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Professor J. Duparc MATH-318 Set Theory April 2, 2025

Solution Sheet n°7

Solution of exercise 1:

(a) — (p) See Kunen pp. 119-122 and p. 126.

Proof of the Proposition: by the previous proposition we have: for all z € M, “x
is an ordinal in M” iff “z is an ordinal”. i.e. On™ = On N M. By absoluteness
of € we also have (a < S)M iff & < . We let k = card™(a). This means that
in M there exists some bijection f between k and a but no bijection between a
and any ordinal o < k. By absoluteness, in V, f is also a bijection between k
and a. But it may be the case that there exists (in V') some bijection between
some A < & and a. Therefore we have card < card™ (a). O

Solution of exercise 2:

From Exercise 3 of Sheet 7, we already know that V4., E ZFC — Repl (ZC is
simply another notation for ZFC— Repl). It remains to check that V,;., |E —Repl
i.e. we need to find some formula such that V., satisfies that it is functional
on a subset A of V4, but V., contains no set containing the range of this
functional on A.

We consider the following formula:

p(n,a):=3f(n€Ew A a€O0n A f : ernM'a)

Y(fime)

. One can easily show that ¥ (f, n,«) is absolute for V1, i.e.
Vf € Vo Y0 € Vi Yo € Visw, (W(fon, @) <— P(f,m,a)Ver).

Since for all integer n, w+n € V41 and id : w+n<+— w+n € Vi,
hold, one has

Vnew Aa € Vyq, 3f € Vorw U(fin,a),

ie.

Vn € w la € Vg If € Vipyw Y+ (f,n,a),
ie.

VnewNac Vi ¢+ (n,a).

Hence ¢(n, ) is functional on V,,,,. Now if Repl’++, then there exists some
Y € V4, such that

Y={a|ncew A ¢(n,a)} ={w+n|necw}

\%

Since w € V4, and union’“** we come to the following contradiction:

YUw=w+we Vi,

Solution of exercise 3: Let us prove the following lemma, which is inter-
esting in its own right:



Lemma (ZFC). Let k be strongly inaccessible. If x C V., then x € V, iff
lz] < k.

Proof. For the first direction, it is enough to notice that for all & < &, |V, | < k.
Indeed, if x € V,; then « € V41 for a certain a < k and therefore x C V,, and
therefore |z| < |V,| < k. Let us show therefore that |V,| < & for all & < k
by induction on «. Clearly |Vy| < . If for @ < x we have |V,| < &, then
[Vas1| = |P(V,)| = 2IVel < & since & is strongly limit. Suppose now that v < &
is limit and that for all @ < v we have |V, | < k. Consider the function f : v = k
defined by f(«) = |V,|. By the regularity of &, sup f[y] < . Notice that since
f is injective v < sup f[y] and also |V,| < sup f[y] for all & < . We have
therefore by the Exercise 2 of Sheet 5 that:

Vil =] U Ve

a7y

< sup |Vu| < k.
a<ly

For the opposite direction, suppose that z C V,; and |z| < k. Fix a bijection
h:lz| — z and define g : |z| — & as g(§) = rank(h(§)). By regularity of «, g is
not cofinal and therefore there exists an @ < & such that {rank(y) | y € z} C «.
Therefore, x € V11 C V.

We now show that V,, = ZFC. By Exercise 3 of Sheet 7, since k > w
is limit, we have that V, = ZC and it is therefore enough to show that V
satisfies the axiom schema of replacement. Therefore, let ¢(x,y, €) be a formula
and a,¢ € V, such that ZFC + (Vz € a yp(z,y,0))V=, ie. ZFC F Vo €
a3y € Vi o(z,y,7)V=. We have therefore that ZFC - 3f(f is a function of a in
V. AVx € a,¢(z, f(x),¢)"*) or, in other words, ¢ defines a function f : a — V.
It is therefore enough to show that if a € V,, and f : a — V, is a function
(of V'), then f € V. To see this, notice first of all that since a € V,; we have
a C V,, and therefore by the previous lemma |a| < k. Now |f[a]| < |a| < x and
fla] C V,, and therefore, again by the previous lemma, f[a] € V.. It follows that
V. satisfies replacement. We have thus:

ZFC+ 3k K is strongly inaccessible - Con(ZFC).

We now show:

Theorem. Con(ZFC) — Con(ZFC + —3k(k strongly inaccessible)),
i.e. Con(ZFC) — “ZFC ¥/ 3k(k strongly inaccessible)”.

Let SI(x) be the formula expressing “x is strongly inaccessible”. We use the
following result!:

1This lemma comes from www. cis.upenn. edu,/~byorgey/settheory/, April 28, 2012.



Lemma 10.5 (Absoluteness of ST). If A is a limit ordinal and k € Vy, then
SI(k) <= Vi = SI(k).

