therefore, it would be equivalent to require that as an
assumption.

(Observed by the students of Spring 2022 based on an earlier version that
assumed optimality.)

Notice how the second part of the statement in Theorem 8.30 provides a
nice interpretation for the Lagrange multipliers (µ∗, λ∗) at x∗ in the stated
context:

1. (µ∗, λ∗) provides a global optimum for the dual problem.

2. x∗ is a global minimum for an unconstrained minimization problem
where the cost function is L(·, µ∗, λ∗), that is, f(x) plus additional
penalty terms µ∗

ihi(x) for i = 1, . . . , p and λ∗
i gi(x) for i = 1, . . . ,m

such that gi(x
∗) = 0. Since there are no constraints, we might in

principle benefit from violating the constraints. Yet, x∗ (which satisfies
the constraints) is a global minimum for L(·, µ∗, λ∗). This reveals that,
with the selected “weights” (µ∗, λ∗), there is no incentive to violate
the constraints, because the cost of doing so would be offset by the
penalty terms. Therefore, we can think of the Lagrange multipliers
as the “currency exchange rate” between the cost function f and the
constraint functions hi and gi.

We close this section with an observation that will be best understood in
light of the next chapter: the (dual) problem is convex, in the sense that it is
equivalent to minµ∈Rp,λ∈Rm

+
−LD(µ, λ) where −LD is convex and the search

space Rp × Rm
+ (as we can verify through Definition 9.1) is a convex set.
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Theorem 8.33. The dual function LD (8.17) is always concave. Thus, the
(dual) problem is convex even if the (primal) problem is not convex.

Proof. The search space of the (dual) problem, namely, Rp × Rm
+ is convex.

To see that LD is concave, it is sufficient to notice that LD is the infimum
over a collection of affine (hence concave) functions. To build intuition, draw
a handful of affine functions from R to R and highlight their minimum.

Example 8.34 (Linear programming). One possible format to express linear
programs is as:

min
x∈Rn

c⊤x subject to Ax ≥ b,

with A ∈ Rm×n, c ∈ Rn and b ∈ Rm. The corresponding Lagrangian function
L : Rn × Rm

+ → R is

L(x, λ) = c⊤x+ λ⊤(b− Ax) = (c− A⊤λ)⊤x+ b⊤λ.

It is an exercise to verify that the dual function LD : Rm
+ → R̄ is then

LD(λ) = inf
x∈E

L(x, λ) =

{
b⊤λ if c− A⊤λ = 0,

−∞ otherwise.

Therefore, the dual problem is

max
λ∈Rm

b⊤λ subject to A⊤λ = c and λ ≥ 0.

Notice that the dual problem is also a linear program: it consists in a linear
cost function λ 7→ b⊤λ and linear equality (A⊤λ = c) and inequality (λ ≥ 0)
constraints. What can you say about strong duality (check the assumptions
of Theorem 8.30)? It is an interesting exercise to compute the dual of the
dual: what do you find?

Example 8.35 (Rayleigh quotient). Given a symmetric matrix A ∈ Rn×n,
consider the following primal optimization problem:

min
x∈Rn

x⊤Ax subject to h(x) = 1− x⊤x = 0.

Depending on A, the cost function may or may not be convex. The constraint
is not convex. The Lagrangian function is:

L(x, µ) = x⊤Ax+ µ(1− x⊤x) = x⊤(A− µIn)x+ µ,
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where In is the identity matrix of size n. Notice that this function is bounded
below exactly if A − µIn is positive semidefinite. Thus, the dual function
satisfies

LD(µ) =

{
µ if A− µIn ⪰ 0,

−∞ otherwise.

The condition A − µIn ⪰ 0 holds if and only if µ ≤ λmin(A). Accordingly,
the dual problem can be stated as:

max
µ∈R

µ subject to µ ≤ λmin(A).

It is clear that the maximal value of the dual problem is µ = λmin(A). Weak
duality therefore implies that the minimal value of the primal is lower-bounded
by λmin(A). If we let x be a unit-norm eigenvector of A associated to its
smallest eigenvalue, we also find that f(x) = x⊤Ax = λmin(A). Therefore,
the primal and the dual problems have the same optimal value: strong duality
holds and x is optimal for the primal.

We could also have tried to determine whether or not strong duality holds
by considering the assumptions of Theorem 8.30:

1. The primal admits a minimizer because the cost function is continuous
and the search space is compact.

2. Constraint qualifications hold everywhere since LICQ holds at all fea-
sible points. Thus, any minimizer x∗ has a Lagrange multiplier µ∗.

3. The function x 7→ L(x, µ∗) is convex if and only if A− µ∗In ⪰ 0, that
is, if and only if µ∗ ≤ λmin(A).

It is not obvious a priori whether or not the last condition above holds. Fortu-
nately, we have seen already that for this (very special) problem, the condition
works out favorably.

Example 8.36 (Solution of minimum norm). Consider the following primal
problem:

min
x∈Rn

1

2
∥x∥2 subject to Ax = b,

where A ∈ Rp×n and b ∈ Rp are given and we assume the feasible set is
non-empty. The Lagrangian function is L : Rn × Rp → R with:

L(x, µ) =
1

2
∥x∥2 + µ⊤(b− Ax).

Consider the assumptions of Theorem 8.30:
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1. The primal consists in finding the point of the affine subspace {x ∈ Rn :
Ax = b} closest to the origin: intuitively, it is clear that this problem
has a minimizer; you should be able to make this intuition precise.

2. Since the constraints are affine, constraint qualifications hold every-
where. Therefore, any minimizer has Lagrange multipliers.

3. L is convex in x for all values of µ.

We conclude that strong duality holds for this problem.
The primal function is easily determined from (8.16):

LP (x) =

{
1
2
∥x∥2 if Ax = b,

+∞ otherwise.

To get a hold of the dual function, we need to work harder. By definition,

LD(µ) = inf
x∈Rn

1

2
∥x∥2 + µ⊤(b− Ax).

Notice that the function we must “infimize” is a strongly convex quadratic
function of x: we know that it has a unique minimizer. Moreover, that
minimizer is the critical point of the quadratic. The gradient of x 7→ 1

2
∥x∥2+

µ⊤(b − Ax) is x − A⊤µ. This is zero exactly when x = A⊤µ. Plugging this
into the expression for LD above yields:

LD(µ) =
1

2
∥A⊤µ∥2 + µ⊤(b− AA⊤µ)

= −1

2
µ⊤AA⊤µ+ b⊤µ.

As expected, LD is concave; moreover, it is quadratic.
Let us solve the dual problem, that is, let us maximize LD(µ) for µ ∈

Rp unconstrained. This is equivalent to minimizing the convex quadratic
1
2
µ⊤AA⊤µ− b⊤µ, whose critical points are characterized by

AA⊤µ− b = 0.

All µ ∈ Rp which satisfy the above are global optima for the dual. Let µ∗

be one such solution. Motivated by Theorem 8.30, we consider the following
unconstrained optimization problem:

min
x∈Rn

L(x, µ∗) where L(x, µ∗) =
1

2
∥x∥2 + (µ∗)⊤(b− Ax).
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This is again a strongly convex quadratic in x. As per our work above, its
unique minimizer x∗ is given by

x∗ = A⊤µ∗.

Notice that Ax∗ = AA⊤µ∗ = b, i.e., x∗ is feasible for the primal even though
we did not enforce it explicitly. Moreover,

LD(µ
∗) = −1

2
(µ∗)⊤AA⊤µ∗ + b⊤µ∗ =

1

2
(µ∗)⊤AA⊤µ∗ =

1

2
∥A⊤µ∗∥2 = f(x∗).

Therefore, strong duality confirms that x∗ is optimal for the primal and µ∗

is optimal for the dual: they certify each other’s optimality.

Example 8.37 (Max-Cut). Given a symmetric matrix W ∈ Rn×n, consider
the following binary optimization problem:

min
x∈Rn

x⊤Wx subject to xi ∈ {−1,+1} for i = 1, . . . , n.

The cost function expands as

f(x) = x⊤Wx =
n∑

i=1

n∑
j=1

Wijxixj.

In other words: if xi, xj have the same sign, then we “pay” Wij, whereas if
xi, xj have opposite signs then we “pay” −Wij. Think about the meaning of
this if W or −W is the adjacency matrix of an undirected graph (look-up the
Max-Cut problem). This is a computationally hard problem to solve.

Stated as above, the problem does not fit in our framework. However,
notice that we can restate each constraint xi ∈ {−1,+1} as 1 − x2

i = 0.
Thus, the above problem is equivalent to the following primal problem:

min
x∈Rn

x⊤Wx subject to hi(xi) = 0 for i = 1, . . . , n,

where each hi : R→ R is defined by hi(t) = 1−t2. The problem is not convex.
The Lagrangian function is given by:

L(x, µ) = x⊤Wx+
n∑

i=1

µi(1− x2
i )

= x⊤Wx− x⊤diag(µ)x+ 1⊤µ

= x⊤(W − diag(µ))x+ 1⊤µ,
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where 1 ∈ Rn is the vector of all ones and diag(µ) is the n×n diagonal matrix
whose diagonal entries are µ1, . . . , µn. Notice that x 7→ L(x, µ) is a convex
quadratic if W − diag(µ) is positive semidefinite, and that it is unbounded
below otherwise. It follows that the dual function satisfies:

LD(µ) =

{
1⊤µ if W − diag(µ) ⪰ 0,

−∞ otherwise.

As a result, the dual problem can be stated as:

max
µ∈Rn

1⊤µ subject to W − diag(µ) ⪰ 0.

We do not usually have strong duality for the combinatorial problem. How-
ever, weak duality still holds. Therefore, any µ ∈ Rn such that diag(µ) ⪯ W
can be used to provide a lower-bound 1⊤µ on the optimal value of the combi-
natorial problem. Such bounds can be tremendously useful for the design of
algorithms (e.g., branch-and-bound algorithms)—this is beyond the scope of
our course though.

Exercise 8.38. Verify formula (8.16) for the primal function.

Exercise 8.39 (Quadratic programming). Work out the dual of the quadratic
program

min
x∈Rn

1

2
x⊤Hx+ c⊤x subject to Ax ≥ b,

where H (symmetric) is positive definite. What can you say about strong
duality? It is interesting (but more difficult) to work this out assuming only
that H is positive semidefinite.



Chapter 9

Convex constraints

In Chapter 4, we discussed the concept of convex functions. We discovered
how convexity in unconstrained optimization ensures that all local minima
are in fact global minima, thus making our life as an optimizer much simpler.
In this chapter, we define a notion of convexity for the search space S. The
impetus for this chapter is the fact that if both the search space S and the
cost function f are convex, then it is still true that local minima are global
minima. This is a generalization of our earlier results because, as will be
clear in a moment, linear spaces E are convex.

We can state the main result right away. With the remainder of this
chapter, we shall explore its ramifications. Throughout this chapter, as
per usual, we assume f is differentiable.

