

Solution Sheet n°6

Solution of exercise 1:

Let φ be a bijection between \mathbb{N} and the set of finite parts of \mathbb{N} , and let $\in_\varphi \subseteq \mathbb{N} \times \mathbb{N}$ be the binary relation defined by $x \in_\varphi y$ iff $x \in \varphi(y)$.

1. The proof presented in exercise 3 of the first series adapts easily to this case. In that exercise, the only time a specific property of the bijection was used was actually to prove that the axiom of foundation held. We obtain thus that the structure $U_\varphi = (\mathbb{N}, \in_\varphi)$ is a model of ZFC_{fin}^- .
2. If the bijection $\varphi : \mathbb{N} \rightarrow \mathcal{P}_{\text{fin}}(\mathbb{N})$ is such that for all $p, q \in \mathbb{N}$, $p \in \varphi(q)$ implies $p < q$, then the argument given for the axiom of foundation in exercise 3 of first series easily adapts to this case.
3. We can, for example, slightly modify the bijection of exercise 3 of the first series. The first values of this bijection are the following:

$$\begin{aligned} 0 &\mapsto [0] = \emptyset \\ 1 &\mapsto [1] = \{0\} \\ 2 &\mapsto [2] = \{1\} \\ 3 &\mapsto [3] = \{0, 1\} \\ 4 &\mapsto [4] = \{2\} \\ &\vdots \end{aligned}$$

We then define $\varphi : \mathbb{N} \rightarrow \mathcal{P}_{\text{fin}}$ by letting $\varphi(1) = \{1\}$, $\varphi(2) = \{0\}$ and $\varphi(p) = [p]$ if $p \neq 1, 2$. Notice that this bijection is such that $U_\varphi = (\mathbb{N}, \in_\varphi)$ is a model of ZFC_{fin}^- by point 1, but it does not satisfy the condition of point 2, since $1 \in \varphi(1)$ or $1 \not\prec 1$.

Finally let us show that $U_\varphi = (\mathbb{N}, \in_\varphi)$ satisfies the negation of the axiom of foundation. We have that 1 is not \in_φ -empty, but the only \in_φ -element of 1 is 1. Moreover, $1 \in_\varphi 1$. Indeed we have the following infinite decreasing chain for \in_φ

$$1 \in_\varphi 1 \in_\varphi 1 \in_\varphi 1 \in_\varphi 1 \in_\varphi 1 \dots$$

Therefore the axiom of foundation is not verified in U_φ and therefore U_φ is a model of $ZFC_{\text{fin}}^- \cup \{\neg AF\}$.

Solution of exercise 2:

1. For example, let $N = V \setminus \{1\}$. Consider the sets $x = \{0, 1, 2\}$ and $y = \{0, 2\}$, then:

$$\forall z \in \mathbf{N}(z \in x \longleftrightarrow z \in y)$$

but $x \neq y$.

2. 1. " $\mathbf{M} \models \text{Ext.}$ "

We need to prove that $\text{Ext.}^{\mathbf{M}}$ holds, where $\text{Ext.}^{\mathbf{M}}$ is the formula:

$$\forall x, y \in \mathbf{M} \left(\forall z \in \mathbf{M}(z \in x \longleftrightarrow z \in y) \longrightarrow x = y \right).$$

So formally we need to prove:

$$ZF \vdash \text{"M transitive"} \rightarrow \forall x, y \in M \left(\forall z \in M (z \in x \longleftrightarrow z \in y) \rightarrow x = y \right).$$

Since \mathbf{M} is transitive, if $z \in x \in \mathbf{M}$ then $z \in \mathbf{M}$. Therefore we have:

$$\begin{aligned} \text{"M transitive"} &\rightarrow \forall x, y \in M \left(\forall z \in M (z \in x \longleftrightarrow z \in y) \rightarrow x = y \right) \\ &\iff \\ \text{"M transitive"} &\rightarrow \forall x, y \in M \left(\forall z (z \in x \longleftrightarrow z \in y) \rightarrow x = y \right). \end{aligned}$$

(\Rightarrow) is by transitivity, and (\Leftarrow) is trivial.

