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Solution Sheet n°9

Solution of exercise 1:

(1. = 2.) notice that:
\JTRS M(Hw Y(x,y) + Jxr eM w(x,ﬂ))
is obvious, we show:

\TRS M(EIQ: Y(x,g) > JreM w(m,ﬂ))

Let ¢ € F be of the form 3z ¢(x,§). We fix ¥ € M, and assume that

Jz ¢ (x,7) holds. Since ¢ is absolute for M, we have (Jz w(x,gj'))M ie.
3z € M(z,7/)™ which gives 3z € M) (z,%) by absoluteness of 1(z,7).

(2. = 1.) the proof goes by induction on the height of ¢ € F.

e If v is atomic, then the result is obvious since @™ := ¢

o If ¢ is of the form —i) or ¢y A ¢1, then the result the result fol-
lows immediately by induction since (=¢))M := —(y™) and (¢ A
o)M= o' A B

e If  is of the form Jx ¢ (x,7), then fix ¥ € M and notice that

Gz (@)™ = 3z eM pz )M
+— 1 Fr e M Y(,9)
% Frp(zy).

Solution of exercise 2:
1. W.lo.g. we may assume that F' is closed under sub-formulae. We fix «
and look for S.

Let F be the set of formulae in F which are of the form Jz)(x,y), with
¥ = (y1,...,yn). For each ¢ € F' we define the functional G, : V" — ON
by:

0 Zf _'So(ylv s 7yn)

Gty ) =
ot ) {min{neomaxevnw(ml,...,yn)} if (Y1, n)-

We then define the functional H, : ON — ON by:

H@(&) = Sup{G@(yh cee vyn) | Y1,---5Yn € Vv‘é}

Lep(z,) is absolute for M, by induction hypothesis.
2by hypothesis.




We define inductively a strictly increasing sequence of ordinals (8, )new
by:

Bo = o N

Brnt1 = sup ({Bn +1}u {Htp(ﬂn) | p e F})

and take 8 = sup(Bn)new- By construction we have

Oz=60<51<...<Bn<ﬁn+1<...<ﬁ

hence ( is a limit ordinal.

Suppose that ¢ is of the form 3z ¥ (z,y) and consider any § = (y1, ... ,Yn)
such that y1 € V3,...,yn € Vg 3z ¢(2,7) holds (in V). Then since J is a
limit ordinal, there exists some ordinal 8, < B such that y; € Vs,,...,yn €
Vs,
Now, by definition of H,, there exists x € Vi _(g,) such that 1(x,y) holds
(in V). Therefore there exists € Vj such that ¢ (z,7) holds (in V). By

Exercise 1, it follows that all formulae in F' are absolute for Vj.

Since My is a set, there exists some ordinal « such that mg C V,. By
point 1, there exists some 8 > « such that all formulae in F' are absolute
for Vg. Let M = Vg.

Solution of exercise 3:

Proof of the theorem: We first assume that the list of formulae contains the
Axiom of Extensionality and is closed under sub-formulae.

For some «, the set M, belongs V,,. Hence, by previous Exercise, there exists
B > a such that ¢, ..., p, are absolute for V3. Using the axiom of choice, fix
a well-ordering < on Vg, and for each integer 1 <14 < n and formula ¢; with m;
free variables we define H; : V™ — Vg

if ¢; is not an existential formula, or if ¢; is of the form 3z @;(z,y1, . . . Ym,)
but Vﬂ l?é dx @j(xayla o 7ymi):

Hi(y1, .. Ym,) := the <-least element of V3

if ¢, is of the form 3z ;(x,y1,...,ym,) and Vz =z 0 (2,1, ... Ym,):

Hi(y1,...,ym,;) == the <-least x € V3 such that ¢;(z,y1,...,Ym,) holds.

We then inductively define:

WO:MOa
Merl :mu U {Hz(yla;yml) | Y1 6m;~'~7ymi Em},
1<i<n
M = U M,,
m<w



By construction M is closed under all functions H; (any 1 < i < n) and |M| <
max(w,| Mp|).

If ¢; is of the form 3z ¢;(x,y1,. .. ,Ym,) then:

Vi, € nyﬂh eM [3x¢j(x7y1,...,ymi) < dx e Vﬁ ¢j($ay17...7ymi)
< 3w eM ¢i(zy1,- - Ym,)

By Exercise 1, it follows that every formula ¢; (any 1 < i < n) is absolute for M.
In particular, since we assumed that the Axiom of Extensionality was among
this list of formulae, it follows that Eztensionality™, hence M is extensional
so we can make use of the Mostowski collapse Theorem to obtain M as the
Mostowski collapse of M, i.e. M is transitive and there exists some isomorphism
g : M < M. Therefore, |M| = |M| and for every formula ¢; (any 1 < i < n)
we have for every y; € M, ... .y, € M:

M

@i(yla""ymi) — wl(g(yl)”g(yml))M

Therefore ; is absolute for M implies ¢; is absolute for M (any 1 <i < n).

O

Proof of the corollary: immediate, by taking My to be any finite of countable
transitive set (e.g. My = 0).

O

Solution of exercise 4: Since the lecture on Set Theory started, we
only proved finitely many results and each time we only made use of finitely
many axioms from ZFC — even though we used both axiom schemas, we only
needed finitely many instances of each of them. We should remain cautious
however, and emphasize that this remark only concerns lemmas and theorems,
but not theorem schemas — such as the transfinite recursion theorem for instance.
Nevertheless, we can make the conjunction of all the finitely many axioms that
all our proofs of lemmas and theorems required. This way we obtain a single
formula ¢. By the Corollary of Exercise 3. we get a transitive countable set M
that satisfies every single lemma and theorem that we proved. Therefore, in M,
there are a cardinal wy and a set P(w) that satisfy everything we proved about
them. In particular they both satisfy that they are uncountable although they
are both countable sets in V', since they are elements of a transitive countable
set. This means that in V' there exist a bijection f : wM +— w and a bijection
g : Pw)M+— w.

This shows that the property of “being countable” is not absolute.



