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Solution Sheet n◦4

Solution of exercise 1:

1. By definition E0 = E ⊆ clO(E). Let α be such that Eα ⊆ clO(E), then, for all f ∈ O and
all (xξ)ξ<κ ∈ (Eα)

κ, we have f((xξ)) ∈ clO(E) since clO(E) is closed under O and therefore
we have Eα+1 ⊆ clO(E). For λ limit it is enough to notice that ∀ξ < λ, Eξ ⊆ clO(E), then
Eλ =

⋃
ξ<λ Eξ ⊆ clO(E).

2. Show that Eκ+ is closed under the operations in O.

Let (xξ)ξ<κ ∈ (Eκ+)κ. We define f : κ→ κ+ by:

f(ξ) = min{α < κ+ | xξ ∈ Eα}.

Since κ+ is regular, f is not cofinal and there exists therefore ζ < κ+ such that f(ξ) ≤ ζ for
all ξ < κ. Since the succession (Eα)α∈ON is monotone with respect to inclusion, it follows
that (xξ)ξ<κ ∈ Eζ and therefore, for all g ∈ O, we have g((xξ)) ∈ Eζ+1. Therefore Eκ+ is
closed under the operations of O.

3. By point 1., we have Eκ+ ⊆ clO(E). Moreover E ⊆ Eκ+ and by 2. Eκ+ is closed under the
operations of O and therefore clO(E) ⊆ Eκ+ .

4. Denote by T the usual topology R. Since R admits a countable basis B of open sets, we have
that |T | ≤ Bℵ0 = ℵℵ0

0 = 2ℵ0 . Moreover, the application R+ → T defined by x 7→ (0, x) is
injective and therefore 2ℵ0 = |R+| ≤ |T |. Thus, |T | = 2ℵ0 .

5. Denote by c, u, i : (P(R))ℵ0 → P(R) the operations defined by:

c((An)n<ℵ0) = R \A0;

u((An)n<ℵ0
) =

⋃
n<ℵ0

An;

i((An)n<ℵ0
) =

⋂
n<ℵ0

An.

By definition, the set B of Borel subsets of R is the closure of T under the operations c, u
and i. By the first part of this exercise, we have B =

⋃
α<ℵ1

Tα. We show by induction that
|Tα| = 2ℵ0 for all α < ℵ1. For α = 0, it is just the previous point. If |Tα| = 2ℵ0 , then:

2ℵ0 = |Tα| ≤ |Tα+1| ≤ 2ℵ0 + 3 · (2ℵ0)ℵ0 = 2ℵ0 .

If λ < ℵ1 is limit, then:

2ℵ0 = |T0| ≤ |Tλ| =
∣∣∣ ⋃
α<λ

Tα
∣∣∣ ≤ |λ| · 2ℵ0 = ℵ0 · 2ℵ0 = 2ℵ0 .

It follows that:
2ℵ0 ≤ |B| =

∣∣∣ ⋃
α<ℵ1

Tα
∣∣∣ ≤ ℵ1 · 2ℵ0 = 2ℵ0 .

6. Denote by C the set of continuous functions from R to R. On one hand, the function l : R→
C, p 7→ (x 7→ p · x) is injective and therefore 2ℵ0 ≤ |C|. On the other hand, by the density of
the rationals in the reals, each function of C is uniquely determined by its values on Q. Thus,
the function C 7→ RQ, f 7→ f↾Q is injective and therefore |C| ≤ (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 .
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7. Let f be the pointwise limit of a succession (fn)n∈ω of Borel functions. We prove that the
f−1(U) is Borel for each open subset U of R. First notice that it is enough to prove it for
basic open sets U = ]a, b[, since each open set is a countable union of basic open sets, and
union and preimage commute.

Let a < b. Then ]a, b[ =
⋃

m∈ω,m>1

[
a+ b−a

m , b− b−a
m

]
=
⋃

m∈ω,m>1

]
a+ b−a

m , b− b−a
m

[
. We

claim that:
f−1 (]a, b[) =

⋃
m∈ω,m>1

⋃
n∈ω

⋂
k≥n

f−1
k

(]
a+

b− a

m
, b− b− a

m

[)
.

