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Solution Sheet n◦5

Solution of exercise 1:

1. It follows from:

x ∈ W(α+ 1) ↔ x ∈ P
(
W(α)

)
↔ x ⊆ W(α).

2. In order to show that each of these sets is in WF, one can either show
that there is no infinite strictly ∈-decreasing chain (see Corollary 144 of the
Lecture Notes), or use the tree representation of the well-founded sets (see
Exercice 2 of this Exercice Sheet).

(a) rk({x,y}) = max{rk(x),rk(y)}+ 1;

(b) Since (x,y) = {{x},{x,y}}, we get rk
(
(x,y)

)
= max{rk(x),rk(y)}+ 2;

(c) Since ⟨x,y⟩ = {(0,x),(1,y)}, we get rk(⟨x,y⟩) = max{rk(x),rk(y),1}+ 3;

(d) Since ⟨x,y,x⟩ = {(0,x),(1,y),(2,x)}, we get rk(⟨x,y,x⟩) = max{rk(x),rk(y),2}+ 3;

(e) By the point 1. of this exercice, we have x ⊆ W(rk(x)), thus, for any
y ∈ x, we have y ∈ W(rk(x)). Thus, y ⊆

⋃
β<rk(x) W(β). This implies

that, for any z ∈ y ∈ x, we have z ∈
⋃

β<rk(x) W(β). We finally obtain
rk
(⋃

x
)
≤ rk(x) with equality exactly when rk(x) is limit;

(f) By the point 1. of this exercice, we get rk
(
P(x)

)
= rk(x) + 1;

(g) By (a) and (e), and since x∪y =
⋃
{x,y}, we get rk(x∪y) = max{rk(x),rk(y)};

(h) By (b), rk(x× y) = max{rk(x),rk(y)}+ 2;

(i) Since f ⊆ x× y, by (h), we obtain rk(f) ≤ max{rk(x),rk(y)}+ 2;

(j) By (i), rk(xy) ≤ max{rk(x),rk(y)}+ 3;

(k) By the point 1. of this exercice, we get rk
(
W(α)

)
= α;

(l) Since R ⊆ W(α)× W(α), (h) implies that rk(R) ≤ α+ 2.

3. Consider x = {2k : k ∈ ω} and y = {ω}. On the one hand, we have
⋃
x =⋃

y = ω, thus rk
(⋃

x
)
= rk

(⋃
x
)
= rk(ω) = ω. But, on the other hand, we

have rk(x) = ω and rk(y) = ω + 1.

4. (a) It follows from the second point of this exercice.
(b) rk(N) = ω, and rk(n) = n for any n ∈ N;

rk(Z) = ω + 1, and rk(z) ≤ ω for any z ∈ Z;
rk(Q) = ω + 4, and rk(q) ≤ ω + 3 for any q ∈ Q;
rk(R) = ω + 5, and rk(r) ≤ ω + 4 for any r ∈ R.

5. It suffices to consider

Q = ω ∪ {⟨k, l,m⟩ : k,l,m ∈ N, k ∈ {0,1}, gcd(l,m) = 1, (l = 0 → n ≥ 2)}.

Indeed, the second point of this exercice implies that rk(q) < ω for any q ∈ Q,
and that rk(Q) = ω.
If we define (as in Exercice Sheet 2) the real numbers R as Dedekind cuts
from this new definition of Q, we obtain rk(R) = ω + 1 and rk(r) = ω for
any r ∈ R.
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It is not possible to define R at a lower level. Indeed, R is uncountable and
there are countably many elements in W(ω).

Solution of exercise 2:

1. Define the well-founded tree T⋃
x as:

s ∈ T⋃
x ⊆ A<ω ↔

{
s = ∅ or,
∃a ∈ A such that a⌢s ∈ Tx.

