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Solution Sheet n°4

Solution of exercise 1:

1. By definition Ey = E C clp(E). Let « be such that E, C clo(F), then, for all f € O and
all (z¢)e<r € (Ea)”, we have f((z¢)) € clo(E) since clp(E) is closed under O and therefore
we have Eq11 C clp(E). For A limit it is enough to notice that V¢ < A, E¢ C clo(F), then

E)\ = U§<>\ Eg - Cl@(E)
2. Show that F,+ is closed under the operations in O.
Let (z¢)e<r € (Eu+)™ We define f: K — s by:

f(¢) =min{a < x| xe € Eo}.

Since kT is regular, f is not cofinal and there exists therefore ¢ < k* such that f(£) < ¢ for
all £ < k. Since the succession (E,)acoN is monotone with respect to inclusion, it follows
that (2¢)e<w € E¢ and therefore, for all g € O, we have g((x¢)) € E¢cy1. Therefore E, + is
closed under the operations of O.

3. By point 1., we have E,+ C clo(FE). Moreover E C E,+ and by 2. E,+ is closed under the
operations of O and therefore clp(E) C E+.

4. Denote by T the usual topology R. Since R admits a countable basis B of open sets, we have
that |7| < BY = Ngo = 2% Moreover, the application RT — 7 defined by = + (0,2) is
injective and therefore 2% = |R¥| < |T|. Thus, |T| = 2%°.

5. Denote by ¢, u,i: (P(R))¥ — P(R) the operations defined by:

c((An)nany) = B\ Ag;
W(Anery) = | Ani

n<No

i(A)naxy) = () An-

n<Ng

By definition, the set B of Borel subsets of R is the closure of 7 under the operations ¢, u
and 4. By the first part of this exercise, we have B =, <x, Ta- We show by induction that

|Ta| = 2%0 for all @ < Ny. For a = 0, it is just the previous point. If |T,| = 2%°, then:
M0 = 7o) < [Taa] < 2% +3- (2N = g%,
If A < Ny is limit, then:

2 = |To| < Tl = | Ta| < V- 2% =g - 20 = 2%,

a<A

It follows that:
20 < |5 = | |J Ta| < w2t =2,

a<N;

6. Denote by C the set of continuous functions from R to R. On one hand, the function [ : R —
C,p +— (x +— p-x) is injective and therefore 2% < |C|. On the other hand, by the density of
the rationals in the reals, each function of C is uniquely determined by its values on Q. Thus,
the function C — R, f flg is injective and therefore |C| < (2%0)Ro = 2RoRo — 9No,



7.

Let f be the pointwise limit of a succession (f,)necw of Borel functions. We prove that the
f~Y(U) is Borel for each open subset U of R. First notice that it is enough to prove it for
basic open sets U = ]a, b|, since each open set is a countable union of basic open sets, and
union and preimage commute.

Let a < b. Then Ja,b[ = U
claim that:

a+

’b_ biﬁ] = Ume,m>1]a+ %’b_ %[ We

i (et 2))

) b—
Let x € R and V be an open set, then we have the following:

mew,m>1 [

U un

mewm>1lnew k>n

a

F= (a, b)) =

m m

flx) eV +«+— lim f,(z) eV

n—oo

— InVk>n fi(x) eV

— f(z)eV.
Therefore:
f—l(}a,bD:f—l( U e+ 2=ty >: U s (]a+b‘“,b_b‘“D
mew,m>1- mol mew,m>1 m
< U U ﬂfkl( at 228y )g U f—l([a+b_“,b—b_“D
mew,m>1new k>n = moi mew,m>1 m
_ [ b—a b—al _
= f ( U Je+ =t >=f !(Ja, B,
mew,m>1 "+ -
which proves the claim.
Since each fi is Borel and }a—!— b:T“,b— b;l—a[ is open, fk_1 Ga—|— b:T“,b— b;l—“[) is Borel.

Therefore f~1(]a,b[) is Borel as it is a countable union of countable intersections of Borel
sets.

Denote by 1, : (RF)* — R the operation defined by:

lp((fn)n<w) _ {I — limn—>oo f71,(93)

if (fn(z))new converges for all z € R,
if not.

fo

We have that 9B is the closure of C under the operation /,,. As before we show that:

2 <18 = | | ca

a<wi

<Ny - 2R = 9Ro,

Solution of exercise 2:

1.1

1.2

2.1-6

By the condition iii) we have that if X C Y are two bounded sets of reals m(Y) = m((Y \
X)UX)=ml\X)+m(X)>m(X).