Definition 9.1. A set S ∈ E is convex if the following holds:

x, y ∈ S =⇒ (1− t)x+ ty ∈ S for all t ∈ [0, 1].

In words: S is convex if it contains the line segment connecting each pair of
points in S.

Theorem 9.2. [Proof for exam 2025]Consider the constrained minimization problem

min
x∈E

f(x) subject to x ∈ S.

If S is convex and f (differentiable) is convex, then the (first-order) necessary
optimality conditions are also sufficient for global optimality, that is:

x∗ ∈ S is a global minimum ⇐⇒ −∇f(x∗) ∈ Nx∗S.

In particular, all local minima are global minima.

117
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Proof. We already know from Theorem 7.20 that if x∗ is a global minimum
then −∇f(x∗) ∈ Nx∗S. Let us use convexity to show the converse. Assume
x∗ ∈ S satisfies−∇f(x∗) ∈ Nx∗S. We must show that x∗ is a global minimum
of f in S. For contradiction, assume there exists x ∈ S such that f(x) <
f(x∗). By convexity of S, it holds that c(t) ≜ x∗ + t(x − x∗) is in S for all
t ∈ [0, 1]. Therefore, c′(0) = x − x∗ belongs to the tangent cone Tx∗S. Our
assumption −∇f(x∗) ∈ Nx∗S therefore implies that

⟨−∇f(x∗), x− x∗⟩ ≤ 0.

Moreover, convexity of f implies that

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩ .

Combining the two last statements reveals f(x) ≥ f(x∗): a contradiction.
The last statement holds because we have in fact shown that local minima,

global minima and stationary points coincide.

Because convexity has such profound ramifications for optimization, we
also define the notion of convexity for an optimization problem.

Definition 9.3. A minimization problem as in Theorem 9.2 is called a con-
vex optimization problem if both S and f are convex.

Exercise 9.4. Mind the following: in Theorem 9.2, it is important to check
all three of the following boxes:

1. We are minimizing (and not maximizing).

2. The cost function f is convex.

3. The search space S is convex.

To really appreciate this fact, do the following:

1. Give three examples of optimization problems which check two of the
above but not all three of the above, and for which there exists a non-
optimal stationary point.

2. If given a maximization problem, explain how you can get an equivalent
minimization problem. What is a good equivalent of “convex optimiza-
tion problem” for a maximization problem?

3. If the cost function is not convex, explain how you can get an equiva-
lent problem with a convex cost function (you can even make the cost
function linear).
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4. If the constraint set is not convex, explain how you can get an equivalent
problem with a convex search space (you can even make the problem
unconstrained)—you will need to make the cost function a bit weird for
this though.

For each of the above, explain how we should understand Theorem 9.2 against
the modified problem, specifically to verify that, sadly, there is no free lunch.

Exercise 9.5. Consider a function f : E → R. The epigraph of f is the set

{(x, s) ∈ E × R : s ≥ f(x)}. (9.1)

Show that this set is convex if and only if f is convex. It is instructive to
draw an example with E = R.

9.1 Convex sets and their cones

The tangent cones to an arbitrary set are defined in a somewhat abstract way:
recall Definition 7.7. For convex sets, the tangent cones can be described in a
more straightforward way as we now show. A consequence is that the normal
cones to a convex set also admit a particularly nice description.

Definition 9.6. Given a point x in a set S ⊆ E, we let

KxS = {α · (y − x) : y ∈ S, α ≥ 0} (9.2)

denote the cone of feasible directions.

Given a set A, we write A to denote the closure of A, that is, the set of
all limits of sequences in A.

Theorem 9.7. [Proof for exam 2025;

you may use the fact
that TxS is closed
without proof.]

Let S ⊆ E be a convex set. Then, the tangent cone to S at x
is the closure of the cone of feasible directions:

TxS = KxS. (9.3)

Consequently, the normal cone at x is:

NxS = {v ∈ E : ⟨v, y − x⟩ ≤ 0 for all y ∈ S}. (9.4)

Proof. The proof of (9.3) is in three steps:

1. Let us show that KxS ⊆ TxS. To this end, consider v ∈ KxS and the
associated curve c(t) = x+ tv. We know that v = α · (y − x) for some
y ∈ S and α ≥ 0. If α = 0, then v = 0 and indeed 0 ∈ TxS. Assume
α > 0. Then, c(0) = x and c(1/α) = y. By convexity of S, we deduce
that c(t) ∈ S for all t ∈ [0, 1/α]. It follows that c′(0) = v is in TxS.
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2. Since TxS is closed, the inclusion KxS ⊆ TxS implies KxS ⊆ TxS.

3. It remains to show that TxS ⊆ KxS. Given v ∈ TxS, let (xk) be a
sequence in S convergent to x and (tk) be a sequence of positive reals
convergent to zero such that v = limk→∞

xk−x
tk

. For each k, we have
1
tk
(xk − x) ∈ KxS. Therefore, v is the limit of a sequence of points in

KxS, that is, v ∈ KxS. (We did not use convexity of S here.)

It is an exercise to establish (9.4).

Combining Theorems 9.2 and 9.7, we get the following corollary.

Corollary 9.8. Consider the constrained minimization problem

min
x∈E

f(x) subject to x ∈ S.

If S is convex and f (differentiable) is convex, then:

x∗ ∈ S is a global minimum ⇐⇒ ⟨∇f(x∗), x− x∗⟩ ≥ 0 for all x ∈ S.

Exercise 9.9. Let S be a convex set. Show that KxS (9.2) is a convex cone.
Deduce that TxS is a convex cone. In contrast, show that if S is not convex
then it is possible for both KxS and TxS not to be convex, and it is possible
to have TxS ̸= KxS.

Exercise 9.10. Let C be a cone (not necessarily convex). Show that C◦ and
C∗ are convex. Deduce that NxS is always a closed convex cone, even if S is
not convex.

Exercise 9.11. Let C be a cone (not necessarily convex) and let C denote
its closure. Show that their polars are the same: C◦ = (C)◦. Use this to
verify (9.4) in Theorem 9.7.

Exercise 9.12. Consider the closed unit ball in Rn:

S = {x ∈ Rn : ∥x∥ ≤ 1}.

This set is convex of course. Fix some x ∈ S with ∥x∥ = 1. What is KxS in
this case? What is TxS? This exercise should convince you that it is indeed
necessary to take the closure of KxS in the statement TxS = KxS from (9.3).

Exercise 9.13. Prove Corollary 9.8 more directly, without normal cones.
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9.2 Global minima of convex problems

In Section 4.4, we started a discussion on the sets of global minima of convex
functions. We can now continue this discussion using the concept of convex
set. As was already the case in the unconstrained case, in general, the set of
global minima of a convex optimization problem could be empty, it could be
a singleton and it could contain more than one point. In all cases, that set
is convex.

Theorem 9.14. [Proof for exam 2025]If f : E → R is convex and S ⊆ E is convex, then the set of
global minima of minx∈S f(x) is a (possibly empty) convex set.

Proof. Assume x, y ∈ S are global minima of f on S, so that f(x) = f(y) =
fmin and f(z) ≥ fmin for all z ∈ S. Then, for all t ∈ [0, 1] we know that
(1− t)x+ ty is in S and therefore:

fmin ≤ f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y) = fmin,

where the first inequality holds because fmin is the minimal value of f on S
and the second inequality holds because f is convex. Thus, (1 − t)x + ty is
a global minimum as well.

We can also extend the results of Theorems 4.27 and 4.28.

Theorem 9.15. [Proof for exam 2025]Let S ⊆ E be convex. If f : E → R is strictly convex, then
there exists at most one global minimum x∗ ∈ S for minx∈S f(x).

Proof. For contradiction, assume x, y ∈ S are distinct global minima of f on
S, so that f(x) = f(y) = fmin and f(z) ≥ fmin for all z ∈ S. Then, for all
t ∈ (0, 1) we know that (1− t)x+ ty is in S and we have

fmin ≤ f((1− t)x+ ty) < (1− t)f(x) + tf(y) = fmin,

where the first inequality holds because fmin is the minimal value of f on
S and the second inequality holds because f is strictly convex. This is a
contradiction.

Theorem 9.16. Let S ⊆ E be non-empty, closed and convex. If f : E → R
is strongly convex, then there exists exactly one global minimum x∗ ∈ S for
minx∈S f(x).

Proof. By Theorem 9.15, we know f admits at most one global minimum on
S. It remains to show that it also admits at least one global minimum. This
can be done with slight modifications to the proof sketch of Theorem 4.28 if
we assume f is differentiable at (at least one) point x ∈ S. The statement
holds even without making that assumption explicitly: we omit the proof.
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Exercise 9.17. Show that the projection of a point z ∈ E to a closed and
non-empty convex set S ⊆ E exists and is unique. (See also Exercise 7.31)

Exercise 9.18 (Separation theorem). Let S be a closed and non-empty con-
vex set in E. Consider a point z /∈ S. Show that there exists a hyperplane
separating S and z, in the sense that z is on one side of the plane and S is
on the other side. Hint: use Exercise 9.17.

Exercise 9.19 (Separation theorem, bis). Now let S1, S2 be two closed and
non-empty convex sets in E such that S1 ∩ S2 = ∅. Show that there exists a
hyperplane separating S1 and S2. (Hint: argue the existence of x1 ∈ S1 and
x2 ∈ S2 that are as close to each other as possible; reason as in Exercise 9.18.)

Remark 9.20. Let us note a subtlety here regarding Theorem 9.16. (This is
a side-note that won’t be a concern in this introductory course: ignore it if
you find it confusing.) It is important that f should be continuous. That is
indeed the case in the theorem as stated, because convex, real-valued functions
on a linear space are continuous [Roc70, Cor. 10.1.1]. However, consider this
function from ma th .s ta ck ex ch an ge .c om /q ue st io ns /2 31 13 35 :

f : [0, 1]→ R : x 7→ f(x) =

{
x2 if x ∈ (0, 1],

1 if x = 0.

On the (non-empty, closed, convex) set S = [0, 1] ⊂ R, that function is
strongly convex (indeed, x 7→ f(x)− x2 is convex on [0, 1]). Yet, notice that
f is discontinuous and that it does not have a minimizer.

9.3 Convexity through (in)equality constraints

Recall from Chapter 8 the special case of interest where the search space S
is defined through equality and inequality constraints (8.1):

S =
{
x ∈ E : hi(x) = 0, i = 1, . . . , p, and

gi(x) ≤ 0, i = 1, . . . ,m
}
. (9.5)

Equivalently, we can define S as an intersection of sets, each defined by a
single equality or inequality constraint:

S = {x ∈ E : h1(x) = 0} ∩ · · · ∩ {x ∈ E : hp(x) = 0}
∩ {x ∈ E : g1(x) ≤ 0} ∩ · · · ∩ {x ∈ E : gm(x) ≤ 0}. (9.6)

This is instructive in view of the following theorem (the proof is an exercise):

math.stackexchange.com/questions/2311335
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Theorem 9.21. If S1 and S2 are two convex sets, then their intersection
S1 ∩ S2 is convex. By extension, the intersection of any collection of convex
sets is convex.