It is easy to check that T⋃
x is a well-founded tree. We verify that the set y

represented by the tree T⋃
x is equal to

⋃
x. For any s ∈ T, let us denote by

T s the tree T that starts from s ∈ T. Observe that Tz represents z ∈ WF if
and only if

z =
{
u ∈ WF : u is represented by T s

z , where s is a child of ∅ in Tz

}
.

y ⊆
⋃⋃⋃

x : Suppose that z ∈ y, then there exists a child s of ∅ in T⋃
x such

that T s⋃
x represents the set z. By definition of T⋃

x, there exists a child t

of ∅ such that t⌢s ∈ Tx. Thus, s is a child of ∅ in T t
x (which represents

a set u), which means that z ∈ u, and t is a child of ∅ in Tx, which
means u ∈ x. Thus, we get z ∈ u ∈ x, which implies z ∈

⋃
x.⋃⋃⋃

x ⊆ y : Suppose that z ∈
⋃

x, then there exists u such that z ∈ u ∈ x. If
u is represented by T s

x with s a child of ∅, then z is represented by
(
T s
x

)t
with t a child of ∅ in T s

x . Since
(
T s
x

)t
= T s⌢t

x , we get that s⌢t ∈ Tx,
which implies that t is a child of ∅ in T⋃

x, thus z ∈ y.

2. By the previous point, it is easy to define a well-founded tree Tn on A that
represents

⋃n
x for any n ∈ ω. Moreover, it is also easy to define a well-

founded tree T ′ that represents
{⋃n

x : n ∈ ω
}

. Indeed, it suffices to let
s ∈ T ′ ⊆ (A ∪ ω)<ω if and only if s = ⟨n⟩⌢t and t ∈ Tn. To conclude, it
suffices to construct the well-founded tree T ⊆ (A ∪ ω)<ω that represents
tc(x) =

⋃{⋃n
x : n ∈ ω

}
using the previous point.

Solution of exercise 3:

1. Set β0 = ℵ0 and βn+1 = ℵβn
for any n ∈ ω, and consider the cardinal

κ = supn∈ω βn. Then, we have:

ℵκ = sup
β<κ

ℵβ = sup
n∈ω

ℵβn = sup
n∈ω

βn+1 = κ.

2. Let κ be a strong inaccessible cardinal. By definition, we have ℵ0 < κ,
cof(κ) = κ and for all β < κ, we have 2β < κ. We proceed by transfinite
induction to show that ℵβ < κ for any β < κ:

• ℵ0 < κ;
• ℵβ+1 ≤ 2ℵβ < κ;
• ℵλ = supβ<λ ℵβ < κ by regularity and the fact that λ < κ.

Thus, κ ≤ ℵκ ≤ κ is a fixed point.
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Solution of exercise 4:

1. ∃x (φC(x) ∧ x = x);

2. ∀x
(
φC(x) → ∃y (φC(y) ∧ x ∈ y)

)
;

3. ∀x

(
φC(x) → ∀y

(
φC(y) →

(
∀z
(
φC(z) → (z ∈ x ↔ z ∈ y)

))
→ x = y

))
;

4. ∀x

(
φC(x) → ∃y

(
φC(y) ∧ ∀z

(
φC(z) →

(
∀u(φC(u) → [u ∈ z → u ∈ x]) → z ∈ y

))))
.

Solution of exercise 5:

1. Each family τi contains the empty set and the entire space and moreover is
closed by finite intersection and arbitrary union, it is therefore a topology on
Xi. Also, a finite topology is always compact.

2. Notice that for each i ∈ I, the projection pi :
∏

j∈I Xj → Xi, (xj) 7→ xi is
continuous by definition of the product. Moreover, Ai is closed in Xi, being
the complement of {α}. Finally, since pi is surjective and Ai is non empty
by hypothesis, we have that Ci = p−1

i (Ai) is a closed non empty subset of∏
j∈I Xj .

3. Recall that the compactness of a topological space is equivalent to the state-
ment: all families of closed sets F such that for each finite subfamily G ⊆ F ,
we have that

⋂
G ̸= ∅ admit a non empty intersection. By Tychonoff’s theo-

rem,
∏

j∈I Xj is compact and it is therefore enough to show that for all finite
subsets J ⊆ I we have

⋂
j∈J Cj ̸= ∅. So let J be a subset of I, since J is

finite, and the Aj are non empty, we can chose (without using AC!) some
aj ∈ Aj for each j ∈ J . The element (x)i∈I ∈

∏
i∈I Xi, defined by:

xi =

{
ai if i ∈ J ,
α if not,

belongs then to
⋂
{Cj | j ∈ J}.

4. By the previous point, there exists an element (xi)i∈I ∈
⋂
{Cj | j ∈ I}. This

element is a function of I →
⋃

Xi such that for all i ∈ I, xi ∈ Ai. There
exists therefore a choice function for the family (Ai)i∈I .
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