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Solution Sheet n◦7

Solution of exercise 1:

(a)− (p) See Kunen pp. 119-122 and p. 126.

Proof of the Proposition: by the previous proposition we have: for all x ∈M, “x
is an ordinal in M” iff “x is an ordinal”. i.e. OnM = On∩M. By absoluteness
of ∈ we also have (α < β)M iff α < β. We let κ = cardM(a). This means that
in M there exists some bijection f between κ and a but no bijection between a
and any ordinal α < κ. By absoluteness, in V , f is also a bijection between κ
and a. But it may be the case that there exists (in V ) some bijection between
some λ < κ and a. Therefore we have card ≤ cardM(a). 2

Solution of exercise 2:

From Exercise 3 of Sheet 7, we already know that Vω+ω |= ZFC− Repl (ZC is
simply another notation for ZFC−Repl). It remains to check that Vω+ω |= ¬Repl
i.e. we need to find some formula such that Vω+ω satisfies that it is functional
on a subset A of Vω+ω but Vω+ω contains no set containing the range of this
functional on A.

We consider the following formula:

ϕ(n, α) := ∃f
(
n ∈ ω ∧ α ∈ On ∧ f : ω + n

isom.←→ α
)︸ ︷︷ ︸

ψ(f,n,α)

. One can easily show that ψ(f, n, α) is absolute for Vω+ω, i.e.

∀f ∈ Vω+ω ∀n ∈ Vω+ω ∀α ∈ Vω+ω
(
ψ(f, n, α) ←→ ψ(f, n, α)Vω+ω

)
.

Since for all integer n, ω + n ∈ Vω+ω and id : ω + n ←→ ω + n ∈ Vω+ω
hold, one has

∀n ∈ ω ∃!α ∈ Vω+ω ∃f ∈ Vω+ω ψ(f, n, α),

i.e.
∀n ∈ ω ∃!α ∈ Vω+ω ∃f ∈ Vω+ω ψVω+ω (f, n, α),

i.e.
∀n ∈ ω ∃!α ∈ Vω+ω ϕVω+ω (n, α).

Hence ϕ(n, α) is functional on Vω+ω. Now if ReplVω+ω , then there exists some
Y ∈ Vω+ω such that

Y = {α | n ∈ ω ∧ ϕ(n, α)} = {ω + n | n ∈ ω}.
Since ω ∈ Vω+ω and unionVω+ω we come to the following contradiction:

Y ∪ ω = ω + ω ∈ Vω+ω.

Solution of exercise 3: Let us prove the following lemma, which is inter-
esting in its own right:
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Lemma (ZFC ). Let κ be strongly inaccessible. If x ⊆ Vκ, then x ∈ Vκ iff
|x| < κ.

Proof. For the first direction, it is enough to notice that for all α < κ, |Vα| < κ.
Indeed, if x ∈ Vκ then x ∈ Vα+1 for a certain α < κ and therefore x ⊆ Vα and
therefore |x| ≤ |Vα| < κ. Let us show therefore that |Vα| < κ for all α < κ
by induction on α. Clearly |V0| < κ. If for α < κ we have |Vα| < κ, then
|Vα+1| = |P(Vα)| = 2|Vα| < κ since κ is strongly limit. Suppose now that γ < κ
is limit and that for all α < γ we have |Vα| < κ. Consider the function f : γ → κ
defined by f(α) = |Vα|. By the regularity of κ, sup f [γ] < κ. Notice that since
f is injective γ ≤ sup f [γ] and also |Vα| ≤ sup f [γ] for all α < γ. We have
therefore by the Exercise 2 of Sheet 5 that:

|Vγ | =
∣∣∣ ⋃
α<γ

Vα

∣∣∣ ≤ sup
α<γ
|Vα| < κ.

For the opposite direction, suppose that x ⊆ Vκ and |x| < κ. Fix a bijection
h : |x| → x and define g : |x| → κ as g(ξ) = rank(h(ξ)). By regularity of κ, g is
not cofinal and therefore there exists an α < κ such that {rank(y) | y ∈ x} ⊆ α.
Therefore, x ∈ Vα+1 ⊆ Vκ.

