

Solution Sheet n°4

Solution of exercise 1:

1. By definition $E_0 = E \subseteq \text{cl}_{\mathcal{O}}(E)$. Let α be such that $E_\alpha \subseteq \text{cl}_{\mathcal{O}}(E)$, then, for all $f \in \mathcal{O}$ and all $(x_\xi)_{\xi < \kappa} \in (E_\alpha)^\kappa$, we have $f((x_\xi)) \in \text{cl}_{\mathcal{O}}(E)$ since $\text{cl}_{\mathcal{O}}(E)$ is closed under \mathcal{O} and therefore we have $E_{\alpha+1} \subseteq \text{cl}_{\mathcal{O}}(E)$. For λ limit it is enough to notice that $\forall \xi < \lambda$, $E_\xi \subseteq \text{cl}_{\mathcal{O}}(E)$, then $E_\lambda = \bigcup_{\xi < \lambda} E_\xi \subseteq \text{cl}_{\mathcal{O}}(E)$.
2. Show that E_{κ^+} is closed under the operations in \mathcal{O} .
Let $(x_\xi)_{\xi < \kappa} \in (E_{\kappa^+})^\kappa$. We define $f : \kappa \rightarrow \kappa^+$ by:

$$f(\xi) = \min\{\alpha < \kappa^+ \mid x_\xi \in E_\alpha\}.$$

Since κ^+ is regular, f is not cofinal and there exists therefore $\zeta < \kappa^+$ such that $f(\xi) \leq \zeta$ for all $\xi < \kappa$. Since the succession $(E_\alpha)_{\alpha \in \text{ON}}$ is monotone with respect to inclusion, it follows that $(x_\xi)_{\xi < \kappa} \in E_\zeta$ and therefore, for all $g \in \mathcal{O}$, we have $g((x_\xi)) \in E_{\zeta+1}$. Therefore E_{κ^+} is closed under the operations of \mathcal{O} .

3. By point 1., we have $E_{\kappa^+} \subseteq \text{cl}_{\mathcal{O}}(E)$. Moreover $E \subseteq E_{\kappa^+}$ and by 2. E_{κ^+} is closed under the operations of \mathcal{O} and therefore $\text{cl}_{\mathcal{O}}(E) \subseteq E_{\kappa^+}$.
4. Denote by \mathcal{T} the usual topology \mathbb{R} . Since \mathbb{R} admits a countable basis \mathcal{B} of open sets, we have that $|\mathcal{T}| \leq |\mathcal{B}|^{\aleph_0} = \aleph_0^{\aleph_0} = 2^{\aleph_0}$. Moreover, the application $\mathbb{R}^+ \rightarrow \mathcal{T}$ defined by $x \mapsto (0, x)$ is injective and therefore $2^{\aleph_0} = |\mathbb{R}^+| \leq |\mathcal{T}|$. Thus, $|\mathcal{T}| = 2^{\aleph_0}$.
5. Denote by $c, u, i : (\mathcal{P}(\mathbb{R}))^{\aleph_0} \rightarrow \mathcal{P}(\mathbb{R})$ the operations defined by:

$$\begin{aligned} c((A_n)_{n < \aleph_0}) &= \mathbb{R} \setminus A_0; \\ u((A_n)_{n < \aleph_0}) &= \bigcup_{n < \aleph_0} A_n; \\ i((A_n)_{n < \aleph_0}) &= \bigcap_{n < \aleph_0} A_n. \end{aligned}$$

By definition, the set \mathcal{B} of Borel subsets of \mathbb{R} is the closure of \mathcal{T} under the operations c, u and i . By the first part of this exercise, we have $\mathcal{B} = \bigcup_{\alpha < \aleph_1} \mathcal{T}_\alpha$. We show by induction that $|\mathcal{T}_\alpha| = 2^{\aleph_0}$ for all $\alpha < \aleph_1$. For $\alpha = 0$, it is just the previous point. If $|\mathcal{T}_\alpha| = 2^{\aleph_0}$, then:

$$2^{\aleph_0} = |\mathcal{T}_\alpha| \leq |\mathcal{T}_{\alpha+1}| \leq 2^{\aleph_0} + 3 \cdot (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0}.$$

If $\lambda < \aleph_1$ is limit, then:

$$2^{\aleph_0} = |\mathcal{T}_0| \leq |\mathcal{T}_\lambda| = \left| \bigcup_{\alpha < \lambda} \mathcal{T}_\alpha \right| \leq |\lambda| \cdot 2^{\aleph_0} = \aleph_0 \cdot 2^{\aleph_0} = 2^{\aleph_0}.$$