From Theorem 9.21, we see that S is convex in particular if each one of
the p+m sets in (9.6) is convex. This is easily assessed, as we now see.

Theorem 9.22. Given g : E → R, the set S = {x ∈ E : g(x) ≤ 0} is convex
if g is convex.

Proof. If g is convex and x, y ∈ S, then for all t ∈ [0, 1] we have

g((1− t)x+ ty) ≤ (1− t)g(x) + tg(y) ≤ 0,

hence (1− t)x+ ty is in S. Thus, S is convex.

Theorem 9.23. Given h : E → R, the set S = {x ∈ E : h(x) = 0} is convex
if h is affine, that is h(x) = ⟨w, x⟩+ b for some w ∈ E and b ∈ R.

Proof. There are many direct ways to show this. Here is a less direct but
instructive proof: S can be defined through the inequality constraints h(x) ≤
0 and −h(x) ≤ 0; if h is affine, then both h and −h are convex, hence S is
the intersection of two convex sets, which itself is convex.

The results of this section can be summarized as follows.

Corollary 9.24. [Proof for exam 2025;

Give an explicit proof
of the claim.]

The set S defined in (9.5) is convex if the equality con-
straint functions h1, . . . , hp are affine and the inequality constraint functions
g1, . . . , gm are convex.

Example 9.25. Since affine functions (and their negative) are convex, it
readily follows that minimizing (or maximizing) an affine function under
affine equality and inequality constraints is a convex optimization problem.
This is called linear programming. There is a lot to say about this: see [NW06,
Ch. 13] for more.

Exercise 9.26. Prove Theorem 9.21.

Exercise 9.27. Show through an example that the conclusion of Theorem 9.22
may fail if g is not convex.

Exercise 9.28. Show through an example that the conclusion of Theorem 9.23
may fail if h is not affine, even if h is convex.

Exercise 9.29. Let S be a set (not necessarily convex) defined by equality
and inequality constraints. Show that FxS (Definition 8.8) is always a closed
convex cone.
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9.4 Slater’s constraint qualification

Recall the general notion of constraint qualification conditions (CQ) we dis-
cussed in Section 8.5. For a search space S defined through equality and
inequality constraints, we introduced the notion of cone of linearized fea-
sible directions FxS (Definition 8.8), and we stated that CQs hold at x if
TxS = FxS. The CQs we discussed back then (LICQ, MFCQ, linear CQ)
apply with wide generality. In particular, they still apply for convex opti-
mization problems.

In the special case where the equality constraints are affine and the in-
equality constraints are convex, we know that S is convex. As a result, The-
orem 9.7 further tells us that TxS = KxS. Therefore, in this special case,
CQs hold if KxS = FxS. We exploit this to define a new CQ specifically
for such convex optimization problems, by the name of Slater’s condition.
It is often nicer to check than more general CQs such as LICQ and MFCQ
because it provides a result for all feasible points at once.

Theorem 9.30. Let S be defined by equality constraints hi(x) = 0 for i =
1, . . . , p and inequality constraints gi(x) ≤ 0 for i = 1, . . . ,m where each
hi is affine and each gi is convex and continuously differentiable. If there
exists a feasible point xs ∈ S which satisfies all inequalities strictly, that is,
gi(xs) < 0 for i = 1, . . . ,m, then TxS = FxS for all x ∈ S and we say
Slater’s constraint qualification condition holds.

Proof. Fix an arbitrary point x ∈ S. We know from the general case that
TxS ⊆ FxS—see Theorem 8.9. Theorem 9.7 provides TxS = KxS. Thus, we
only need to show that FxS ⊆ KxS. To do so, pick an arbitrary v ∈ FxS,
that is, v ∈ E satisfies

⟨∇hi(x), v⟩ = 0, i = 1, . . . , p, and

⟨∇gi(x), v⟩ ≤ 0, i = 1, . . . ,m such that gi(x) = 0.

We need to construct a sequence of directions (vk)k≥0 in KxS such that
vk → v. Indeed, that will show that v ∈ KxS, as desired. To this end, define

vk = (1− αk)v + αk(xs − x)

with some sequence (αk)k≥0 of nonnegative real numbers satisfying αk → 0.
We are about to show that

αk ∈ (0, 1) =⇒ vk ∈ KxS.

Then, we can conclude by setting αk =
1

2+k
for example.
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Let us establish the remaining piece. Consider the curve

c(t) = x+ tvk,

assuming αk ∈ (0, 1). For all t > 0 we have

vk =
1

t
(c(t)− x).

Thus, if c(t) is in S for some t > 0, it follows that vk is in KxS. Let us prove
that this is indeed the case. To see it, first assess the equality constraints
against c(t). Since each hi is affine, we have hi(y) = ⟨wi, y⟩ + bi for some
wi ∈ E and bi ∈ R. Thus,

hi(c(t)) = ⟨wi, x+ tvk⟩+ bi

= ⟨wi, x⟩+ bi + t ⟨wi, vk⟩
= hi(x) + t ⟨wi, (1− αk)v + αk(xs − x)⟩
= 0.

Above, the last equality follows from hi(x) = 0 (since x ∈ S), ⟨wi, v⟩ =
⟨∇hi(x), v⟩ = 0 (since v ∈ FxS) and ⟨wi, xs − x⟩ = 0 (since both xs and x
are feasible). We have established that the equality constraints are satisfied
for c(t) with all t. Let us now assess the inequality constraints against c(t).
Since c(0) = x and gi is continuously differentiable, we have:

gi(c(t)) = gi(x) + ⟨∇gi(x), c(t)− x⟩+ o(∥c(t)− x∥).

Below, we consider each 1 ≤ i ≤ m in turn.
If gi(x) < 0, then by continuity it is certainly possible to pick ti > 0 small

enough such that gi(c(t)) ≤ 0 for all t ∈ [0, ti].
If gi(x) = 0, then we can further write

gi(c(t)) = t ⟨∇gi(x), vk⟩+ o(t)

= t(1− αk) ⟨∇gi(x), v⟩+ tαk ⟨∇gi(x), xs − x⟩+ o(t)

≤ tαk ⟨∇gi(x), xs − x⟩+ o(t),

where in the last step we used ⟨∇gi(x), v⟩ ≤ 0 owing to v ∈ FxS. It remains
to show that

⟨∇gi(x), xs − x⟩ < 0. (9.7)

Indeed, once (9.7) is established, we can claim that there exists ti > 0 small
enough such that gi(c(t)) ≤ 0 for all t ∈ [0, ti]. Then, we can conclude the
proof by setting t̄ = min1≤i≤m ti which ensures c(t) ∈ S for all t ∈ [0, t̄].
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To see that (9.7) holds, we use (a) the Slater condition gi(xs) < 0, (b)
convexity of g, and (c) gi(x) = 0:

0 > gi(xs) ≥ gi(x) + ⟨∇gi(x), xs − x⟩ = ⟨∇gi(x), xs − x⟩ .

This concludes the proof.

Exercise 9.31. Show that Slater’s condition implies MFCQ at all feasible
points. (This is another way to prove that Slater’s condition is a CQ for the
whole feasible set.)

Exercise 9.32. Show the small changes that are needed in the proof of
Slater’s CQ theorem to see that we only need to require gi(xs) < 0 for i
such that gi is not affine. In other words: if some of the inequality con-
straints are affine, then it’s fine to pick xs in a way that those constraints
are active.

9.5 KKT for convex optimization problems

Recall the general KKT results from Section 8.7. Below, we write a special
version of that theorem for the case of affine equality constraints and convex
inequality constraints, summarizing much of what we learned in this chapter.
The parts that are new compared to Theorem 8.26 are emphasized in bold.

Theorem 9.33 (KKT convex). Consider the optimization problem

min
x∈E

f(x) subject to x ∈ S

where the set S is defined by equality and inequality constraints as

S =
{
x ∈ E : hi(x) = 0, i = 1, . . . , p, and

gi(x) ≤ 0, i = 1, . . . ,m
}
,

and f : E → R, h : E → Rp and g : E → Rm are continuously differen-
tiable. Assume moreover that f and g1, . . . , gm are convex, and that
h1, . . . , hp are affine. In particular, S is convex.

The following statements hold (recall Definition 8.22 for KKT points):

1. If the KKT conditions hold at x∗ ∈ S, then x∗ is a global minimum.

2. If constraint qualification conditions hold at x∗ ∈ S and x∗ is a local
(hence also global) minimum, then the KKT conditions hold at x∗.
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Proof. Owing to convexity, Theorem 9.2 tells us that stationary points, local
minima and global minima coincide. Then, the first statement follows from
Corollary 8.24 and the second statement follows from Corollary 8.25.

We get a particularly convenient corollary as a special case. This is one
of the most important results in optimization.

Corollary 9.34. In the setting of Theorem 9.33, if CQs hold at all feasible
points (e.g., if Slater’s condition holds or if all constraints are affine), then
KKT conditions are necessary and sufficient for global optimality.

9.6 Duality

Recall the notion of Lagrangian duality we defined in Section 8.8. It is
particularly fruitful in the convex setting.

Corollary 9.35. In the setting of Theorem 9.33, if the (primal) problem
admits a global minimizer x∗ and a constraint qualification condition holds
at x∗, then strong duality holds and the Lagrange multipliers for the (primal)
are optimal for the (dual).

Proof. CQs guarantee the existence of Lagrange multipliers µ∗, λ∗ at x∗

through Theorem 8.26 (KKT). In the proposed setting, x 7→ L(x, µ∗, λ∗)
(with L as in (8.14)) is convex without any conditions on µ∗, λ∗. Therefore,
Theorem 8.30 applies.

Slater’s condition permits a further simplified statement, continued from
Corollary 9.34.

Corollary 9.36. In the setting of Theorem 9.33, if CQs hold at all feasible
points (e.g., if Slater’s condition holds or if all constraints are affine) and
if the (primal) problem admits a global minimizer, then strong duality holds
and the Lagrange multipliers for the (primal) are optimal for the (dual).

The above results provide a crisp interpretation for Lagrange multipliers:
in the convex setting, under the stated assumptions, we can use Lagrange
multipliers to certify optimality.

9.7 Conic programming

Consider an optimization problem of the following form:

min
x∈E
⟨c, x⟩ subject to Ax = b and x ∈ C, (CP)

where
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� The cost vector c ∈ E defines a linear cost function f(x) = ⟨c, x⟩.

� The linear map A : E → Rp and the vector b ∈ Rp describe p equality
constraints.

� The closed, convex cone C defines a conic constraint.

Problems of the form (CP) are called conic programs. Notice that they are
convex optimization problems.

If the cone C is easily described through equality and inequality con-
straints, then we can express the feasible set S = {x ∈ C : Ax = b} in the
usual format as {x ∈ E : h(x) = 0 and g(x) ≤ 0}. This is trivially the case
for the cone C = {x ∈ Rn : x ≥ 0} of vectors in Rn with nonnegative entries.