Let x ∈ R and V be an open set, then we have the following:

f(x) ∈ V ←→ lim
n→∞

fn(x) ∈ V

−→ ∃n∀k ≥ n fk(x) ∈ V

−→ f(x) ∈ V .

Therefore:

f−1(]a, b[) = f−1

( ⋃
m∈ω,m>1

]
a+

b− a

m
, b− b− a

m

[)
=

⋃
m∈ω,m>1

f−1

(]
a+

b− a

m
, b− b− a

m

[)
⊆

⊆
⋃

m∈ω,m>1

⋃
n∈ω

⋂
k≥n

f−1
k

(]
a+

b− a

m
, b− b− a

m

[)
⊆

⋃
m∈ω,m>1

f−1

([
a+

b− a

m
, b− b− a

m

])
=

= f−1

( ⋃
m∈ω,m>1

[
a+

b− a

m
, b− b− a

m

])
= f−1(]a, b[),

which proves the claim.

Since each fk is Borel and
]
a+ b−a

m , b− b−a
m

[
is open, f−1

k

(]
a+ b−a

m , b− b−a
m

[)
is Borel.

Therefore f−1(]a, b[) is Borel as it is a countable union of countable intersections of Borel
sets.

8. Denote by lp : (RR)ℵ0 → RR the operation defined by:

lp((fn)n<ω) =

{
x 7→ limn→∞ fn(x) if (fn(x))n∈ω converges for all x ∈ R,
f0 if not.

We have that B is the closure of C under the operation lp. As before we show that:

2ℵ0 ≤ |B| =
∣∣∣ ⋃
α<ω1

Cα
∣∣∣ ≤ ℵ1 · 2ℵ0 = 2ℵ0 .

Solution of exercise 2:

1.1 By the condition iii) we have that if X ⊆ Y are two bounded sets of reals m(Y ) = m((Y \
X) ∪X) = m(Y \X) +m(X) ≥ m(X).

1.2 Each solution to Lebesgue’s measure problem is determined by its values on the subsets of
the unit interval [0, 1]:

Let B be a bounded set of reals. There exists an integer k ∈ Z and a natural number n > 0
such that B ⊆ [k, k + n]. Let Bi = B ∩ [k + i, k + i+ 1[ for each i = 0, . . . , n− 1. Then B is
the disjoint union of the Bi’s and, for each i, Bi − (k+ i) ⊆ [0, 1]. Thus by the conditions ii)
and iii) it follows that m(B) =

∑n−1
i=0 m(Bi) =

∑n−1
i=0 m(Bi)− (k + 1).

2.1-6

Theorem (Giuseppe Vitali, 1907). Assuming the axiom of choice, there does not exist of
function solving Lebesgue’s measure problem.
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Proof. Suppose that there exists of a function m satisfying the conditions i), ii) and iii) above.
Consider the following equivalence relation on the real numbers: x ∼ y if and only if x− y is
rational. The intersection between the equivalence class of a real number x and the interval
[0, 1] is equal to the set {x+r ∈ [0, 1] | r is rational}. By the axiom of choice, there exists a set
V containing exactly an element of the intersection of each equivalence class with the interval
[0, 1]. We call this Vitali’s set. By definition V ⊆ [0, 1], so V is a bounded set of real numbers.
For each rational number r ∈ [−1, 1], denote by V+r = {v+r | v ∈ V} the translation by r of
Vitali’s set. Notice that for two distinct rationals r, s ∈ [−1, 1], (V + r)∩ (V + s) = ∅. Indeed,
if c ∈ (V + r) ∩ (V + s), then there exist v1, v2 ∈ V such that v1 − v2 = s− r, so v1 ∼ v2 and,
by definition of V, necessarily v1 = v2, and therefore r = s. We then consider the following
set:

X =
⋃

r∈[−1,1]∩Q

V + r.