It follows that:

$$2^{\aleph_0} \leq |\mathcal{B}| = \left| \bigcup_{\alpha < \aleph_1} \mathcal{T}_\alpha \right| \leq \aleph_1 \cdot 2^{\aleph_0} = 2^{\aleph_0}.$$

6. Denote by \mathcal{C} the set of continuous functions from \mathbb{R} to \mathbb{R} . On one hand, the function $l : \mathbb{R} \rightarrow \mathcal{C}, p \mapsto (x \mapsto p \cdot x)$ is injective and therefore $2^{\aleph_0} \leq |\mathcal{C}|$. On the other hand, by the density of the rationals in the reals, each function of \mathcal{C} is uniquely determined by its values on \mathbb{Q} . Thus, the function $\mathcal{C} \hookrightarrow \mathbb{R}^\mathbb{Q}, f \mapsto f|_{\mathbb{Q}}$ is injective and therefore $|\mathcal{C}| \leq (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \cdot \aleph_0} = 2^{\aleph_0}$.

7. Let f be the pointwise limit of a succession $(f_n)_{n \in \omega}$ of Borel functions. We prove that the $f^{-1}(U)$ is Borel for each open subset U of \mathbb{R} . First notice that it is enough to prove it for basic open sets $U =]a, b[$, since each open set is a countable union of basic open sets, and union and preimage commute.

Let $a < b$. Then $]a, b[= \bigcup_{m \in \omega, m > 1} [a + \frac{b-a}{m}, b - \frac{b-a}{m}] = \bigcup_{m \in \omega, m > 1} [a + \frac{b-a}{m}, b - \frac{b-a}{m}]$. We claim that:

$$f^{-1}(]a, b[) = \bigcup_{m \in \omega, m > 1} \bigcup_{n \in \omega} \bigcap_{k \geq n} f_k^{-1} \left(\left] a + \frac{b-a}{m}, b - \frac{b-a}{m} \right[\right).$$

Let $x \in \mathbb{R}$ and V be an open set, then we have the following:

$$\begin{aligned} f(x) \in V &\iff \lim_{n \rightarrow \infty} f_n(x) \in V \\ &\implies \exists n \forall k \geq n f_k(x) \in V \\ &\implies f(x) \in \overline{V}. \end{aligned}$$

Therefore:

$$\begin{aligned} f^{-1}(]a, b[) &= f^{-1} \left(\bigcup_{m \in \omega, m > 1} \left] a + \frac{b-a}{m}, b - \frac{b-a}{m} \right[\right) = \bigcup_{m \in \omega, m > 1} f^{-1} \left(\left] a + \frac{b-a}{m}, b - \frac{b-a}{m} \right[\right) \subseteq \\ &\subseteq \bigcup_{m \in \omega, m > 1} \bigcup_{n \in \omega} \bigcap_{k \geq n} f_k^{-1} \left(\left] a + \frac{b-a}{m}, b - \frac{b-a}{m} \right[\right) \subseteq \bigcup_{m \in \omega, m > 1} f^{-1} \left(\left[a + \frac{b-a}{m}, b - \frac{b-a}{m} \right] \right) = \\ &= f^{-1} \left(\bigcup_{m \in \omega, m > 1} \left[a + \frac{b-a}{m}, b - \frac{b-a}{m} \right] \right) = f^{-1}(]a, b[), \end{aligned}$$

which proves the claim.

Since each f_k is Borel and $\left] a + \frac{b-a}{m}, b - \frac{b-a}{m} \right[$ is open, $f_k^{-1} \left(\left] a + \frac{b-a}{m}, b - \frac{b-a}{m} \right[\right)$ is Borel. Therefore $f^{-1}(]a, b[)$ is Borel as it is a countable union of countable intersections of Borel sets.