Finally, $\forall x, y \in M \left(\forall z (z \in x \longleftrightarrow z \in y) \rightarrow x = y \right)$ holds by Extensionality.

2. If $\mathbf{M} \subseteq \mathbf{WF}$, then $\mathbf{M} \models \text{Foundation}$.

“Foundation M ” is the formula:

$$\forall x \in M \left(\exists y \in M (y \in x) \rightarrow \exists y \in M (y \in x \wedge \neg \exists z \in M (z \in x \wedge z \in y)) \right).$$

Any y of minimal rank in $x \cap \mathbf{M}$ satisfies the above formula.

3. $\mathbf{M} \models \text{Pairing}$ iff $\forall a, b \in M \ \exists c \in M \ \{a, b\} \subseteq c$.

“Pairing M ” is precisely the formula:

$$\forall x \in M \ \forall y \in M \ \exists z \in M \ (x \in z \wedge y \in z),$$

which is

$$\forall x \in M \ \forall y \in M \ \exists z \in M \ (\{x, y\} \subseteq z).$$

4. $\mathbf{M} \models \text{Union}$ iff $\forall a \in M \ \exists b \in M \ \bigcup a \subseteq b$.

“Union M ” is precisely the formula:

$$\forall a \in M \ \exists b \in M \ \forall x \in M \ \forall y \in M \ (x \in y \wedge y \in a \rightarrow x \in b).$$

Assuming \mathbf{M} is transitive we obtain:

$$\begin{aligned} \forall a \in M \ \exists b \in M \ \forall x \in M \ \forall y \in M \ (x \in y \wedge y \in a \rightarrow x \in b) \\ \iff^1 \\ \forall a \in M \ \exists b \in M \ \forall x \ \forall y \ (x \in y \wedge y \in a \rightarrow x \in b) \\ \iff \\ \forall a \in M \ \exists b \in M \ \bigcup a \subseteq b. \end{aligned}$$

¹ (\Rightarrow) is by transitivity, and (\Leftarrow) is trivial.

5. “ $\mathbf{M} \models \text{PowerSet}$ ” iff $\forall a \in \mathbf{M} \ \exists c \in \mathbf{M} \ (\mathcal{P}(a) \cap \mathbf{M} \subseteq c)$.

“ $\text{PowerSet}^{\mathbf{M}}$ ” is the formula:

$$\forall x \in \mathbf{M} \ \exists y \in \mathbf{M} \ \forall z \in \mathbf{M} \ (\forall u \in \mathbf{M} \ (u \in z \rightarrow u \in x) \rightarrow z \in y).$$

Assuming \mathbf{M} is transitive we have:

$$\begin{aligned} \forall x \in \mathbf{M} \ \exists y \in \mathbf{M} \ \forall z \in \mathbf{M} \ (\forall u \in \mathbf{M} \ (u \in z \rightarrow u \in x) \rightarrow z \in y) \\ \iff^2 \\ \forall x \in \mathbf{M} \ \exists y \in \mathbf{M} \ \forall z \in \mathbf{M} \ (\forall u \ (u \in z \rightarrow u \in x) \rightarrow z \in y) \\ \iff \\ \forall x \in \mathbf{M} \ \exists y \in \mathbf{M} \ \forall z \in \mathbf{M} \ (z \subseteq x \rightarrow z \in y) \\ \iff \\ \forall x \in \mathbf{M} \ \exists y \in \mathbf{M} \ (\mathcal{P}(x) \cap \mathbf{M} \subseteq y). \end{aligned}$$