We have that [0, 1] ⊆ X ⊆ [−1, 2]. It follows by monotony of m that:

m([0, 1]) ≤ m(X) ≤ m([−1, 2]).

Now, by iii), m(X) =
∑

r∈[−1,1]∩Q m(V + r) and by ii), we have m(V + r) = m(V) for every
rational r ∈ [−1, 1]. Thus, it is not possible that m(V) is strictly positive since then m([−1, 2])
would be larger than all natural numbers. The fact that m(V) is 0 implies that m([0, 1]) = 0
and this contradicts the condition i) by the point 1.2 above.

3.1 Checking that points a) and c) hold is immediate, and the fact that mx({x}) = 1 contradicts
b).

4.1 Let m be a measure on a set S. Show that every family T ⊆ P(S) of pairwise disjoint sets
contains at most a countably many sets of positive measure.

Suppose towards contradiction that there exists an uncountable family T ⊆ P(S) of pairwise
disjoint sets of strictly positive measure. Then, there exists some N ∈ ω, N > 0 such that
TN = {X ∈ T | m(X) > 1

N } is uncountable. This follows from the fact that a countable
union of countable sets is countable (by the axiom of countable choice) and from the fact
that T =

⋃
n>0 Tn. Thus, there exist X1, . . . , XN ∈ TN which are distinct and verify the

σ-additivity of m:

m
( N⋃
k=1

Xk

)
=

N∑
k=1

m(Xk) > 1.

This contradicts, by monotony of m, the fact that m(S) = 1.

Lemma (facultative). If κ is the smallest cardinal such that there exists a measure on κ, then any
measure on κ is κ-additive.

Proof. Suppose towards contradiction that κ is the smallest cardinal which admits a measure and
that there exists a measure m on κ which is not κ-additive. There then exists an ordinal γ < κ and
a collection ⟨Xα | α < γ⟩ of pairwise disjoint subsets of κ such that m

(⋃
α<γ Xα

)
̸=
∑

α<γ m(Xα).
Since m is ℵ1-additive by definition, necessarily γ ≥ ℵ1. Moreover, at most a countable number of
Xα’s have positive measure by 3.1 above. Thus by ℵ1-additivity of m, we have:

0 =
∑
α<γ

m(Xα)−
∑

β such that
m(Xβ)>0

m(Xβ) =
∑
α<γ

m(Xα)−m
( ⋃

β such that
m(Xβ)>0

Xβ

)

̸= m(
⋃
α<γ

Xα)−m
( ⋃

β such that
m(Xβ)>0

Xβ

)
= m

( ⋃
α such that
m(Xα)=0

Xα

)
.

3



Thus, for the cardinal λ = |γ|, which verifies ℵ1 ≤ λ < κ, we have a collection {Xα | α < λ} of
pairwise disjoint subsets of κ verifying, on one hand, that m(Xα) = 0 for all α < λ and, on the
other, that m(

⋃
α<λ Xα) > 0. Denote by r = m(

⋃
α<λ Xα) and define a measure m on λ by letting:

m(X) =
m
(⋃

α∈X Xα

)
r

,

for all X ⊆ λ. Indeed, we have m(λ) = r
r = 1, m({α}) = m(Xα)

r = 0 for all α < λ and the
ℵ1-additivity of m follows from the ℵ1-additivity of m. Therefore, m contradicts the minimality of
κ.

Let κ be a real-valued measurable cardinal and m a κ-additive measure on κ.

5.1 For all X ⊆ κ with |X| < κ, we have m(X) = 0: Indeed, m(X) = m
(⋃

x∈X{x}
)

=∑
x∈X m({x}) = 0 by κ-additivity of m.

5.2 κ is regular. The previous point assures us, in particular, that m(β) = 0 for all β < κ. Let
α < κ and f : α→ κ be a function. We have |f [α]| ≤ α < κ and thus:

m(sup f [α]) = m
(⋃

f [α]
)
≤
∑

β∈f [α]

m(β) = 0.