More generally, we can gain insight by treating C separately from the
other constraints. To this end, we introduce the following Lagrangian func-
tion with restricted domain (compare with (8.14)):

L : C × Rp → R
: (x, µ) 7→ L(x, µ) = f(x) + µ⊤(b− Ax). (9.8)

The primal function LP : C → R is given by

LP (x) = sup
µ∈Rp

L(x, µ) =

{
f(x) if Ax = b,

+∞ otherwise.
(9.9)

The dual function LD : Rp → R is defined by

LD(µ) = inf
x∈C

L(x, µ) = inf
x∈C
⟨c, x⟩ − µ⊤Ax+ µ⊤b. (9.10)

(Notice that the infimum is taken over C only: not over all of E .) Consider
the expression µ⊤Ax. Since A : E → Rp is a linear map from the Euclidean
space E with the inner product ⟨·, ·⟩ to the Euclidean space Rp with the
canonical inner product, we can write µ⊤Ax = ⟨A∗µ, x⟩ where A∗ : Rp → E
is the adjoint of A. Therefore,

LD(µ) = inf
x∈C
⟨c− A∗µ, x⟩+ µ⊤b. (9.11)

Consider the two following scenarios for some given µ ∈ Rp:

� Either c − A∗µ is in the dual of C. That means ⟨c− A∗µ, x⟩ ≥ 0 for
all x in C. Accordingly, taking the infimum over x in C yields zero for
that first term (take x = 0 for example).
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� Or c − A∗µ is not in the dual of C. That means there exists x ∈ C
such that ⟨c− A∗µ, x⟩ < 0. However, C being a cone, we can now
multiply x by an arbitrarily large scalar: the resulting vector is still
in the cone, and ⟨c− A∗µ, x⟩ becomes arbitrarily small. Accordingly,
taking the infimum over x in C yields −∞ for that first term.

This discussion allows us to conclude that the dual function is given by:

LD(µ) =

{
b⊤µ if c− A∗µ ∈ C∗,

−∞ otherwise.
(9.12)

This leads to the following primal-dual pair:

min
x∈E
⟨c, x⟩ s.t. Ax = b and x ∈ C, (primal-CP)

max
µ∈Rp

b⊤µ s.t. c− A∗µ ∈ C∗. (dual-CP)

This setup is particularly interesting when C is a self-dual cone, that is,
when C∗ = C, as it can then be argued that (primal-CP) is itself the dual
of (dual-CP).

We discuss some examples below, after stating the key duality theorem.

Theorem 9.37. Assume there exists xs in the interior of C such that Axs =
b—this is a Slater condition for (primal-CP). Then strong duality holds: any
pair (x∗, µ∗) such that

x∗ ∈ C, Ax∗ = b, c− A∗µ∗ ∈ C∗, and ⟨c, x∗⟩ = b⊤µ∗

has the property that x∗ is a global minimum for (primal-CP) and µ∗ is a
global maximum for (dual-CP). Moreover, if there exists a global minimum
x∗ for the primal, then there exists a µ∗ to certify optimality as above.

Proof. The theorem does not immediately follow from our work in Sec-
tions 8.8, 9.4 and 9.6 because we have redefined the Lagrangian with a domain
restricted by C. It takes some work (not too difficult) to revisit our earlier
developments to this more general setting: we omit the details.

Example 9.38 (Linear programming). With E = Rn and the usual inner
product ⟨c, x⟩ = c⊤x, the adjoint of A ∈ Rp×n is simply its transpose A∗ =
A⊤∈ Rn×p. You can check that the nonnegative orthant is a self-dual cone:

C = {x ∈ Rn : x ≥ 0}, C∗ = C. (9.13)
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This leads to a particular instance of conic programming called linear pro-
gramming, with the following primal-dual pairs:

min
x∈Rn

c⊤x s.t. Ax = b and x ≥ 0,

max
µ∈Rp

b⊤µ s.t. A⊤µ ≤ c.

As we already noted earlier, strong duality always holds for linear program-
ming (no need for a Slater condition). That is because C is polyhedral: it can
be described through linear inequality constraints, namely, x1 ≥ 0, . . . , xn ≥ 0.

Example 9.39 (Semidefinite programming). Let E = Sym(n) be the Eu-
clidean space of symmetric matrices of size n with its usual inner product
⟨C,X⟩ = Tr(C⊤X) = Tr(CX). A linear map A : Sym(n)→ Rp is defined by
p symmetric matrices A1, . . . , Ap ∈ Sym(n) as follows:

A(X) =

⟨A1, X⟩
...

⟨Ap, X⟩

 .

We endow Rp with its usual inner product. It is an exercise to check that the
adjoint of A is given by

A∗(µ) =

p∑
i=1

µiAi.

It is a nice exercise in linear algebra to check that the set of positive semidef-
inite matrices is a self-dual cone:

C = {X ∈ Sym(n) : X ⪰ 0}, C∗ = C.

This leads to a particular instance of conic programming called semidefinite
programming, with the following primal-dual pairs:

min
X∈Sym(n)

⟨M,X⟩ s.t. A(X) = b and X ⪰ 0,

max
µ∈Rp

b⊤µ s.t. µ1A1 + · · ·+ µpAp ⪯M.

Strong duality holds if there exists a matrix Xs ≻ 0 such that A(Xs) = b.
Do you see how Example 8.37 fits in this story? Can you figure out

the dual of the dual of the combinatorial problem described in that example?
You should find that it is a semidefinite program: a convex relaxation with
marvelous properties (google Goemans and Williamson).



Chapter 10

Algorithms for constrained
optimization

We consider a few different algorithms for optimization under constraints.
This chapter is based in large parts on [Rus06, Ch. 6], and to a lesser extent
on [NW06, Ch. 17].

10.1 Projected gradient descent for convex sets

Consider the optimization problem

min
x∈S

f(x) (10.1)

where we assume the following:

� S is a non-empty, closed, convex set in a Euclidean space E ,

� f : E → R has L-Lipschitz continuous gradient (and may or may not
be convex).

We let ProjS : E → S denote the projection to the set S, as defined by:

ProjS(z) = argmin
x∈S

∥x− z∥. (10.2)

Recall from Exercise 9.17 that this projection exists and is unique under our
assumptions on S. We will need the two following observations about ProjS.

Lemma 10.1. For all z ∈ E and x ∈ S, it holds that

⟨z − ProjS(z), x− ProjS(z)⟩ ≤ 0.

131
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Proof. By definition, z̄ ≜ ProjS(z) is the unique minimizer of g(y) = 1
2
∥y −

z∥2 constrained to S. Since S is convex, g is (strongly) convex and −∇g(y) =
z − y, we deduce by Corollary 9.8 that ⟨z − z̄, x− z̄⟩ ≤ 0 for all x ∈ S.

Lemma 10.2. Projection to S is non-expansive: for all y, z ∈ E, we have

∥ProjS(y)− ProjS(z)∥ ≤ ∥y − z∥.

Stated differently: ProjS is 1-Lipschitz continuous.

Proof. By Lemma 10.1, we get both of the following:

⟨y − ProjS(y),ProjS(z)− ProjS(y)⟩ ≤ 0 and

⟨z − ProjS(z),ProjS(y)− ProjS(z)⟩ ≤ 0.

Add these inequalities up to find:

⟨ProjS(y)− y + z − ProjS(z),ProjS(y)− ProjS(z)⟩ ≤ 0.

Reorganize to get

∥ProjS(y)− ProjS(z)∥2 ≤ ⟨y − z,ProjS(y)− ProjS(z)⟩ . (10.3)

On the other hand, it is clear that

0 ≤ ∥(ProjS(y)− ProjS(z))− (y − z)∥2

= ∥ProjS(y)− ProjS(z)∥2 + ∥y − z∥2 − 2 ⟨y − z,ProjS(y)− ProjS(z)⟩ .
(10.4)

Combine (10.3) and (10.4) to reveal

0 ≤ ∥ProjS(y)− ProjS(z)∥2 + ∥y − z∥2 − 2∥ProjS(y)− ProjS(z)∥2

= ∥y − z∥2 − ∥ProjS(y)− ProjS(z)∥2.

This concludes the proof.

Assuming projection to the set S is reasonably easy to compute (which
happens but isn’t particularly frequent), it makes sense to consider the fol-
lowing algorithm called projected gradient descent (PGD): given x0 ∈ S,
iterate

xk+1 = ProjS(xk − αk∇f(xk)), for k = 0, 1, 2, . . . (PGD)

where α0, α1, . . . are step-sizes to be determined. Note that this is a direct
generalization of gradient descent (GD) from the case S = E .

Under our assumptions on S and f , we can make a clean statement
regarding limit points of PGD.
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Theorem 10.3. If the sublevel set {x ∈ S : f(x) ≤ f(x0)} is bounded and
if the step-size is a constant αk = α for all k with α ∈ (0, 2/L), then the
sequence (xk)k≥0 generated by (PGD) has at least one accumulation point
x∗, and all of them are stationary points, that is,

−∇f(x∗) ∈ Nx∗S.

In particular, if f is convex then x∗ is optimal.

Proof. Apply Lemma 10.1 with z = xk − αk∇f(xk) and x = xk—using
xk+1 = ProjS(z)—to see that

⟨xk − αk∇f(xk)− xk+1, xk − xk+1⟩ ≤ 0.

Reorganize that inequality to get

⟨∇f(xk), xk+1 − xk⟩ ≤ −
1

αk

∥xk − xk+1∥2.

This is useful because the Lipschitz continuity of ∇f provides the following
by Theorem 3.2:

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2.

Combining the two last statement we find

f(xk)− f(xk+1) ≥
(

1

αk

− L

2

)
∥xk+1 − xk∥2.

Under our assumption that αk = α ∈ (0, 2/L) for all k, the coefficient 1
αk
−

L
2

is positive. It then holds that f(xk+1) ≤ f(xk) for all k. Thus, the
sequence (xk)k≥0 remains in the subset S0 = {x ∈ S : f(x) ≤ f(x0)}. By
assumption, that subset is compact (it is bounded and closed). Therefore, f
is lower-bounded on that subset. It follows that the sequence of real numbers
(f(xk))k≥0 is convergent. We deduce that f(xk) − f(xk+1) → 0, hence also
that ∥xk+1 − xk∥ → 0. Equivalently,

lim
k→∞
∥ProjS(xk − α∇f(xk))− xk∥ = 0. (10.5)

Since S0 is compact and (xk) is a sequence in S0, we know that (xk) admits
a subsequence converging to an accumulation point x∗ in S0. (In particular,
x∗ is in S.) Moreover, we know that ProjS is continuous by Lemma 10.2.
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Therefore, we can “bring the limit inside” of (10.5) along the subsequence to
deduce that

∥ProjS(x∗ − α∇f(x∗))− x∗∥ = 0. (10.6)

Stated differently, x∗ is a fixed point of (PGD):

x∗ = ProjS(x
∗ − α∇f(x∗)).