8. Denote by $l_p : (\mathbb{R}^{\mathbb{R}})^{\aleph_0} \rightarrow \mathbb{R}^{\mathbb{R}}$ the operation defined by:

$$l_p((f_n)_{n < \omega}) = \begin{cases} x \mapsto \lim_{n \rightarrow \infty} f_n(x) & \text{if } (f_n(x))_{n \in \omega} \text{ converges for all } x \in \mathbb{R}, \\ f_0 & \text{if not.} \end{cases}$$

We have that \mathfrak{B} is the closure of \mathcal{C} under the operation l_p . As before we show that:

$$2^{\aleph_0} \leq |\mathfrak{B}| = \left| \bigcup_{\alpha < \omega_1} \mathcal{C}_\alpha \right| \leq \aleph_1 \cdot 2^{\aleph_0} = 2^{\aleph_0}.$$

Solution of exercise 2:

1.1 By the condition **iii**) we have that if $X \subseteq Y$ are two bounded sets of reals $m(Y) = m((Y \setminus X) \cup X) = m(Y \setminus X) + m(X) \geq m(X)$.

1.2 Each solution to Lebesgue's measure problem is determined by its values on the subsets of the unit interval $[0, 1]$:

Let B be a bounded set of reals. There exists an integer $k \in \mathbb{Z}$ and a natural number $n > 0$ such that $B \subseteq [k, k + n]$. Let $B_i = B \cap [k + i, k + i + 1[$ for each $i = 0, \dots, n - 1$. Then B is the disjoint union of the B_i 's and, for each i , $B_i - (k + i) \subseteq [0, 1]$. Thus by the conditions **ii**) and **iii**) it follows that $m(B) = \sum_{i=0}^{n-1} m(B_i) = \sum_{i=0}^{n-1} m(B_i) - (k + 1)$.

2.1-6

Theorem (Giuseppe Vitali, 1907). *Assuming the axiom of choice, there does not exist of function solving Lebesgue's measure problem.*

Proof. Suppose that there exists a function m satisfying the conditions **i**), **ii**) and **iii**) above. Consider the following equivalence relation on the real numbers: $x \sim y$ if and only if $x - y$ is rational. The intersection between the equivalence class of a real number x and the interval $[0, 1]$ is equal to the set $\{x + r \in [0, 1] \mid r \text{ is rational}\}$. By the axiom of choice, there exists a set \mathcal{V} containing exactly an element of the intersection of each equivalence class with the interval $[0, 1]$. We call this Vitali's set. By definition $\mathcal{V} \subseteq [0, 1]$, so \mathcal{V} is a bounded set of real numbers. For each rational number $r \in [-1, 1]$, denote by $\mathcal{V} + r = \{v + r \mid v \in \mathcal{V}\}$ the translation by r of Vitali's set. Notice that for two distinct rationals $r, s \in [-1, 1]$, $(\mathcal{V} + r) \cap (\mathcal{V} + s) = \emptyset$. Indeed, if $c \in (\mathcal{V} + r) \cap (\mathcal{V} + s)$, then there exist $v_1, v_2 \in \mathcal{V}$ such that $v_1 - v_2 = s - r$, so $v_1 \sim v_2$ and, by definition of \mathcal{V} , necessarily $v_1 = v_2$, and therefore $r = s$. We then consider the following set:

$$X = \bigcup_{r \in [-1, 1] \cap \mathbb{Q}} \mathcal{V} + r.$$

We have that $[0, 1] \subseteq X \subseteq [-1, 2]$. It follows by monotony of m that:

$$m([0, 1]) \leq m(X) \leq m([-1, 2]).$$

Now, by **iii**), $m(X) = \sum_{r \in [-1, 1] \cap \mathbb{Q}} m(\mathcal{V} + r)$ and by **ii**), we have $m(\mathcal{V} + r) = m(\mathcal{V})$ for every rational $r \in [-1, 1]$. Thus, it is not possible that $m(\mathcal{V})$ is strictly positive since then $m([-1, 2])$ would be larger than all natural numbers. The fact that $m(\mathcal{V})$ is 0 implies that $m([0, 1]) = 0$ and this contradicts the condition **i**) by the point 1.2 above. \square

3.1 Checking that points **a**) and **c**) hold is immediate, and the fact that $m_x(\{x\}) = 1$ contradicts **b**).

4.1 Let m be a measure on a set S . Show that every family $T \subseteq \mathcal{P}(S)$ of pairwise disjoint sets contains at most a countably many sets of positive measure.

Suppose towards contradiction that there exists an uncountable family $T \subseteq \mathcal{P}(S)$ of pairwise disjoint sets of strictly positive measure. Then, there exists some $N \in \omega$, $N > 0$ such that $T_N = \{X \in T \mid m(X) > \frac{1}{N}\}$ is uncountable. This follows from the fact that a countable union of countable sets is countable (by the axiom of countable choice) and from the fact that $T = \bigcup_{n > 0} T_n$. Thus, there exist $X_1, \dots, X_N \in T_N$ which are distinct and verify the σ -additivity of m :

$$m\left(\bigcup_{k=1}^N X_k\right) = \sum_{k=1}^N m(X_k) > 1.$$

This contradicts, by monotony of m , the fact that $m(S) = 1$.