Since m(κ) = 1, it must be that sup f [α] < κ and therefore f is not cofinal.

We have the following theorems.

Theorem (Ulam, 1930). If κ is real-valued measurable, then κ is weakly inaccessible.

Theorem (Ulam, 1930). If there exists a κ-additive atomless measure on κ, then κ ≤ 2ℵ0 .

The existence of a real-valued measurable cardinal with an atomless measure thus strongly
contradicts the continuum hypothesis. Indeed, such a cardinal κ would be weekly inaccessible, that
is a regular limit cardinal, but less or equal to 2ℵ0 . Since κ is limit:

κ =
⋃
{γ ∈ κ | γ cardinal},

so, being that cof(κ) = κ, it must be that |{γ ∈ κ | γ cardinal}| ≥ κ. There would thus exist at
least κ infinite cardinals below κ, and therefore below 2ℵ0 .

Let κ be a cardinal and m a κ-additive measure with an atom A ⊆ κ.

6.1 Straightforward.

6.2 The only delicate point is the κ-completeness of Uµ. To prove it, we show the following lemma:

Lemma. An ultrafilter U on a set S is λ-complete if and only if for all γ < λ and every
family ⟨Xα | α < γ⟩ of subsets of S, if

⋃
α<γ Xα ∈ U , then there exists α < γ such that

Xα ∈ U .

Proof. By contraposition, suppose that there exists γ < λ and a family ⟨Xα | α < γ⟩ of
subsets of S such that

⋃
α<γ Xα ∈ U but, for all α < γ, Xα /∈ U . Thus S −Xα ∈ U for all α,

and:
S −

⋂
α<γ

(S −Xα) =
⋃
α<γ

Xα ∈ U.

Therefore
⋂

α<γ(S −Xα) /∈ U and therefore U is not λ-complete.

On the other hand, again by contraposition, suppose that there exists γ < λ and a family
⟨Xα | α < γ⟩ of elements of U such that

⋂
α<γ Xα /∈ U . In this case,

⋃
α<γ(S − Xα) =

S −
⋂

α<γ Xα ∈ U , even if S −Xα /∈ U for all α < γ.
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Let us now check that the κ-additivity of µ implies the κ-completeness of Uµ. Let γ < κ and
consider a family ⟨Xα | α < γ⟩ of subsets of κ such that

⋃
α<γ Xα ∈ Uµ. Then if Xα /∈ Uµ for

all α, i.e. µ(Xα) = 0 the κ-additivity of µ would imply that µ
(⋃

α<γ Xα

)
≤
∑

α<γ µ(Xα) = 0,
contradicting the fact that

⋃
α<γ Xα ∈ Uµ.

Definition. A cardinal κ > ω is measurable if there exists a non-principal κ-complete ultrafilter
on κ.

7.1

Theorem (Ulam-Tarski, 1930). Any measurable cardinal κ is strongly inaccessible.

Proof. Let U be a κ-complete ultrafilter on a cardinal κ > ω. It is straightforward to check
that the measure on κ defined by mU (X) = 1, if X ∈ U , and mU (X) = 0, if not, is κ-additive.
The regularity of κ follows therefore from point 5.2 above.

To prove that for all λ < κ, 2λ < κ, suppose towards contradiction that for a cardinal λ < κ,
there is an injective function f : κ → λ2. Consider, for all α < λ, the sets Xα = {ξ ∈ κ |
f(ξ)(α) = iα}, where iα ∈ {0, 1} is such that Xα ∈ U . By κ-completeness of U , we have
X =

⋂
α<λ Xα ∈ U . Therefore, if η, ξ ∈ X, then for all α ∈ λ, f(ξ)(α) = iα = f(η)(α), i.e.

f(ξ) = f(η), and therefore ξ = η by injectivity of f . This would imply that X has at most
one element, contradicting the fact that X ∈ U .
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