Lemma 10.1 applied to that last statement with z = x∗ − α∇f(x∗) yields:

∀x ∈ S, ⟨−α∇f(x∗), x− x∗⟩ ≤ 0.

In other words, x∗ is stationary for f on S (by Theorem 9.7).

Exercise 10.4. Show with a drawing that ProjS may be discontinuous if S
is non-empty and closed but fails to be convex. This reveals why the PGD
iteration map x 7→ ProjS(x − α∇f(x)) could be discontinuous if S is not
convex. It would be much harder to analyze the algorithm if we allowed that
to happen.

Exercise 10.5. Let S = {x ∈ Rn : ∥x∥ ≤ 1} be the unit norm ball. Give
an expression for ProjS. Given a symmetric matrix A of size n, let f(x) =
1
2
x⊤Ax. What is the Lipschitz constant of ∇f? Can you easily compute an

upper bound for it? Implement (PGD) for this problem, with a proper choice
of step-size. What does this algorithm (aim to) compute?

Exercise 10.6. Let S be a box in Rn with ℓ, u ∈ Rn defining its limits:

S = {x ∈ Rn : ℓi ≤ xi ≤ ui for i = 1, . . . , n}.

For example, {x ∈ Rn : ∥x∥∞ ≤ 1} is the box corresponding to ℓ = −1 and
u = 1, where 1 ∈ Rn is the all-ones vector. Give a formula for ProjS.

Hint: It is quite intuitive to guess the formula with a 2D drawing. You
can then justify it using what we’ve learned about optimality conditions for
strongly convex functions constrained to convex sets.

10.2 Quadratic penalty methods

We consider optimization problems under equality and inequality constraints
as introduced in Chapter 8. Namely, we consider

min
x∈E

f(x) subject to x ∈ S (10.7)
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with

S = {x ∈ E : h(x) = 0 and g(x) ≤ 0},

where f : E → R, h : E → Rp and g : E → Rm are assumed to be continuously
differentiable.

The general aim of penalty methods for constrained optimization is to
“move” the constraints to the cost function as penalty terms. In so doing,
we create a new, unconstrained optimization problem for which we hope to
be able to use the algorithms we already have. For this to happen, we need
the new cost function to retain certain properties. In this course, we have
only discussed algorithms for differentiable cost functions: we aim to preserve
that property.

Remark 10.7. We could also resort to nondifferentiable penalty terms (this
has some advantages), in which case we would need algorithms for uncon-
strained optimization with nondifferentiable cost functions: those exist. Also,
we could decide only to penalize some of the constraints, keeping the other
constraints as is. This makes sense if the remaining constraints are easy to
handle, e.g., using projected gradient descent.

Consider the following simple claim (its proof is an exercise in calculus):

Lemma 10.8. The real functions

t 7→ t2 and t 7→ max(0, t)2

are continuously differentiable, with derivatives t 7→ 2t and t 7→ 2max(0, t)
respectively.

We use that fact to transform equality and inequality constraints into
penalty terms. Given a parameter β > 0 called the penalty weight, we define
a cost function Fβ by adding a quadratic penalty term P (x) to the cost
function f(x):

Fβ(x) = f(x) + βP (x) with (10.8)

P (x) =
1

2

p∑
i=1

(hi(x))
2 +

1

2

m∑
i=1

max(0, gi(x))
2. (10.9)

From Lemma 10.8, we deduce that P (hence also Fβ) is continuously differ-
entiable (by composition). Also, if there are no inequality constraints and
f, h are twice continuously differentiable, then so are P and Fβ. Thus, we
can apply algorithms for unconstrained minimization to Fβ.
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The penalty term punishes constraint violations:

P (x) = 0 if x ∈ S, and P (x) > 0 if x /∈ S.

If x is infeasible and β is large, then the penalty term βP (x) can be huge.
Intuitively, if we let β be large, then the global minimizers of Fβ should be
close to S. Moreover, for points in S, the function Fβ reduces to f . Thus,
minimizing Fβ should become mostly equivalent to minimizing f on S. The
first goal of this section is to make these intuitions more precise, and also to
highlight certain caveats.

Based on the above, we may be tempted to proceed as follows:

1. Fix a huge value for β.

2. Run gradient descent, trust-regions or some other algorithm on Fβ, for
example with a random initialization.

Unfortunately, that approach is likely to fail, mainly for two reasons:

1. Even if β is huge, minimizers of Fβ are typically not feasible for (10.7),
that is: they typically do not satisfy the constraints exactly.

2. The function Fβ is numerically tricky to optimize when β is large,
especially if our initial guess is far from a minimizer.

We justify both claims later. For now, we act on these claims by proposing
Algorithm 10.1: this is a “framework” more than an algorithm, in the sense
that it stipulates guidelines rather than a precise method. Echoing the above,
the general idea is:

1. Start with a moderate value for β, and gradually increase it: we solve
a sequence of minimization problems rather than a single one.

2. Initialize each minimization with the solution found at the previous
stage: this is called warm-starting.

Algorithm 10.1 is not great, but it is a start. It forms the basis for better
algorithms we describe later.

To provide some support for Algorithm 10.1, we start with a basic theorem
that uses very few properties of P . We should think of it as a “sanity check.”
In words, it states that if

� The target problem (10.7) has a solution (which is reasonable), and

� We can find global minimizers of Fβ for a growing sequence of βs (which
is a big if!), and
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� That sequence has a limit point (which is reasonable),

then the aforementioned limit point is a solution to our target problem.

Theorem 10.9. [Proof for exam 2025]Assume problem (10.7) has a global minimum x∗. Pick a
sequence of positive penalty weights (βk)k≥1 with βk → ∞ and assume each
Fβk

(10.8) has a global minimum xk. Then every accumulation point of the
sequence (xk)k≥1 is a global minimum of (10.7). Such an accumulation point
exists in particular if {x ∈ E : f(x) ≤ f(x∗)} is bounded.

Proof. Let x∗ be a global minimizer for (10.7). Since xk is a global minimizer
for Fβk

and x∗ is feasible for (10.7) (x∗ ∈ S), we have in particular that

f(xk) + βkP (xk) = Fβk
(xk) ≤ Fβk

(x∗) = f(x∗). (10.10)

Therefore, for all k it holds that

P (xk) ≤
f(x∗)− f(xk)

βk

. (10.11)

Let x̄ be an accumulation point of (xk)k≥1: there exists a subsequence (xki)i≥1

such that limi→∞ xki = x̄. Take the limit along that subsequence on both
sides of (10.11) to reveal that

P (x̄) = lim
i→∞

P (xki) ≤ lim
i→∞

f(x∗)− f(xki)

βki

= 0.

(The first equality holds because P is continuous; the second equality holds
because 1

βki
→ 0 and f(x∗) − f(xki) → f(x∗) − f(x̄) as i → ∞.) Thus,

P (x̄) = 0, that is, x̄ satisfies all the constraints of (10.7). Moreover,

f(x̄) = lim
i→∞

f(xki) ≤ lim
i→∞

f(xki) + βkiP (xki) ≤ f(x∗)

(The first inequality holds because βkiP (xki) ≥ 0; the second inequality
holds by (10.10).) Therefore, x̄ is a global minimizer for (10.7). The last
claim of the theorem holds because (10.10) implies f(xk) ≤ f(x∗), so that
the sequence (xk)k≥0 is bounded under the stated assumption.

So far, we have used very few properties of the quadratic penalty func-
tion P . We can gain much more insight into the sequence (xk) discussed in
Theorem 10.9 by using finer properties of P . This is what we aim to do now.

Recall the definition of the set of active inequality constraints at a point
x, namely, I(x) (8.7):

I(x) = {i ∈ {1, . . . ,m} : gi(x) = 0}.
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Algorithm 10.1 Quadratic penalty method (general framework)

1: Pick an initial guess x0 ∈ E .
2: Pick an initial weight β1 > 0.
3: for k in 1, 2, 3 . . . do
4: Compute1 xk by applying a minimization algorithm to Fβk

initialized
at xk−1 (a warm start).

5: Set βk+1 ≥ βk, making sure βk →∞ (e.g.: βk+1 = 2βk).
6: end for

We shall require the MFCQ constraint qualification: recall Theorem 8.16.
Remember also that LICQ at x implies MFCQ at x. Moreover, if the equality
constraints are affine and the inequality constraints are convex, we know from
Exercise 9.31 that Slater’s condition implies MFCQ at all feasible points.

Theorem 10.10. Let (βk)k≥1 be a sequence of positive penalty weights and
let (xk)k≥1 be a sequence such that each xk is a critical point of Fβk

. Assume
(xk)k≥1 converges to a feasible point x∗ of (10.7)2 and that MFCQ holds at
x∗. Then, the sequences (µk)k≥1 in Rp and (λk)k≥1 in Rm

+ defined by

µk
i ≜ βkhi(xk), i = 1, . . . , p, (10.12)

λk
i ≜ βk max(0, gi(xk)), i = 1, . . . ,m, (10.13)

are bounded, and each accumulation point (µ∗, λ∗) of (µk, λk)k≥1 is a valid
pair of Lagrange multipliers for (10.7) at x∗. In particular, x∗ is stationary.

Proof. The proof is in three steps.

1. Each xk satisfies the first-order necessary optimality conditions for Fβk
,

that is,

0 = ∇Fβk
(xk)

= ∇f(xk) +

p∑
i=1

βkhi(xk)∇hi(xk) +
m∑
i=1

βk max(0, gi(xk))∇gi(xk)

= ∇f(xk) +

p∑
i=1

µk
i∇hi(xk) +

m∑
i=1

λk
i∇gi(xk), (10.14)

1We hope xk is a minimizer, but absent special structure such as convexity, that may
be difficult to guarantee / verify.

2If each xk is a global minimizer of Fβk
, this assumption might follow from Theorem 10.9

after passing to a subsequence.
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where we used the definitions of µk
i and λk

i . Moreover, for i /∈ I(x∗)
(that is, if gi(x

∗) < 0), we necessarily have gi(xk) < 0 for all sufficiently
large k (that is because g is continuous and xk → x∗). Thus, λk

i = 0 for
all sufficiently large k when i /∈ I(x∗). This allows us to rewrite (10.14)
as

0 = ∇f(xk) +

p∑
i=1

µk
i∇hi(xk) +

∑
i∈I(x∗)

λk
i∇gi(xk), (10.15)

valid for all sufficiently large k.

2. The sequence (µk, λk) is bounded. We shall use the MFCQ assumption
to prove this by contradiction. Suppose (µk, λk) is unbounded. This
allows us to pass to a subsequence such that ∥(µkj , λkj)∥ → ∞ with
j →∞. Divide (10.15) by ∥(µkj , λkj)∥:

0 =
1

∥(µkj , λkj)∥
∇f(xkj) +

p∑
i=1

µ
kj
i

∥(µkj , λkj)∥
∇hi(xkj)

+
∑

i∈I(x∗)

λ
kj
i

∥(µkj , λkj)∥
∇gi(xkj). (10.16)

Normalize (µkj , λkj) to define

(µ̄kj , λ̄kj) =
(µkj , λkj)

∥(µkj , λkj)∥
.