6. “ $\mathbf{M} \models \text{Comp.Schema}$ ” iff for every formula $\varphi := \varphi(x, z, \bar{w})$ whose free variables are among x, z, w_1, \dots, w_n , we have

$$\forall z \in \mathbf{M} \ \forall w_1 \in \mathbf{M} \dots \forall w_n \in \mathbf{M} \ \{x \in z : \varphi^{\mathbf{M}}(x, z, \bar{w})\} \in \mathbf{M}$$

“ $\text{Comp.Schema}^{\mathbf{M}}$ ” is the class of formulas of the form:

$$\forall z \in \mathbf{M} \ \forall w_1 \in \mathbf{M} \dots \forall w_n \in \mathbf{M} \ \exists y \in \mathbf{M} \ \forall x \in \mathbf{M} \ (x \in y \leftrightarrow (x \in z \wedge \varphi^{\mathbf{M}})),$$

where $\varphi := \varphi(x, z, \bar{w})$ is any formula with free variables among x, z, w_1, \dots, w_n .

Assuming \mathbf{M} is transitive we obtain:

$$\begin{aligned} \forall z \in \mathbf{M} \ \forall w_1 \in \mathbf{M} \dots \forall w_n \in \mathbf{M} \ \exists y \in \mathbf{M} \ \forall x \in \mathbf{M} \ (x \in y \leftrightarrow (x \in z \wedge \varphi^{\mathbf{M}})) \\ \iff^3 \\ \forall z \in \mathbf{M} \ \forall w_1 \in \mathbf{M} \dots \forall w_n \in \mathbf{M} \ \exists y \in \mathbf{M} \ \forall x \ (x \in y \leftrightarrow (x \in z \wedge \varphi^{\mathbf{M}})) \\ \iff \\ \forall z \in \mathbf{M} \ \forall w_1 \in \mathbf{M} \dots \forall w_n \in \mathbf{M} \ \exists y \in \mathbf{M} \ y = \{x \in z \mid \varphi^{\mathbf{M}}\}. \end{aligned}$$

7. By previous case and transitivity of \mathbf{M} , $\{y \mid \exists x \in A \ \varphi(x, y, A, \bar{c})\}^{\mathbf{M}} = \{y \mid (\exists x \in A \ \varphi(x, y, A, \bar{c}))^{\mathbf{M}}\} = \{y \mid \exists x \in A \ \varphi(x, y, A, \bar{c})^{\mathbf{M}}\} = \{y \mid \exists x \in A \ \varphi(x, y, A, \bar{c})\}$. Moreover, by transitivity of \mathbf{M} the relativisation of the inclusion to \mathbf{M} is equivalent to the inclusion in V , which yields the result.

²(\Rightarrow) is by transitivity, and (\Leftarrow) is trivial.

³(\Rightarrow) is by transitivity, and (\Leftarrow) is trivial.

Solution of exercise 3:

- Working in ZF^- , show that “ $\mathbf{V}_\omega \models ZF - Inf + \neg Inf$ ”.

The set \mathbf{V}_ω is transitive. Moreover, for $a, b \in \mathbf{V}_\omega$ we have that $\{a, b\}, \bigcup a, \mathcal{P}(a)$ all belong to \mathbf{V}_ω . Therefore, by Exercise 2, the axioms of extensionality, foundation, pairing, union and powerset all hold in \mathbf{V}_ω . Moreover, since for all $a \in \mathbf{V}_\omega$ we have that $\mathcal{P}(a) \in \mathbf{V}_\omega$ it follows, in particular, that for every formula φ , $\{x \in a \mid \varphi\} \in \mathbf{V}_\omega$.

For the replacement axiom, let $a \in \mathbf{V}_\omega$ and $F(x, y, \vec{z})$ be such that:

$$\forall x \in a \exists! y \in \mathbf{V}_\omega F^{\mathbf{V}_\omega}(x, y, \vec{z}).$$

Consider $b = \{y \in \mathbf{V}_\omega \mid \exists x \in a F^{\mathbf{V}_\omega}(x, y, \vec{z})\}$; since $a \in \mathbf{V}_\omega$, it follows that $a \in \mathbf{V}_n$ for an integer n and therefore a is finite. Therefore, since by construction $b \subseteq \mathbf{V}_\omega$ and a surjects on b , it follows that b is also finite and belongs therefore to \mathbf{V}_m for some integer m .