Lemma (facultative). *If κ is the smallest cardinal such that there exists a measure on κ , then any measure on κ is κ -additive.*

Proof. Suppose towards contradiction that κ is the smallest cardinal which admits a measure and that there exists a measure m on κ which is not κ -additive. There then exists an ordinal $\gamma < \kappa$ and a collection $\langle X_\alpha \mid \alpha < \gamma \rangle$ of pairwise disjoint subsets of κ such that $m(\bigcup_{\alpha < \gamma} X_\alpha) \neq \sum_{\alpha < \gamma} m(X_\alpha)$. Since m is \aleph_1 -additive by definition, necessarily $\gamma \geq \aleph_1$. Moreover, at most a countable number of X_α 's have positive measure by 3.1 above. Thus by \aleph_1 -additivity of m , we have:

$$\begin{aligned} 0 &= \sum_{\alpha < \gamma} m(X_\alpha) - \sum_{\substack{\beta \text{ such that} \\ m(X_\beta) > 0}} m(X_\beta) = \sum_{\alpha < \gamma} m(X_\alpha) - m\left(\bigcup_{\substack{\beta \text{ such that} \\ m(X_\beta) > 0}} X_\beta\right) \\ &\neq m\left(\bigcup_{\alpha < \gamma} X_\alpha\right) - m\left(\bigcup_{\substack{\beta \text{ such that} \\ m(X_\beta) > 0}} X_\beta\right) = m\left(\bigcup_{\substack{\alpha \text{ such that} \\ m(X_\alpha) = 0}} X_\alpha\right). \end{aligned}$$

Thus, for the cardinal $\lambda = |\gamma|$, which verifies $\aleph_1 \leq \lambda < \kappa$, we have a collection $\{X_\alpha \mid \alpha < \lambda\}$ of pairwise disjoint subsets of κ verifying, on one hand, that $m(X_\alpha) = 0$ for all $\alpha < \lambda$ and, on the other, that $m(\bigcup_{\alpha < \lambda} X_\alpha) > 0$. Denote by $r = m(\bigcup_{\alpha < \lambda} X_\alpha)$ and define a measure \overline{m} on λ by letting:

$$\overline{m}(X) = \frac{m(\bigcup_{\alpha \in X} X_\alpha)}{r},$$

for all $X \subseteq \lambda$. Indeed, we have $\overline{m}(\lambda) = \frac{r}{r} = 1$, $\overline{m}(\{\alpha\}) = \frac{m(X_\alpha)}{r} = 0$ for all $\alpha < \lambda$ and the \aleph_1 -additivity of \overline{m} follows from the \aleph_1 -additivity of m . Therefore, \overline{m} contradicts the minimality of κ . \square

Let κ be a real-valued measurable cardinal and m a κ -additive measure on κ .

5.1 *For all $X \subseteq \kappa$ with $|X| < \kappa$, we have $m(X) = 0$:* Indeed, $m(X) = m\left(\bigcup_{x \in X} \{x\}\right) = \sum_{x \in X} m(\{x\}) = 0$ by κ -additivity of m .

5.2 *κ is regular.* The previous point assures us, in particular, that $m(\beta) = 0$ for all $\beta < \kappa$. Let $\alpha < \kappa$ and $f : \alpha \rightarrow \kappa$ be a function. We have $|f[\alpha]| \leq \alpha < \kappa$ and thus:

$$m(\sup f[\alpha]) = m\left(\bigcup f[\alpha]\right) \leq \sum_{\beta \in f[\alpha]} m(\beta) = 0.$$

Since $m(\kappa) = 1$, it must be that $\sup f[\alpha] < \kappa$ and therefore f is not cofinal.

We have the following theorems.