Proof. Unfolding the definition of SI, it suffices to show each of the following.

ord(k) <= V) |= ord(k). Since we have the Axiom of Regularity, ord(k)
simply reduces to the statement that x is a transitive linear order, both
of which are Ag conditions.

card(k) <= V) [= card(x). Recall that card(x) holds iff there is no f for
which there exists some § < k such that f: 3 %) K.

First, suppose card(k), that is, there is no bijection in the universe between
r and some § < k. If there is no such bijection in the universe, there isn’t
one in V) either, since the notion of being a bijection between 5 and & is
Ag.

Now, suppose V) = card(k), and suppose by way of contradiction that
there is some f in the universe which is a bijection between k and some
B < k. Note that f C B x k C P(P(BUK)), so its rank is at most two
greater than the rank of k. But x € V), and since A is a limit ordinal,
Kk € V, for some ao < A, and hence f € V42 C V), which is a contradiction.

cf(k) = k <= V) = cf(k) = k. We can also restate cf(k) = k as the
fact that there is no ordinal o < k for which there exists a cofinal map
fra—k

(=) Suppose there is no ordinal a < k in the universe for which there
exists a cofinal map f : & — k. Then there is no such ordinal in V}, either,
since the notion of being a cofinal map from o — & is absolute for V) (this
is because a, k € V); the notion of being a functional relation from « to
is absolute for Vy; and the predicate defining what it means to be a cofinal
map only has to talk about union, which lowers rank).

(«<=) Suppose that Vy = cf(k) = , and suppose by way of contradiction
that there is some o < k and a cofinal map f: o — k. Clearly o € V). It
is also easy to see that f € V) by the same argument as in the previous
case.

K is a strong limit cardinal <= V) |= & is a strong limit cardinal.

First, suppose k is a strong limit cardinal. This means that 2" < k for
every cardinal ¢ < , which is the case if and only if, for every ¢ < k, there

is an injection f : P(v) Lk By the usual rank argument, f € V).

Now suppose V) [ (k is a strong limit cardinal), which means that for
every cardinal ¢ < k, there is some f € V) such that f : P(v) L k. But
then for each ¢, that f is evidence in the universe that 2 < x; hence & is
a strong limit cardinal.

k is uncountable <= V) |= & is uncountable.
First, suppose x is uncountable; then there does not exist any function

1-1 . . . Lo
[k — w. Then in particular, there does not exist any such function in
Vi, since being an injection from  into w is absolute for V.

Now, suppose V) [= £ is uncountable. By way of contradiction, suppose

there is some f in the universe with f : k L. By an easy rank
argument (noting that x uncountable implies A\ > w), f € V.

Proof of the Theorem. Consider the following class:
M = {x | V&(SI(k) — = € V,,)}.

From a semantic standpoint, M could be V,, for x the smallest strongly in-
accessible cardinal, as well as the whole class V', depending on whether there



exists or not a strongly inaccessible cardinal. However, in either case, M |=
ZFC+ —3kSI(k). Actually:

e If =3k SI(k): in this case M = V and therefore M | -3k SI(k).

e If 3k SI(k): in this case M = V,; for k the smallest strongly inaccessi-
ble cardinal. In this case, by the first part of this exercise, V,, = ZFC.
Moreover, by the lemma, SI(«) is absolute for V,, and therefore Vo €
V. (SI{a) «> SI(a)¥*). By minimality of s, Vo € V,. —=SI(a) and there-
fore Vo € Vi, =SI(a)V*, in other words (=3a SI(a))V*, or equivalently
Vi = —Ja SI(a).

Therefore, M = —-3aSI(a) as wanted. O
Finally notice the following fact.

Theorem. If ZFC is consistent, then it is not possible to formalize the following
proof in ZFC:
Con(ZFC) — Con(ZFC + 3k SI(k)).

Proof. Suppose towards contradiction that ZF(C' is consistent and that ZFC +
Con(ZFC) — Con(ZFC+ 3k SI(k)). We have then in particular that ZFC +
Ik SI(k) F Con(ZFC) — Con(ZFC+ 3k SI(k)) and therefore by the first part of
this exercise, which can in fact be formalized as:

ZFC'F “ZFC+ 3k SI(k) - Con(ZFC)”,

we would have that ZFC+ 3kSI(k) F Con(ZFC+ 3kSI(k)). Once formalized, it
yieds:
ZFCF “ZFC+ 3kSI(k) F Con(ZFC + 3rSI(k))”

By Godel’s second incompleteness theorem (formalized in ZFC) we obtain that
ZFCF =Con(ZFC + 3k SI(k)). Therefore, by our second hypothesis, we have
that ZFC + —Con(ZFC), contradicting our hypothesis on the consistency of
ZFC. O