The sequence (µ̄kj , λ̄kj)j≥0 is bounded by construction, hence it ad-
mits a convergent subsequence: let (µ̄, λ̄) denote its limit. Of course,
∥(µ̄, λ̄)∥ = 1. Then, taking the limit of (10.16) along that subsequence
of the subsequence and using xk → x∗ reveals:

0 =

p∑
i=1

µ̄i∇hi(x
∗) +

∑
i∈I(x∗)

λ̄i∇gi(x∗). (10.17)

Through Lemma 8.17, the MFCQ condition at x∗ provides us with
x̂ ∈ E such that

⟨∇hi(x
∗), x̂− x∗⟩ < 0, for all i = 1, . . . , p with µ̄i > 0,

⟨∇hi(x
∗), x̂− x∗⟩ > 0, for all i = 1, . . . , p with µ̄i ≤ 0 and

⟨∇gi(x∗), x̂− x∗⟩ < 0, for all i ∈ I(x∗).

Take the inner product of (10.17) with x̂− x∗: this implies that µ̄ = 0
and λ̄ = 0, yet ∥(µ̄, λ̄)∥ = 1. This is our contradiction.
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3. Since (µk, λk)k≥1 is bounded, we can extract a convergent subsequence.
Let (µ∗, λ∗) be its limit. By continuity, we can take the limit along that
subsequence in (10.15) and use xk → x∗ to deduce that

0 = ∇f(x∗) +

p∑
i=1

µ∗
i∇hi(x

∗) +
∑

i∈I(x∗)

λ∗
i∇gi(x∗).

If gi(x
∗) = 0, then of course λ∗

i gi(x
∗) = 0; if gi(x

∗) < 0, then gi(xk) < 0
for all k sufficiently large, and therefore λk

i = 0 for all k sufficiently
large. Thus, λ∗

i gi(x
∗) = 0 in all cases.

We conclude that x∗ is KKT for (10.7) with Lagrange multipliers (µ∗, λ∗).

Theorem 10.10 suggests that we could use a solution of a penalized prob-
lem Fβ with large β to estimate the Lagrange multipliers at a solution
of (10.7). That will be important later.

Exercise 10.11. Write code to apply the quadratic penalty method to the
simple optimization problem

min
x∈R2

x1 + x2 subject to x2
1 + x2

2 − 2 = 0.

To solve the subproblems, that is, to minimize Fβ for each individual value
β, you can use code you wrote in previous exercise sessions / homework as-
signments, or you can use Matlab’s Optimization Toolbox: the code below
requires you to provide a function [val, grad] = F(x, beta) implement-
ing Fβ(x) (as the first output) and ∇Fβ(x) (as the second output) as well as
an initialization x_in, and it (attempts to) return a minimizer x_out.

% See 'help fminunc ': Matlab 's unconstrained

minimizer.

options = optimoptions('fminunc ', '

SpecifyObjectiveGradient ', true);

x_out = fminunc (@(x) F(x, beta), x_in , options);

It is instructive to visualize the penalized function Fβ for various values of β
to get a sense of how the penalty shapes the ‘landscape’ of the cost function,
and to display on those plots the sequence of solutions (xk) that you compute.

Exercise 10.12. The function Fβ may fail to be bounded below, in which
case minimizing it can completely fail. Verify this claim on the following
example:

min
x∈R2
−5x2

1 + x2
2 subject to x1 = 1.
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Argue that for β < 10 the function Fβ is unbounded below. What is the
situation like for β ≥ 10? Can we still hope to find a solution for this
problem via some instantiation of Algorithm 10.1?

Exercise 10.13. Verify that if the equality constraints are affine and the in-
equality constraints are convex then the quadratic penalty P (10.9) is convex.
(Hint: first check that ϕ(s) = max(0, s)2 is convex and non-decreasing.)

Interpret the results of this section in that context, for example assuming
also that f is strongly convex and that Slater’s condition holds.

10.3 The trouble with quadratic penalties

From (10.12) and (10.13), we can clearly see that even for very large β the
constraints won’t be satisfied exactly at a global minimizer xk of Fβk

. At
best, we can hope to get

hi(xk) =
µk
i

βk

≈ µ∗
i

βk

, max(0, gi(xk)) =
λk
i

βk

≈ λ∗
i

βk

, (10.18)

where µ∗, λ∗ would be Lagrange multipliers at a global minimizer x∗ of (10.7).
Intuitively, this makes sense: x∗ cannot be a minimizer of Fβ for finite β
because moving away slightly from x∗ incurs a quadratic penalty in Fβ for
constraint violation (because P (x∗) = 0 implies∇P (x∗) = 0), but it might be
rewarded with a linear improvement in the value of f . Thus, it is generically
better to move away from the constraints at least slightly. More precisely,

∇Fβ(x
∗) = ∇f(x∗) +

p∑
i=1

βhi(x
∗)∇hi(x

∗) +
m∑
i=1

βmax(0, gi(x
∗))∇gi(x∗)

= ∇f(x∗)

= −
p∑

i=1

µ∗
i∇hi(x

∗)−
∑

i∈I(x∗)

λ∗
i∇gi(x∗).

(The second equality holds because x∗ is feasible; the third equality holds
because x∗ is KKT with Lagrange multipliers µ∗, λ∗.) Thus, for the uncon-
strained problem of minimizing Fβ, the steepest descent direction at x∗ is

−∇Fβ(x
∗) =

p∑
i=1

µ∗
i∇hi(x

∗) +
∑

i∈I(x∗)

λ∗
i∇gi(x∗).

In general, this is a nonzero vector which pushes us to violate the constraints:
x∗ is not critical for Fβ, regardless of how large β is.
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This is problematic in practice because it forces us to work with very
large values of β to find solutions which are nearly feasible, as per (10.18).
Yet, minimizing Fβ becomes increasingly difficult numerically as β grows.
That is because of conditioning issues. Recall from Theorems 3.15, 4.31
and 5.11 that the condition number of the Hessian of the cost function at a
minimizer controls the local rate of convergence. Explicitly, if the Hessian
at a minimizer is positive definite, its condition number is the ratio of its
largest to its smallest eigenvalues. If that number is large, then optimization
algorithms can be slowed down. Below, we argue that the condition number
of the Hessian of Fβ deteriorates with β.

Consider the case with only equality constraints as an example (we do
this so that it is possible to compute the Hessian, assuming f and h are twice
continuously differentiable):

min
x∈E

f(x) subject to h(x) = 0.

The penalized cost function and its derivatives are:

Fβ(x) = f(x) +
β

2

p∑
i=1

(hi(x))
2,

∇Fβ(x) = ∇f(x) + β

p∑
i=1

hi(x)∇hi(x),

∇2Fβ(x)[v] = ∇2f(x)[v] + β

p∑
i=1

hi(x)∇2hi(x)[v] + β

p∑
i=1

⟨∇hi(x), v⟩∇hi(x).

Remark 10.14. It is time for a side note about notation. Our expression
for the Hessian of Fβ involves terms of the form

v 7→ A(v) ≜ ⟨∇hi(x), v⟩∇hi(x).

These are linear maps from E to E. Indeed, ∇hi(x) is a (fixed) vector in E,
and v 7→ ⟨∇hi(x), v⟩ = Dhi(x)[v] is a linear function from E to R. In fact,
A is symmetric (Definition 2.9): for all u, v ∈ E we have

⟨u,A(v)⟩ = ⟨u, ⟨∇hi(x), v⟩∇hi(x)⟩
= ⟨∇hi(x), v⟩ ⟨u,∇hi(x)⟩
= ⟨⟨u,∇hi(x)⟩∇hi(x), v⟩ = ⟨A(u), v⟩ .

We can make this fact more visual by introducing a bit of notation. Formally,
let us think of the (fixed) vector ∇hi(x) as a linear map from R to E, as
follows:

∇hi(x) : R→ E : α 7→ α∇hi(x).
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What is the adjoint of that map, which we denote by (∇hi(x))
∗ or, more

simply, by ∇hi(x)
∗? It is a linear map from E to R defined by the following

property, where ⟨α1, α2⟩R = α1α2 denotes the inner product on R:

∀v ∈ E , α ∈ R,
α∇hi(x)

∗[v] = ⟨∇hi(x)
∗[v], α⟩R = ⟨v, α∇hi(x)⟩ = αDhi(x)[v].

By identification, we deduce that ∇hi(x)
∗ = Dhi(x), that is,

∇hi(x)
∗[v] = Dhi(x)[v] = ⟨∇hi(x), v⟩ . (10.19)

Thus, it makes sense to think of Dhi(x) as the adjoint of ∇hi(x) (and vice
versa). With this notation, we can write the linear map A from above as:

A = ∇hi(x)∇hi(x)
∗.

Indeed, we then have

A(v) = ∇hi(x)∇hi(x)
∗[v] = Dhi(x)[v]∇hi(x) = ⟨∇hi(x), v⟩∇hi(x).

The notation A = ∇hi(x)∇hi(x)
∗ has the advantage that it makes it visually

clear that A is a symmetric linear map. Check the following claim: A is
positive semidefinite and it has rank at most one.

Example 10.15. Consider the important special case E = Rn with the usual
inner product ⟨u, v⟩ = u⊤v. Then, given a function hi : Rn → R, the gradient
∇hi(x) at a point x ∈ Rn is a vector in Rn: a matrix with a single column.
Taking the adjoint of ∇hi(x) comes down to taking its transpose as a matrix,
that is: ∇hi(x)

∗ = ∇hi(x)
⊤. Then, the linear map v 7→ ⟨∇hi(x), v⟩∇hi(x)

is exactly the symmetric matrix ∇hi(x)∇hi(x)
⊤.

Equipped with new notation, we further rewrite the Hessian of Fβ as
follows, with ∇hi(x)

∗ ≜ Dhi(x):

∇2Fβ(x) = ∇2f(x) + β

p∑
i=1

hi(x)∇2hi(x) + β

p∑
i=1

∇hi(x)∇hi(x)
∗. (10.20)

Consider this expression within the context of Theorem 10.10 with large
βk. Then, with xk a global minimizer of Fβk

we may expect xk ≈ x∗ and
βkhi(xk) ≈ µ∗

i for some vector of Lagrange multipliers µ∗ at x∗. This justifies
the following claim:

∇2Fβk
(xk) ≈ ∇2f(x∗) +

p∑
i=1

µ∗
i∇2hi(x

∗) + βk

p∑
i=1

∇hi(x
∗)∇hi(x

∗)∗.
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The first two terms form some matrix independent of βk, whereas the third
term is a positive semidefinite matrix of rank at most p and which scales
with βk. Therefore, unless the last term is zero or full rank (which would
be unusual), we find that ∇2Fβk

(xk) has some of its eigenvalues which con-
verge to constants while other eigenvalues scale with βk.

3 It follows that the
condition number of ∇2Fβk

(xk) diverges to infinity with βk →∞.
In the next section, we discuss a different algorithm which avoids the

necessity to increase β to infinity. It does so by adding a penalty term which
scales linearly with constraint violation.