To show that $\neg Inf^{\mathbf{V}_\omega}$ holds we suppose towards contradiction that $Inf^{\mathbf{V}_\omega}$ holds, i.e.:

$$\begin{aligned} \exists x \in \mathbf{V}_\omega (\exists y \in \mathbf{V}_\omega (y \in x \wedge \forall z \in \mathbf{V}_\omega z \notin y) \wedge \forall z \in \mathbf{V}_\omega (z \in x \rightarrow z \cup \{z\} \in x)) \\ \iff^4 \exists x \in \mathbf{V}_\omega (\exists y \in \mathbf{V}_\omega (y \in x \wedge \forall z z \notin y) \wedge \forall z (z \in x \rightarrow z \cup \{z\} \in x)) \\ \iff \exists x \in \mathbf{V}_\omega (\emptyset \in x \wedge \forall z (z \in x \rightarrow z \cup \{z\} \in x)), \end{aligned}$$

from which it would follow that there exists an element of \mathbf{V}_ω which contains all the integer. By comprehension $\omega \in \mathbf{V}_\omega$, a contradiction.

- It follows from the proposition in exercise 2 and from results which have been presented during class that **WF** satisfies $ZF - Inf$. More precisely, we have that $ZF^- \vdash (\phi)^{\mathbf{WF}}$ for every formula of $ZF - Inf$. It remains to prove that $ZF^- \vdash (Inf)^{\mathbf{WF}}$. The idea is that ω satisfies the statement of the axiom of infinity relativised to **WF**. Another observation is that the notion of empty set and the notion of successor are the same in **V** and in **WF**. More precisely, we have that:

$$\begin{aligned} ZF^- \vdash (\exists x (\emptyset \in x \wedge \forall y \in x S(y) \in x))^{\mathbf{WF}} \\ \leftrightarrow \exists x \in \mathbf{WF} (\forall z ((\forall w \in z w \neq w) \rightarrow z \in x) \wedge \forall y \in x \bigcup \{y, \{y\}\} \in x)^{\mathbf{WF}} \\ \leftrightarrow \exists x \in \mathbf{WF} (\forall z ((\forall w \in z w \neq w) \rightarrow z \in x) \wedge \forall y \in x \bigcup \{y, \{y\}\} \in x) \\ \leftrightarrow \exists x \in \mathbf{WF} (\emptyset \in x \wedge \forall y \in x S(y) \in x). \end{aligned}$$

The second equivalence is obtained using the fact that **WF** is a transitive class satisfying $ZF - Inf$. The last formula is satisfied by letting $x = \omega$.

- By arguments similar to those in point 1, we have that \mathbf{V}_λ is a model of Z .

For the axiom of choice, it is enough to find, for each $a \in \mathbf{V}_\lambda$, a well order on a which is in \mathbf{V}_λ . Now, if $a \in \mathbf{V}_\lambda$, there exists an ordinal $\xi < \lambda$ such that $a \in \mathbf{V}_\xi$. Moreover, since AC holds, there exists a well order $\prec_a \subseteq a \times a$ on a . Therefore $\prec_a \in \mathbf{V}_{\xi+3}$ and thus $\prec_a \in \mathbf{V}_\lambda$. Moreover, the formula $\varphi(a, \prec_a) := \text{``}\prec_a \text{ well orders } a\text{''}$ verifies $\varphi(a, \prec_a) \leftrightarrow \varphi(a, \prec_a)^{\mathbf{V}_\lambda}$. Thus $AC^{\mathbf{V}_\lambda}$.

⁴(\Rightarrow) by transitivity of \mathbf{V}_ω , (\Leftarrow) is trivial.