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Solution Sheet n°8

1. For any infinite cardinal k, H,; C V.

For any set  and for ¢t = cl(z), we show that the set of ordinals S = {rk(y) : y € t} is
an ordinal. It is enough to show that S is transitive. Now, for a set of ordinals S, S is
transitive if and only if the smallest ordinal which does not belong to S is S itself (this
ordinal exists since S is a set, thus it cannot be cofinal in the class of all ordinals).

Indeed, let o be the smallest ordinal does not belong to S, then o C S. But if o # 5,
then there exists 8 € S\ a and therefore « < 8 € S, i.e. S is not transitive. On the
other hand, if S is not transitive, there exists § < vy € S with 8 ¢ S and therefore if a is
the smallest ordinal which does not belong to S we have « < fand vy € S\ 5 C S\ ¢,
therefore o # S.

Therefore, let a be the smallest ordinal which does not belong to S. Suppose towards
contradiction that « € S. Let f = minS \ « and let y € ¢t with rk(y) = 8. By
definition of 3, f > «a. Since t is transitive, for all z € y, we have rk(z) € S and, by
definition of «, rk(z) # «. Since rk(z) < rk(y) = 3, by minimality of 5 it is impossible
that rk(z) > «. Therefore for all z € y we have rk(z) < o. Now, by definition of the
rank, rk(y) = sup{rk(z) + 1 | z € y} < «, i.e. 8 < a, a contradiction. Therefore,
«a = S and therefore S is an ordinal. Indeed, this ordinal is precisely the rank of z
(exercise!).

Now if z € H, for k an infinite cardinal, then |t| = |cl(z)| < k. The ordinal o = {rk(y) |
y € cl(z)} is therefore such that |a| < |cl(x)| < & since the function rk : cl(z) — « is
surjective (recall that o = rk(z)). Therefore, rk(z) = a < |cl(z)| < &, i.e. x € V.

2. (AC) If k is an infinite regular cardinal, then we have Vz(x € Hy, < © C H A|z| < K).

Let z € H,,. For all y € x, the fact that cl(y) C cl(z) implies |cl(y)| < x and therefore
y € H,,. Thus, x C H, and furthermore, since z C cl(x), we also have |z| < k.

On the other hand, let = C H, with |z| < k. Let A = |z| and f be a bijection between
A and x. Consider the function g : A — & defined by g(a) = |cl(f()], for all & < A.
The images of g are indeed in k, since x C H, and therefore for each y € z, we
have |cl(y)| < k. By the regularity of x the function g is not cofinal and there exists
therefore, a cardinal p < s such that g(a) < p for all o, ie. |cl(y)| < p for all y € .
Let 8 = max{u, A\} < k. By the axiom of choice, a union of § sets of cardinality at
most 6 has cardinality at most 6 (Exercise 2 of the Sheet 4). Thus,

|cl(x)|:‘x U (Hdy) iy eal| <rab <k

3. (ZFCQ) If k is a regular uncountable cardinal regular, then H, is model of ZFC — P.
We begin by noticing the following properties (in ZF') of Hy, for an infinite x:
) H, is transitive;
) H, NON = g;
¢) ifz € Hy, then Jz € Hy;
) if z,y € Hy, then {z,y} € Hy;
) ifx € H; and y C z, then y € Hy;



For (a), simply notice that if € y, then cl(x) C ¢l(y). For (b), it is enough to remark
that a = cl(«) for every ordinal «, since the ordinals are transitive. Point (c) follows
from the fact that | Ja C cl(z). For (d), observe that cl({z,y}) = cl(z)Ucl(y) U{z, y}.
Point (e) is a consequence of the fact that y C z implies cl(y) C cl(z).

Let k > Ny be regular. Since H, is transitive, we can make use of the criteria of
satisfaction for the axioms of ZFC for transitive classes (Exercise 2 of Sheet 7). Ex-
tensionality is immediate, the axiom of foundation also follows immediately (we work
in V.= WF). The union and pairing axioms follow by points (c¢) and (d) above. For
replacement, use point 2. Let f : x — H, be a function of domain x € H, with image
in H,;. The cardinality of the image of f is less or equal than |z| < k. By the previous
point, the image of f belongs to H,. For the axiom of infinity, by point (b) we have
w € Kk = H, N ON. Finally, for the axiom of choice, the formula “R well orders A”
is downwards absolute for the models of ZF~ — P — Inf. Thus, for x € H,, by AC
there exists R C x x x (in V) such that “R well orders z” and therefore such that “(R
well orders x)<”. By point (d), R C H, and since |R| < |z x x| = || < k we have
R € H,; by point 2.

. (ZFC) If k is a regular uncountable non strongly inaccessible cardinal, then H, is
model of ZFC — P + —P.

By point (e) above, we have that for all x € H,, P~(z) = P(z) N H, = P(z). Now,
by Exercise 2 of Sheet 7 and the transitivity of H,, the satisfaction of the powerset
axiom by H, is equivalent to Va € H,, Jc € H,, (P(x) N H,, C ¢) and therefore by the
remark preceding point (e), it is also equivalent to Vo € H,.(P(z) € Hy). But if & is
regular but not strongly inaccessible, there exists A < s such that 2* > x and by (a)
2* ¢ H,. We therefore have that “H, = ZFC — P + —~P”.

The following relative consistency results for the powerset axiom thus hold:

Theorem. Con(ZFC) — Con(ZFC — P + —P), i.e.
Con(ZFC) — “ZFC — P / P.

. (ZFC) If k is a strongly inaccessible cardinal, then Hy is a set model of ZFC.

By point 1, we have that H, C V, for all infinite . If moreover  is strongly inac-
cessible, i.e. regular and strongly limit, we show that H, = V,. Look at the proof of
the lemma in the Solution of Exercise 3 of Sheet 8. We have shown that for a strongly
inaccessible k and all v < &, we have |V,| < k. Now, if 2 € V,, for a < & then, by
transitivity of V,, we have cl(x) C V,,. Therefore, |cl(z)] < |Vo| < k and z € H,. It
follows that H, =V, and, by the first part of Exercise 3 of Sheet 8, that H, is a set
model of ZFC.

We have thus reproved the following;:
Theorem. ZFC + 3k(k strongly inaccessible) = Con(ZFC).

Theorem. Con(ZFC) — Con(ZFC + —3k(k strongly inaccessible)),
i.e. Con(ZFC) — “ZFC ¥ 3k(k strongly inaccessible)”.

Since for a strongly inaccessible k, H,, = V,, we can substitute V, with H, in the
proof of this result from the Solution of Exercise 3 of Sheet 8.