We now show that Vκ |= ZFC. By Exercise 3 of Sheet 7, since κ > ω
is limit, we have that Vκ |= ZC and it is therefore enough to show that Vκ
satisfies the axiom schema of replacement. Therefore, let φ(x, y, c⃗) be a formula
and a, c⃗ ∈ Vκ such that ZFC ⊢ (∀x ∈ a ∃!yφ(x, y, c⃗))Vκ , i.e. ZFC ⊢ ∀x ∈
a ∃!y ∈ Vκ φ(x, y, c⃗)Vκ . We have therefore that ZFC ⊢ ∃f(f is a function of a in
Vκ ∧∀x ∈ a, φ(x, f(x), c⃗)Vκ) or, in other words, φ defines a function f : a→ Vκ.
It is therefore enough to show that if a ∈ Vκ and f : a → Vκ is a function
(of V ), then f ∈ Vκ. To see this, notice first of all that since a ∈ Vκ we have
a ⊆ Vκ and therefore by the previous lemma |a| < κ. Now |f [a]| ≤ |a| < κ and
f [a] ⊆ Vκ and therefore, again by the previous lemma, f [a] ∈ Vκ. It follows that
Vκ satisfies replacement. We have thus:

ZFC + ∃κ κ is strongly inaccessible ⊢ Con(ZFC).

We now show:

Theorem. Con(ZFC)→ Con(ZFC + ¬∃κ(κ strongly inaccessible)),
i.e. Con(ZFC)→ “ZFC ̸⊢ ∃κ(κ strongly inaccessible)”.

Let SI(κ) be the formula expressing “κ is strongly inaccessible”. We use the
following result1:

1This lemma comes from www.cis.upenn.edu/∼byorgey/settheory/, April 28, 2012.
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Lemma 10.5 (Absoluteness of SI). If λ is a limit ordinal and κ ∈ Vλ, then
SI(κ) ⇐⇒ Vλ |= SI(κ).

Proof. Unfolding the definition of SI, it suffices to show each of the following.

• ord(κ) ⇐⇒ Vλ |= ord(κ). Since we have the Axiom of Regularity, ord(κ)
simply reduces to the statement that κ is a transitive linear order, both
of which are ∆0 conditions.

• card(κ) ⇐⇒ Vλ |= card(κ). Recall that card(κ) holds iff there is no f for

which there exists some β < κ such that f : β
1-1−−−→
onto

κ.

First, suppose card(κ), that is, there is no bijection in the universe between
κ and some β < κ. If there is no such bijection in the universe, there isn’t
one in Vλ either, since the notion of being a bijection between β and κ is
∆0.

Now, suppose Vλ |= card(κ), and suppose by way of contradiction that
there is some f in the universe which is a bijection between κ and some
β < κ. Note that f ⊆ β × κ ⊆ P(P(β ∪ κ)), so its rank is at most two
greater than the rank of κ. But κ ∈ Vλ, and since λ is a limit ordinal,
κ ∈ Vα for some α < λ, and hence f ∈ Vα+2 ⊆ Vλ, which is a contradiction.

• cf(κ) = κ ⇐⇒ Vλ |= cf(κ) = κ. We can also restate cf(κ) = κ as the
fact that there is no ordinal α < κ for which there exists a cofinal map
f : α→ κ.

(=⇒) Suppose there is no ordinal α < κ in the universe for which there
exists a cofinal map f : α→ κ. Then there is no such ordinal in Vλ, either,
since the notion of being a cofinal map from α→ κ is absolute for Vλ (this
is because α, κ ∈ Vλ; the notion of being a functional relation from α to κ
is absolute for Vλ; and the predicate defining what it means to be a cofinal
map only has to talk about union, which lowers rank).

(⇐=) Suppose that Vλ |= cf(κ) = κ, and suppose by way of contradiction
that there is some α < κ and a cofinal map f : α→ κ. Clearly α ∈ Vλ. It
is also easy to see that f ∈ Vλ by the same argument as in the previous
case.

• κ is a strong limit cardinal ⇐⇒ Vλ |= κ is a strong limit cardinal.

