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Solution of exercise 1:

(1. =⇒ 2.) notice that:

∀y⃗ ∈M
(
∃x ψ(x,y⃗)← ∃x ∈M ψ(x,y⃗)

)
is obvious, we show:

∀y⃗ ∈M
(
∃x ψ(x,y⃗)→ ∃x ∈M ψ(x,y⃗)

)
.

Let φ ∈ F be of the form ∃x ψ(x,y⃗). We fix y⃗ ∈ M, and assume that
∃x ψ(x,y⃗) holds. Since φ is absolute for M, we have

(
∃x ψ(x,y⃗)

)M i.e.
∃x ∈Mψ(x,y⃗)M which gives ∃x ∈Mψ(x,y⃗) by absoluteness of ψ(x,y⃗).

(2. =⇒ 1.) the proof goes by induction on the height of φ ∈ F .

• If φ is atomic, then the result is obvious since φM := φ

• If φ is of the form ¬ψ or ϕ0 ∧ ϕ1, then the result the result fol-
lows immediately by induction since (¬ψ)M := ¬(ψM) and (ϕ0 ∧
ϕ1)

M := ϕM0 ∧ ϕM1
• If φ is of the form ∃x ψ(x,y⃗), then fix y⃗ ∈M and notice that(

∃x ψ(x,y⃗)
)M ←→ ∃x ∈M ψ(x,y⃗)M

←→ 1 ∃x ∈M ψ(x,y⃗)
←→ 2 ∃x ψ(x,y⃗).
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Solution of exercise 2:

1. W.l.o.g. we may assume that F is closed under sub-formulae. We fix α
and look for β.

Let F̃ be the set of formulae in F which are of the form ∃xψ(x,y⃗), with
y⃗ = (y1, . . . ,yn). For each φ ∈ F̃ we define the functional Gφ : V n → ON
by:

Gφ(y1, . . . ,yn) =

{
0 if ¬φ(y1, . . . ,yn)
min{η ∈ ON | ∃x ∈ Vη ψ(x,y1, . . . ,yn)} if φ(y1, . . . ,yn).

We then define the functional Hφ : ON→ ON by:

Hφ(ξ) = sup{Gφ(y1, . . . ,yn) | y1, . . . ,yn ∈ Vξ}
1ψ(x,y⃗) is absolute for M, by induction hypothesis.
2by hypothesis.
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We define inductively a strictly increasing sequence of ordinals (βn)n∈ω

by:
β0 = α

βn+1 = sup
(
{βn + 1} ∪ {Hφ(βn) | φ ∈ F̃}

)
and take β = sup(βn)n∈ω. By construction we have

α = β0 < β1 < . . . < βn < βn+1 < . . . < β

hence β is a limit ordinal.

Suppose that φ is of the form ∃x ψ(x,y⃗) and consider any y⃗ = (y1, . . . ,yn)
such that y1 ∈ Vβ , . . . ,yn ∈ Vβ ∃x ψ(x,y⃗) holds (in V ). Then since β is a
limit ordinal, there exists some ordinal βp < β such that y1 ∈ Vβp

, . . . ,yn ∈
Vβp .

Now, by definition of Hφ, there exists x ∈ VHφ(βp) such that ψ(x,y⃗) holds
(in V ). Therefore there exists x ∈ Vβ such that ψ(x,y⃗) holds (in V ). By
Exercise 1, it follows that all formulae in F are absolute for Vβ .

2. Since M0 is a set, there exists some ordinal α such that m0 ⊆ Vα. By
point 1, there exists some β > α such that all formulae in F are absolute
for Vβ . Let M = Vβ .
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Solution of exercise 3:

Proof of the theorem: We first assume that the list of formulae contains the
Axiom of Extensionality and is closed under sub-formulae.

For some α, the set M0 belongs Vα. Hence, by previous Exercise, there exists
β > α such that φ1, . . . , φn are absolute for Vβ . Using the axiom of choice, fix
a well-ordering ◁ on Vβ , and for each integer 1 ≤ i ≤ n and formula φi with mi

free variables we define Hi : V mi

β −→ Vβ :

• if φi is not an existential formula, or if φi is of the form ∃x φj(x,y1, . . . ,ymi
)

but Vβ ̸|= ∃x φj(x,y1, . . . ,ymi
):

Hi(y1, . . . ,ymi) := the ◁-least element of Vβ

• if φi is of the form ∃x φj(x,y1, . . . ,ymi) and Vβ |= ∃x φj(x,y1, . . . ,ymi):

Hi(y1, . . . ,ymi
) := the ◁-least x ∈ Vβ such that φj(x,y1, . . . ,ymi

) holds.

We then inductively define:

• M0 =M0,

• Mm+1 =Mm ∪
⋃

1≤i≤n

{
Hi(y1, . . . ,ymi

) | y1 ∈Mm, . . . ,ymi
∈Mm

}
,

• M =
⋃

m<ω

Mm.
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By construction M is closed under all functions Hi (any 1 ≤ i ≤ n) and |M | ≤
max(ω,|M0|).

If φi is of the form ∃x φj(x,y1, . . . ,ymi
) then:

∀y1 ∈M . . . ∀ymi
∈M

[
∃xϕj(x,y1, . . . ,ymi

) ↔ ∃x ∈ Vβ ϕj(x,y1, . . . ,ymi
)

↔ ∃x ∈M ϕj(x,y1, . . . ,ymi
)
]

By Exercise 1, it follows that every formula φi (any 1 ≤ i ≤ n) is absolute for M .
In particular, since we assumed that the Axiom of Extensionality was among
this list of formulae, it follows that ExtensionalityM , hence M is extensional
so we can make use of the Mostowski collapse Theorem to obtain M as the
Mostowski collapse of M , i.e. M is transitive and there exists some isomorphism
g : M ←→M . Therefore, |M | = |M | and for every formula φi (any 1 ≤ i ≤ n)
we have for every y1 ∈M, . . . ,ymi

∈M :

φi(y1, . . . ,ymi)
M ←→ φi(g(y1), . . . ,g(ymi))

M .

Therefore φi is absolute for M implies φi is absolute for M (any 1 ≤ i ≤ n).
2

Proof of the corollary : immediate, by taking M0 to be any finite of countable
transitive set (e.g. M0 = ∅).
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Solution of exercise 4: Since the lecture on Set Theory started, we
only proved finitely many results and each time we only made use of finitely
many axioms from ZFC – even though we used both axiom schemas, we only
needed finitely many instances of each of them. We should remain cautious
however, and emphasize that this remark only concerns lemmas and theorems,
but not theorem schemas – such as the transfinite recursion theorem for instance.
Nevertheless, we can make the conjunction of all the finitely many axioms that
all our proofs of lemmas and theorems required. This way we obtain a single
formula ϕ. By the Corollary of Exercise 3. we get a transitive countable set M
that satisfies every single lemma and theorem that we proved. Therefore, in M ,
there are a cardinal ω1 and a set P(ω) that satisfy everything we proved about
them. In particular they both satisfy that they are uncountable although they
are both countable sets in V , since they are elements of a transitive countable
set. This means that in V there exist a bijection f : ωM

1 ←→ ω and a bijection
g : P(ω)M ←→ ω.

This shows that the property of “being countable” is not absolute.
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