=PrL

Professor J. Duparc MATH-318 Set Theory March 19, 2025

Solution Sheet n°5

Solution of exercise 1:

1. It follows from:
reW(a+1) ¢ zeP(Wa) <+ zC Wa).

2. In order to show that each of these sets is in WF, one can either show
that there is no infinite strictly €-decreasing chain (see Corollary 144 of the
Lecture Notes), or use the tree representation of the well-founded sets (see
Exercice 2 of this Exercice Sheet).

(a) rh({z,}) = max{rk() rk(y)} + 1
(b) Since (z,y) = {{z}.{z,y}}, we get rk((z,y)) = max{rk(z),rk(y)} + 2;
(c) Since (x,y) = {(0,2),(1,)}, we get rk({x,y)) = max{rk(z),rk(y),1} + 3;
(d) Since (z,y,x) = {(0,2),(1,y),(2,x)}, we get rk({x,y,x)) = max{rk(z),rk(y),2} + 3;
(e) By the point 1. of this exercice, we have x C W (rk(z)), thus, for any
y € z, we have y € W(rk(z)). Thus, y C U[Krk(x) W(3). This implies
that, for any z € y € x, we have z € Uﬁ<rk(m) W(3). We finally obtain
rk(Uz) < rk(z) with equality exactly when rk(z) is limit;
(f) By the point 1. of this exercice, we get 7k(P(z)) = rk(z) + 1
(¢) By (a)and (e), and since zUy = | J{x,y}, we get rk(zUy) = max{rk(z),rk(y)};
(h) By (b), rk(z x ) = max{rk(z),rk(y)} + 2
(i) Since f C x x y, by (h), we obtain rk(f) < max{rk(z),rk(y)} + 2;
(3) By (i), rk(*y) < max{rk(z),rk(y)} + 3;
(k) By the point 1. of this exercice, we get k(W (a)) = a;
(1) Since R C W(a) x W(«), (h) implies that rk(R) < o + 2.

3. Consider © = {2k : k € w} and y = {w}. On the one hand, we have [Jz =
Uy =w, thus rk(Uz) = rk(Jx) = rk(w) = w. But, on the other hand, we
have rk(z) = w and rk(y) = w + 1.

4. (a) It follows from the second point of this exercice.
(b) 7k(N) = w, and rk(n) = n for any n € N;
rk(Z) =w + 1, and rk(z) < w for any z € Z;
rk(Q) =w +4, and rk(q) < w+ 3 for any q € Q;
rk(R) = w+5, and rk(r) < w + 4 for any r € R.

5. It suffices to consider
Q=wU{{k,l,m): kilmeN, ke {01}, ged(lim)=1, (I =0—n>2)}.

Indeed, the second point of this exercice implies that rk(q) < w for any ¢ € Q,
and that rk(Q) = w.

If we define (as in Exercice Sheet 2) the real numbers R as Dedekind cuts
from this new definition of Q, we obtain rk(R) = w + 1 and rk(r) = w for
any r € R.



It is not possible to define R at a lower level. Indeed, R is uncountable and
there are countably many elements in W (w).

Solution of exercise 2:

1. Define the well-founded tree T, as:

=2
5€TUIQA<‘*’H 5 on
da € A such that a™s € T},.

It is easy to check that T{;, is a well-founded tree. We verify that the set y
represented by the tree 7{,, is equal to |Jx. For any s € T, let us denote by
T7 the tree T that starts from s € T. Observe that T, represents z € WF if
and only if

z= {u € WF : u is represented by T, where s is a child of @ in TZ}.

y C Uz : Suppose that z € y, then there exists a child s of & in Ty« such
that TLSJ ,, represents the set z. By definition of T j,, there exists a child ¢

of @ such that t~s € T,. Thus, s is a child of @ in T (which represents
a set u), which means that z € u, and ¢ is a child of @ in T,, which
means u € z. Thus, we get z € u € x, which implies z € (Jz.

Uz C y : Suppose that z € |Jz, then there exists u such that z € v € . If
u is represented by 77 with s a child of @, then z is represented by (Tj )t
with ¢ a child of @ in T%. Since (T2)" = T2 !, we get that s~t € T,
which implies that ¢ is a child of @ in T{,, thus z € y.

2. By the previous point, it is easy to define a well-founded tree T}, on A that
represents |J" x for any n € w. Moreover, it is also easy to define a well-

founded tree T that represents {Unx NS w}. Indeed, it suffices to let
se€T C(AUw)<¥ if and only if s = (n)” ¢ and ¢ € T,,. To conclude, it
suffices to construct the well-founded tree 7' C (A U w)<* that represents
te(z) = U { Urz:ne w} using the previous point.

Solution of exercise 3:

1. Set By = Ng and 41 = Ng, for any n € w, and consider the cardinal
K = SUpP,,c,, Bn- Then, we have:

N, =supNg =supNg, = sup 41 = k.
B<k new new
2. Let k be a strong inaccessible cardinal. By definition, we have Ny < &,

cof(k) = k and for all B < k, we have 2° < k. We proceed by transfinite
induction to show that Ng < & for any 3 < &:

o Ny < K;
° NB+1 < 2™ < K}
e N\ =supg., Ng < K by regularity and the fact that A < x.

Thus, k < X, < k is a fixed point.



Solution of exercise 4:

oc(x —>3y <Pc( )Ax €y));

z (pc
(
3. (goc — Yy @C( ) — (Vz(cpc(z)—>(z€x<—>z€y))) —>x:y)>;

=~

. Vx (gpc(sc) — Ely((pc(y) /\Vz(gac(z) — (Vu(gpc(u) —suez—ouex]) > ze y))))

Solution of exercise 5:

1. Each family 7; contains the empty set and the entire space and moreover is
closed by finite intersection and arbitrary union, it is therefore a topology on
X;. Also, a finite topology is always compact.

2. Notice that for each ¢ € I, the projection p; : Hjel X; = Xi,(zj) — z; is
continuous by definition of the product. Moreover, A; is closed in X;, being
the complement of {a}. Finally, since p; is surjective and A; is non empty
by hypothesis, we have that C; = pl-_l(Ai) is a closed non empty subset of
[Ter X5

3. Recall that the compactness of a topological space is equivalent to the state-
ment: all families of closed sets F such that for each finite subfamily G C F,
we have that (|G # () admit a non empty intersection. By Tychonoff’s theo-
rem, H <1 X;j is compact and it is therefore enough to show that for all finite
subsets J C I we have (;.;C; # . So let J be a subset of I, since J is
finite, and the A; are non empty, we can chose (without using AC!) some
a; € A;j for each j € J. The element (z);c; € [];c; Xi, defined by:

{ai ifieJ,
Xr; =

«  if not,

belongs then to ({C; | j € J}.

4. By the previous point, there exists an element (z;);cr € (\{C; | j € I}. This
element is a function of I — |J X; such that for all ¢ € I, 2; € A;. There
exists therefore a choice function for the family (A;);e;r.