First, suppose κ is a strong limit cardinal. This means that 2ι < κ for
every cardinal ι < κ, which is the case if and only if, for every ι < κ, there

is an injection f : P(ι)
1-1−−→ κ. By the usual rank argument, f ∈ Vλ.

Now suppose Vλ |= (κ is a strong limit cardinal), which means that for

every cardinal ι < κ, there is some f ∈ Vλ such that f : P(ι)
1-1−−→ κ. But

then for each ι, that f is evidence in the universe that 2ι < κ; hence κ is
a strong limit cardinal.

42

• κ is uncountable ⇐⇒ Vλ |= κ is uncountable.

First, suppose κ is uncountable; then there does not exist any function

f : κ
1-1−−→ ω. Then in particular, there does not exist any such function in

Vλ, since being an injection from κ into ω is absolute for Vλ.

Now, suppose Vλ |= κ is uncountable. By way of contradiction, suppose

there is some f in the universe with f : κ
1-1−−→ ω. By an easy rank

argument (noting that κ uncountable implies λ > ω), f ∈ Vλ.

SDG

Proof of Theorem 10.4. Suppose that ZF can show the existence of a strongly
inaccessible cardinal. Then there must be a smallest such cardinal λ, that is,

ZF � ∃λ.(SI(λ) ∧ ∀ν < λ.¬SI(ν)).

So Vλ |= ZF , and in particular, it must be the case that Vλ |= ∃κ.SI(κ).
So, there must be some κ < λ for which Vλ |= SI(κ). However, we know by
Lemma 10.5 that SI is absolute for Vλ, so SI(κ), contradicting the fact that λ
is the smallest such cardinal. SDG

43

Proof of the Theorem. Consider the following class:

M = {x | ∀κ(SI(κ)→ x ∈ Vκ)}.

From a semantic standpoint, M could be Vκ, for κ the smallest strongly in-
accessible cardinal, as well as the whole class V , depending on whether there

3



exists or not a strongly inaccessible cardinal. However, in either case, M |=
ZFC + ¬∃κSI(κ). Actually:

• If ¬∃κ SI(κ): in this case M = V and therefore M |= ¬∃κ SI(κ).

• If ∃κ SI(κ): in this case M = Vκ for κ the smallest strongly inaccessi-
ble cardinal. In this case, by the first part of this exercise, Vκ |= ZFC.
Moreover, by the lemma, SI(α) is absolute for Vκ and therefore ∀α ∈
Vκ(SI(α) ↔ SI(α)Vκ). By minimality of κ, ∀α ∈ Vκ ¬SI(α) and there-
fore ∀α ∈ Vκ ¬SI(α)Vκ , in other words (¬∃α SI(α))Vκ , or equivalently
Vκ |= ¬∃α SI(α).

Therefore, M |= ¬∃αSI(α) as wanted.

Finally notice the following fact.

Theorem. If ZFC is consistent, then it is not possible to formalize the following
proof in ZFC:

Con(ZFC)→ Con(ZFC + ∃κSI(κ)).

Proof. Suppose towards contradiction that ZFC is consistent and that ZFC ⊢
Con(ZFC) → Con(ZFC + ∃κ SI(κ)). We have then in particular that ZFC +
∃κSI(κ) ⊢ Con(ZFC)→ Con(ZFC+ ∃κSI(κ)) and therefore by the first part of
this exercise, which can in fact be formalized as:

ZFC ⊢ “ZFC + ∃κSI(κ) ⊢ Con(ZFC)”,

we would have that ZFC+ ∃κSI(κ) ⊢ Con(ZFC+ ∃κSI(κ)). Once formalized, it
yieds:

ZFC ⊢ “ZFC + ∃κSI(κ) ⊢ Con(ZFC + ∃κSI(κ))”

By Gödel’s second incompleteness theorem (formalized in ZFC) we obtain that
ZFC ⊢ ¬Con(ZFC + ∃κSI(κ)). Therefore, by our second hypothesis, we have
that ZFC ⊢ ¬Con(ZFC), contradicting our hypothesis on the consistency of
ZFC.
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