Example 10.16. With E = R2, let f(x) = x1 + x2 and h(x) = x2
1 + x2

2 − 1.
The quadratic penalty formulation of minx∈R2 f(x) s.t. h(x) = 0 involves

Fβ(x) = x1 + x2 +
β

2
(x2

1 + x2
2 − 1)2.

It is easy to compute the following derivatives:

∇Fβ(x) =

[
1
1

]
+ β(x2

1 + x2
2 − 1)

[
2x1

2x2

]
,

∇2Fβ(x) = 2β

[
x2
1 + x2

2 − 1 + 2x2
1 2x1x2

2x1x2 x2
1 + x2

2 − 1 + 2x2
2

]
= 2βh(x)I2 + 4βxx⊤.

If x is a global minimizer for Fβ then we expect βh(x) ≈ µ where µ is the
Lagrange multiplier at the global minimizer of the constrained problem. Then,
the eigenvalues of ∇2Fβ(x) are roughly 2µ and 2µ+4β (since ∥x∥ ≈ 1). Thus,
the condition number of ∇2Fβ(x) ought to behave like 2µ+4β

2µ
≈ 2

µ
β for large

β: this grows to infinity with β.
Let us make the above more precise. Notice that if x is a critical point

(∇Fβ(x) = 0) then x1 = x2. This makes it possible to find all critical points:
they are of the form [t, t]⊤ where t is a root of the following real function:

t 7→ 1 + 2β(2t2 − 1)t.

This is just a polynomial of degree 3. It takes a bit of calculus4 to determine

that its three roots are real when β ≥
√

27
8
. We can compute the roots

numerically to find the global minimizer of Fβ: there are only three candidates
to check. Let t(β) denote the correct root, so that the global minimizer of Fβ

3That last statement relies on your intuition in linear algebra / matrix analysis. We
could make it precise with some work.

4https://en.wikipedia.org/wiki/Discriminant#Degree_3

https://en.wikipedia.org/wiki/Discriminant#Degree_3


10.4. ALM, EQUALITIES 145

is [t(β), t(β)]⊤. (Playing around suggests that t(β) is the smallest root of
the cubic polynomial.) The code below shows numerically that the condition
number of ∇2Fβk

(xk) with xk the global minimizer of Fβk
indeed deterioriates

as βk grows.

for beta = [10, 100, 1000, 10000]

f = @(x) x(1) + x(2) + (beta /2)*(x(1)^2 + x(2)^2

- 1)^2;

g = @(x) [1 ; 1] + 2*beta*(x(1)^2 + x(2)^2 - 1)*

x;

H = @(x) 2*beta*[x(1)^2 + x(2)^2 - 1 + 2*x(1)^2,

2*x(1)*x(2) ; 2*x(1)*x(2), x(1)^2 + x(2)^2 -

1 + 2*x(2) ^2];

t = min(roots ([4*beta , 0, -2*beta , 1]));

x = [t; t];

disp(cond(H(x)));

end

% This code outputs:

% 32.2357 286.8375 2.8324e+03 2.8288e+04

10.4 Augmented Lagrangian methods, equalities

We aim to “fix” some of the issues that arise with the simple quadratic
penalty methods. To ease the discussion, let us first concentrate on mini-
mization problems with only equality constraints:

min
x∈E

f(x) subject to h(x) = 0, (10.21)

where f : E → R and h : E → Rp are twice continuously differentiable.
Quadratic penalty methods introduce a penalized cost function

Fβ(x) = f(x) + βP (x). (10.22)

We argued earlier that solutions of the constrained problem are never mini-
mizers of the penalized problem, regardless of how large β is. Indeed, let x∗

be a minimizer of the constrained problem. In particular, P (x∗) = 0. Since
P (x) ≥ 0 for all x, we deduce that x∗ is a global minimizer for P . Since P is
differentiable, it follows that ∇P (x∗) = 0. Thus,

∇Fβ(x
∗) = ∇f(x∗).
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In general, this is a nonzero vector. Assume we move away from x∗ along a
direction v for a small distance ϵ. Taylor expansions of f and P reveal that

f(x∗ + ϵv) = f(x∗) + ϵ ⟨∇f(x∗), v⟩+O(ϵ2),

P (x∗ + ϵv) = O(ϵ2),

Fβ(x
∗ + ϵv) = f(x∗) + ϵ ⟨∇f(x∗), v⟩+O(βϵ2).

Therefore, so long as we choose v such that ⟨∇f(x∗), v⟩ < 0, we always have
an incentive to move at least a little bit away from x∗. Indeed, we can reduce
Fβ by a term proportional to ϵ owing to the change of value in f , whereas
the penalty term only scales with O(βϵ2).

To correct this behavior, a natural idea is to add a penalty term to Fβ

that scales linearly with constraint violation, that is, to add a term of the
form

p∑
i=1

µihi(x) = µ⊤h(x),

with some coefficients µ ∈ Rp—we will see in a moment that the choice of
notation is not fortuitous.

We define the Augmented Lagrangian function:

Lβ(x, µ) = f(x) +

p∑
i=1

µihi(x) +
β

2

p∑
i=1

(hi(x))
2. (10.23)

The name comes from the fact that Lβ(x, µ) is nothing but the Lagrangian
function L(x, µ) = L0(x, µ) (8.14) “augmented” with a quadratic term. Here,
we arrived at Lβ differently: by adding a linear term to the quadratic penalty
function Fβ so that Fβ(x) = Lβ(x, 0).

How should we pick the weights µ? Ideally, we would like to pick them
such that some minimizer of the constrained problem is a minimizer of x 7→
Lβ(x, µ), for finite values of β. Let us investigate what it takes for this to
happen.

We can easily compute the gradient of Lβ with respect to x:

∇xLβ(x, µ) = ∇f(x) +
p∑

i=1

(µi + βhi(x))∇hi(x). (10.24)

Let x∗ be stationary for the constrained problem. Assume LICQ holds at x∗:
There exists a (unique) vector of Lagrange multipliers µ∗ ∈ Rp such that

−∇f(x∗) =

p∑
i=1

µ∗
i∇hi(x

∗).
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Combining this with (10.24) reveals that, at x = x∗,

∇xLβ(x
∗, µ) =

p∑
i=1

(µi − µ∗
i )∇hi(x

∗). (10.25)

LICQ at x∗ means that∇h1(x
∗), . . . ,∇hp(x

∗) are linearly independent. Thus,

∇xLβ(x
∗, µ) = 0 ⇐⇒ µ = µ∗.

The above discussion warrants the following claim.

Theorem 10.17. Consider an equality constrained problem

min
x∈E

f(x) subject to h(x) = 0

with f and h continuously differentiable. If x∗ is a stationary point for the
constrained problem and LICQ holds at x∗, then there exists a unique vector of
Lagrange multipliers µ∗ for x∗, and x∗ is a stationary point for the augmented
Lagrangian function x 7→ Lβ(x, µ) for any β ∈ R, if and only if µ = µ∗.

This strongly suggests that we should aim to set µ = µ∗, with µ∗ the
Lagrange multipliers of a global minimizer x∗ of the constrained problem. Of
course, we do not know µ∗ in advance: that is something for us to estimate
algorithmically. Even before we get to that topic, there is another concern
we should clear up: it is not sufficient for x∗ to be a stationary point of
x 7→ Lβ(x, µ

∗) for us to be able to find it. Indeed, x∗ could be a saddle point,
or even a maximizer of Lβ(·, µ∗). We need to investigate whether or not x∗

can be made to be (at least) a local minimizer of the augmented Lagrangian
function. For this to happen, we shall need to take β large enough.

Let us compute the Hessian of Lβ with respect to x. To this end, we start
from (10.24) and compute a directional derivative along a direction v ∈ E :

∇2
xxLβ(x, µ)[v] = ∇2f(x)[v] +

p∑
i=1

(µi + βhi(x))∇2hi(x)[v]

+ β

p∑
i=1

Dhi(x)[v] · ∇hi(x). (10.26)

With the notation ∇hi(x)
∗ = Dhi(x) : E → R as in (10.20), we can rewrite

the above as:

∇2
xxLβ(x, µ) = ∇2f(x) +

p∑
i=1

(µi + βhi(x))∇2hi(x)

+ β

p∑
i=1

∇hi(x)∇hi(x)
∗. (10.27)
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In particular, let x∗ be a stationary point of the constrained problem where
LICQ holds, and let µ∗ be the Lagrange multipliers at x∗. Then,

∇2
xxLβ(x

∗, µ∗) = ∇2f(x∗) +

p∑
i=1

µ∗
i∇2hi(x

∗) + β

p∑
i=1

∇hi(x
∗)∇hi(x

∗)∗.

(10.28)

This Hessian is a sum of two parts:

∇2
xxLβ(x

∗, µ∗) = H + βM, (10.29)

where

H ≜ ∇2
xxL0(x

∗, µ∗) = ∇2f(x∗) +

p∑
i=1

µ∗
i∇2hi(x

∗)

is the Hessian of the (non-augmented) Lagrangian function and

M ≜
p∑

i=1

∇hi(x
∗)∇hi(x

∗)∗ (10.30)

is a positive semidefinite map of rank at most p. We already know from
Theorem 10.17 that ∇xLβ(x

∗, µ∗) = 0 for all β. Recall from Theorem 2.31
that if it also holds that ∇2

xxLβ(x
∗, µ∗) ≻ 0, then x∗ is a strict local minimizer

of x 7→ Lβ(x, µ
∗). It can be shown that this indeed happens for β large

enough, under some additional conditions on x∗. Intuitively, this happens
because (with the additional assumptions)H is positive definite when applied
to vectors in the kernel of M , and M is positive definite when applied to
vectors orthogonal to the kernel of M .

Theorem 10.18 ([NW06, Thm. 17.5]). Consider the constrained problem
minx∈E f(x) s.t. h(x) = 0 with f and h twice continuously differentiable.
Assume LICQ holds at a local minimizer x∗ of this problem and let µ∗ be the
Lagrange multipliers at x∗. If x∗ satisfies second-order sufficient conditions
as specified in [NW06, Thm. 12.6], there exists a value β̄ > 0 such that x∗ is
a strict local minimizer of x 7→ Lβ(x, µ

∗) for all β ≥ β̄.

Proof. We already know that ∇xLβ(x
∗, µ∗) = 0 for all β: this follows from

Theorem 10.17. It remains to show that ∇2
xxLβ(x

∗, µ∗) is positive definite
when β is larger than some threshold β̄. For contradiction, assume this is
not the case, that is: assume for all k = 1, 2, . . ., with βk = k, the map
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∇2
xxLβk

(x∗, µ∗) is not positive definite. Thus, for each k we can find a vector
vk ∈ E with ∥vk∥ = 1 such that

0 ≥
〈
vk,∇2

xxLβk
(x∗, µ∗)[vk]

〉
= ⟨vk, H(vk)⟩+ βk ⟨vk,M(vk)⟩

= ⟨vk, H(vk)⟩+ k

p∑
i=1

(⟨∇hi(x
∗), vk⟩)2.