Theorem (Ulam, 1930). *If κ is real-valued measurable, then κ is weakly inaccessible.*

Theorem (Ulam, 1930). *If there exists a κ -additive atomless measure on κ , then $\kappa \leq 2^{\aleph_0}$.*

The existence of a real-valued measurable cardinal with an atomless measure thus strongly contradicts the continuum hypothesis. Indeed, such a cardinal κ would be weakly inaccessible, that is a regular limit cardinal, but less or equal to 2^{\aleph_0} . Since κ is limit:

$$\kappa = \bigcup \{\gamma \in \kappa \mid \gamma \text{ cardinal}\},$$

so, being that $\text{cof}(\kappa) = \kappa$, it must be that $|\{\gamma \in \kappa \mid \gamma \text{ cardinal}\}| \geq \kappa$. There would thus exist at least κ infinite cardinals below κ , and therefore below 2^{\aleph_0} .

Let κ be a cardinal and m a κ -additive measure with an atom $A \subseteq \kappa$.

6.1 Straightforward.

6.2 The only delicate point is the κ -completeness of U_μ . To prove it, we show the following lemma:

Lemma. *An ultrafilter U on a set S is λ -complete if and only if for all $\gamma < \lambda$ and every family $\langle X_\alpha \mid \alpha < \gamma \rangle$ of subsets of S , if $\bigcup_{\alpha < \gamma} X_\alpha \in U$, then there exists $\alpha < \gamma$ such that $X_\alpha \in U$.*

Proof. By contraposition, suppose that there exists $\gamma < \lambda$ and a family $\langle X_\alpha \mid \alpha < \gamma \rangle$ of subsets of S such that $\bigcup_{\alpha < \gamma} X_\alpha \in U$ but, for all $\alpha < \gamma$, $X_\alpha \notin U$. Thus $S - X_\alpha \in U$ for all α , and:

$$S - \bigcap_{\alpha < \gamma} (S - X_\alpha) = \bigcup_{\alpha < \gamma} X_\alpha \in U.$$

Therefore $\bigcap_{\alpha < \gamma} (S - X_\alpha) \notin U$ and therefore U is not λ -complete.

On the other hand, again by contraposition, suppose that there exists $\gamma < \lambda$ and a family $\langle X_\alpha \mid \alpha < \gamma \rangle$ of elements of U such that $\bigcap_{\alpha < \gamma} X_\alpha \notin U$. In this case, $\bigcup_{\alpha < \gamma} (S - X_\alpha) = S - \bigcap_{\alpha < \gamma} X_\alpha \in U$, even if $S - X_\alpha \notin U$ for all $\alpha < \gamma$. \square

Let us now check that the κ -additivity of μ implies the κ -completeness of U_μ . Let $\gamma < \kappa$ and consider a family $\langle X_\alpha \mid \alpha < \gamma \rangle$ of subsets of κ such that $\bigcup_{\alpha < \gamma} X_\alpha \in U_\mu$. Then if $X_\alpha \notin U_\mu$ for all α , i.e. $\mu(X_\alpha) = 0$ the κ -additivity of μ would imply that $\mu(\bigcup_{\alpha < \gamma} X_\alpha) \leq \sum_{\alpha < \gamma} \mu(X_\alpha) = 0$, contradicting the fact that $\bigcup_{\alpha < \gamma} X_\alpha \in U_\mu$.

Definition. A cardinal $\kappa > \omega$ is measurable if there exists a non-principal κ -complete ultrafilter on κ .

7.1

Theorem (Ulam-Tarski, 1930). Any measurable cardinal κ is strongly inaccessible.

Proof. Let U be a κ -complete ultrafilter on a cardinal $\kappa > \omega$. It is straightforward to check that the measure on κ defined by $m_U(X) = 1$, if $X \in U$, and $m_U(X) = 0$, if not, is κ -additive. The regularity of κ follows therefore from point 5.2 above.

To prove that for all $\lambda < \kappa$, $2^\lambda < \kappa$, suppose towards contradiction that for a cardinal $\lambda < \kappa$, there is an injective function $f : \kappa \rightarrow {}^\lambda 2$. Consider, for all $\alpha < \lambda$, the sets $X_\alpha = \{\xi \in \kappa \mid f(\xi)(\alpha) = i_\alpha\}$, where $i_\alpha \in \{0, 1\}$ is such that $X_\alpha \in U$. By κ -completeness of U , we have $X = \bigcap_{\alpha < \lambda} X_\alpha \in U$. Therefore, if $\eta, \xi \in X$, then for all $\alpha \in \lambda$, $f(\xi)(\alpha) = i_\alpha = f(\eta)(\alpha)$, i.e. $f(\xi) = f(\eta)$, and therefore $\xi = \eta$ by injectivity of f . This would imply that X has at most one element, contradicting the fact that $X \in U$. \square