Stated differently, for all k = 1, 2, . . . we have

0 ≤
p∑

i=1

(⟨∇hi(x
∗), vk⟩)2 ≤ −

1

k
⟨vk, H(vk)⟩ .

Note that ⟨vk, H(vk)⟩ is bounded by the smallest and largest eigenvalues of
H, which are independent of k. Therefore, taking the limit of the above
inequalities for k →∞ we find that

lim
k→∞

p∑
i=1

(⟨∇hi(x
∗), vk⟩)2 = 0.

Since the vectors vk have unit norm, the sequence (vk)k≥1 is bounded. Hence,
it has an accumulation point v̄ (also of unit norm). The above limit then
reveals that

p∑
i=1

(⟨∇hi(x
∗), v̄⟩)2 = 0.

In other words:

⟨∇hi(x
∗), v̄⟩ = 0 for i = 1, . . . , p.

As a result,

0 ≥
〈
v̄,∇2

xxLβk
(x∗, µ∗)[v̄]

〉
= ⟨v̄, H(v̄)⟩ .

Yet, the second-order sufficient condition at x∗ states that ⟨v,H(v)⟩ > 0 for
all v such that ⟨∇hi(x

∗), v⟩ = 0 with i = 1, . . . , p. Thus, we have reached a
contradiction: the proof is complete.

The above results suggest that if we can guess µ∗ and if we set β suffi-
ciently large (yet finite), then minimizing Lβ(·, µ∗) could reveal the sought
minimizer x∗. How should we go about finding (a good approximation for)
µ∗? The Augmented Lagrangian method (ALM) described in Algorithm 10.2
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Algorithm 10.2 Augmented Lagrangian method (equality constraints)

1: Pick an initial guess x0 ∈ E and initial multipliers µ1 ∈ Rp.
2: Pick an initial weight β1 > 0.
3: for k in 1, 2, 3 . . . do
4: Compute xk by applying a minimization algorithm to Lβk

(·, µk) ini-
tialized at xk−1 (a warm start).

5: Set µk+1 = µk + βkh(xk).
6: Set βk+1 ≥ βk (e.g.: βk+1 = 2βk).
7: end for

provides a general framework to (try to) do so.5 Many refinements are pos-
sible: we only consider a simple version.

The main idea is to modify the quadratic penalty method as follows:

1. We minimize Lβ(·, µ) instead of Fβ.

2. We update an estimate for µ at each iteration.

Say at iteration k ≥ 1 our current penalty weight is βk and our current
estimate for the Lagrange multipliers is µk. We run a minimization algorithm
on Lβk

(·, µk) to find what we hope to be a minimizer xk. If it is at least a
critical point, then we have:

0 = ∇xLβk
(xk, µ

k) = ∇f(xk) +

p∑
i=1

(µk
i + βkhi(xk))∇hi(xk). (10.31)

Notice that if xk were feasible, then the above equation would tell us that
it is a KKT point with Lagrange multipliers µk + βkh(xk). This is one way
(among many others)6 to motivate the update

µk+1 = µk + βkh(xk) (10.32)

in Algorithm 10.2. As a sanity check, observe that if xk is indeed feasible,
then µk+1 = µk. If all goes well, µk+1 is close to µ∗, in which case we have:

h(xk) ≈
1

βk

(µ∗ − µk). (10.33)

5Originally, ALM for equality constraints was called the “method of multipliers.” It
was invented by Hestenes (1969) and Powell (1969). Powell’s viewpoint was that the ALM
subproblem is a shifted quadratic penalty problem: we discuss this later.

6Another example: we can think of µk+1 = µk + βkh(xk) as a gradient ascent step on
the Lagrangian with respect to the variable µ and with step-size βk. This leads to an in-
terpretation of ALM as a primal-dual method, where we aim to minimize the (augmented)
Lagrangian in the primal variable x and to maximize it in the dual variable µ.
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Thus, we see that if µk is already quite close to µ∗, then xk is nearly feasi-
ble. In particular, we can hope that points xk generated by ALM may be
much closer to being feasible than points generated by the quadratic penalty
method with the same penalty weight βk (which corresponds to µk = 0).

Remark 10.19. We can also connect ALM with Theorem 10.10. Indeed,
notice that we can re-arrange the augmented Lagrangian as follows:

Lβ(x, µ) = f(x) +
β

2

p∑
i=1

(µi/β + hi(x))
2 − 1

2β

p∑
i=1

µ2
i . (10.34)

The term − 1
2β

∑p
i=1 µ

2
i is constant with respect to x. Thus, minimizing

Lβ(x, µ) with respect to x is equivalent to minimizing the quadratic penalty
function F̃β for the shifted constrained problem

min
x∈E

f(x) subject to h̃(x) ≜ h(x) +
1

β
µ = 0. (10.35)

We know from our discussion of quadratic penalty methods that at a mini-
mizer x̃ of F̃β we can expect the following, provided β is large enough:

h̃(x̃) ≈ 1

β
µ∗,

where µ∗ are the Lagrange multipliers of the constrained problem (either the
original one or the shifted one: they are almost the same for large β). By
definition of h̃, this is equivalent to the statement

h(x̃) ≈ 1

β
(µ∗ − µ).

This recovers the approximate feasibility estimate (10.33). By the same logic,
we also obtain

µ∗ ≈ µ+ βh(x̃),

which recovers the update equation for µ (10.32).

Remark 10.20. This is another side note about notation. The constraint
map h : E → Rp goes from one Euclidean space to another. We use ⟨·, ·⟩ and
∥ · ∥ to denote the inner product and associated norm on E. Without fear
of ambiguity, we can use the same notation for the (usual) inner product
and norm on Rp: context always indicates clearly which one we mean. This
allows us to use concise notation as follows:

Lβ(x, µ) = f(x) + ⟨µ, h(x)⟩+ β

2
∥h(x)∥2. (10.36)
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The directional derivatives with respect to x (with µ fixed) are given by

D(x 7→ Lβ(x, µ))(x)[v] = Df(x)[v] + ⟨µ,Dh(x)[v]⟩+ β ⟨Dh(x)[v], h(x)⟩ .

The adjoint of Dh(x) : E → Rp is the linear map Dh(x)∗ : Rp → E using
which we can rewrite the above as:

D(x 7→ Lβ(x, µ))(x)[v] = ⟨∇f(x), v⟩+ ⟨Dh(x)∗[µ], v⟩+ β ⟨v,Dh(x)∗[h(x)]⟩ .

By identification, it follows that the gradient of Lβ with respect to x is simply:

∇xLβ(x, µ) = ∇f(x) + Dh(x)∗[µ+ βh(x)]. (10.37)

This connects directly with the usual formulas. Indeed,

Dh(x)[v] =

Dh1(x)[v]
...

Dhp(x)[v]

 =

⟨∇h1(x), v⟩
...

⟨∇hp(x), v⟩

 ,

so that, for all v ∈ E and z ∈ Rp,

⟨Dh(x)∗[z], v⟩ = ⟨z,Dh(x)[v]⟩ =
p∑

i=1

zi ⟨∇hi(x), v⟩ =

〈
p∑

i=1

zi∇hi(x), v

〉
.

In other words,

Dh(x)∗[z] =

p∑
i=1

zi∇hi(x).

Notation as above is sometimes convenient as it avoids tedious sum notation.

10.5 Augmented Lagrangian methods, general case

Consider again the more general case of a constrained optimization problem
which includes both equality and inequality constraints:

min
x∈E

f(x) subject to h(x) = 0 and g(x) ≤ 0.

There are several ways to modify ALM as presented above to handle the
inequality constraints as well. We discuss two possibilities.



10.5. ALM, GENERAL 153

Bound-constrained formulation via slack variables

A simple idea to handle general inequality constraints is to replace them with
simple bound constraints via the introduction of slack variables. Explicitly,
we consider the following bound-constrained optimization problem:

min
x∈E,y∈Rm

f(x) subject to h(x) = 0, y + g(x) = 0 and y ≥ 0. (10.38)

The idea is then to use ALM on this problem but keeping the bound con-
straints on y “as is,” that is: with given µ, λ, we minimize

Lβ(x, y, µ, λ) = f(x) + µ⊤h(x) + λ⊤(y + g(x))

+
β

2

(
p∑

i=1

hi(x)
2 +

m∑
i=1

(yi + gi(x))
2

)
(10.39)

with respect to x ∈ E and y ∈ Rm
+ .

To minimize (x, y) 7→ Lβ(x, y, µ, λ) under the constraints y ≥ 0, one
possibility is to use the projected gradient descent method from Section 10.1
with a line-search procedure. This is relatively straightforward to do because
projecting to Rm

+ is trivial. More sophisticated algorithms can offer better
performance [NW06, §16.7, §18.6].

In the outer iteration of ALM, multipliers can be updated as usual with

µ← µ+ βh(x),

λ← λ+ β(y + g(x)).

See [NW06, Thm 17.4] for details and refinements. These ideas form the
basis for successful optimization software used in industrial settings.

Augmented Lagrangian as a shifted penalty

Recall from (10.34) that we could have motivated the Augmented Lagrangian
function as a quadratic penalty function for an optimization problem whose
constraints are shifted according to the conclusions of Theorem 10.10:

Lβ(x, µ) = f(x) +
β

2

p∑
i=1

(µi/β + hi(x))
2 − 1

2β

p∑
i=1

µ2
i .

Since Theorem 10.10 also applies for inequality constraints, we can use the
same idea to introduce the augmented Lagrangian function for the general op-
timization problem involving both equality and inequality constraints. This
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Algorithm 10.3 Augmented Lagrangian method (general constraints)

1: Pick an initial guess x0 ∈ E and initial multipliers µ1 ∈ Rp, λ1 ∈ Rm
+ .

2: Pick an initial weight β1 > 0.
3: for k in 1, 2, 3 . . . do
4: Compute xk by applying a minimization algorithm to Lβk

(·, µk, λk)
as in (10.40), initialized at xk−1 (a warm start).

5: Set µk+1 = µk + βkh(xk).
6: Set λk+1 = max(0, λk + βkg(xk)).
7: Set βk+1 ≥ βk (e.g.: βk+1 = 2βk).
8: end for

leads to a shifted penalty function inspired by Theorem 10.10:

Lβ(x, µ, λ) = f(x) +
β

2

p∑
i=1

(
µi

β
+ hi(x)

)2

+
β

2

m∑
i=1

max

(
0,

λi

β
+ gi(x)

)2

− 1

2β

p∑
i=1

µ2
i −

1

2β

m∑
i=1

λ2
i . (10.40)

By arguments similar to the ones we had for equality constrained problems,
we can justify the following update rules for µ and λ:

µk+1 = µk + βkh(x
k), (10.41)

λk+1 = max(0, λk + βkg(xk)). (10.42)

The resulting algorithm is listed as Algorithm 10.3.
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