Each solution to Lebesgue’s measure problem is determined by its values on the subsets of
the unit interval [0, 1]:

Let B be a bounded set of reals. There exists an integer k € Z and a natural number n > 0
such that B C [k,k +n]. Let B, =BnNk+i,k+i+ 1] for each i =0,...,n— 1. Then B is
the disjoint union of the B;’s and, for each i, B; — (k +4) C [0,1]. Thus by the conditions ii)
and iii) it follows that m(B) = Y.~ m(B;) = Y., m(B;) — (k + 1).

Theorem (Giuseppe Vitali, 1907). Assuming the aziom of choice, there does not exist of
function solving Lebesgue’s measure problem.



Proof. Suppose that there exists of a function m satisfying the conditions i), ii) and iii) above.
Consider the following equivalence relation on the real numbers: x ~ y if and only if x — y is
rational. The intersection between the equivalence class of a real number x and the interval
[0, 1] is equal to the set {x+r € [0,1] | r is rational}. By the axiom of choice, there exists a set
V containing exactly an element of the intersection of each equivalence class with the interval
[0,1]. We call this Vitali’s set. By definition V C [0, 1], so V is a bounded set of real numbers.
For each rational number r € [—1, 1], denote by V+r = {v+r | v € V} the translation by r of
Vitali’s set. Notice that for two distinct rationals r,s € [-1,1], V+r)N(V+s) = 0. Indeed,
ifce (W+r)N(V+s), then there exist v1,vy € V such that vy — vy = s —r, s0 v1 ~ v9 and,
by definition of V, necessarily v; = v9, and therefore r = s. We then consider the following
set:
X = U V+r

re[—1,1]NQ
We have that [0,1] C X C [-1,2]. It follows by monotony of m that:

Now, by iii), m(X) = >_, ¢(_1 1jngm(V + ) and by ii), we have m(V +r) = m(V) for every
rational r € [—1, 1]. Thus, it is not possible that m(V) is strictly positive since then m([—1,2])
would be larger than all natural numbers. The fact that m(V) is 0 implies that m([0,1]) =0
and this contradicts the condition i) by the point 1.2 above. O

3.1 Checking that points a) and c) hold is immediate, and the fact that m,({z}) = 1 contradicts
b).

4.1 Let m be a measure on a set S. Show that every family T C P(S) of pairwise disjoint sets
contains at most a countably many sets of positive measure.

Suppose towards contradiction that there exists an uncountable family T' C P(.S) of pairwise
disjoint sets of strictly positive measure. Then, there exists some N € w, N > 0 such that
Ty ={X € T | m(X) > %} is uncountable. This follows from the fact that a countable
union of countable sets is countable (by the axiom of countable choice) and from the fact
that T' = (J,,» Tn. Thus, there exist Xi,..., Xy € T which are distinct and verify the
o-additivity of m:

N

N
m( U Xk) = Zm(Xk) > 1.
k=1 k=1

This contradicts, by monotony of m, the fact that m(S) = 1.

Lemma (facultative). If x is the smallest cardinal such that there exists a measure on K, then any
measure on K is k-additive.

Proof. Suppose towards contradiction that x is the smallest cardinal which admits a measure and
that there exists a measure m on « which is not x-additive. There then exists an ordinal v < x and
a collection (X, | a < ) of pairwise disjoint subsets of « such that m( Ua<ry X.) # Dy M(Xa).
Since m is Ni-additive by definition, necessarily v > 8;. Moreover, at most a countable number of
X, ’s have positive measure by 3.1 above. Thus by X;-additivity of m, we have:

0= mx.) - Y m(Xﬁ):Zm(Xa)—m< U Xg)

a<ly 3 such that a<y [ such that
m(Xg)>0 m(Xg)>0
;ém(U Xa)—m( U X5>:m< U Xa>.
a<ly [ such that « such that
m(Xg)>0 m(Xa)=0



Thus, for the cardinal A = |y|, which verifies 8y < A < &, we have a collection {X, | a < A} of
pairwise disjoint subsets of x verifying, on one hand, that m(X,) = 0 for all & < X and, on the

other, that m(lJ,,_, Xa) > 0. Denote by r = m(|J, . X«) and define a measure m on A by letting:

a< a<

m(X) = m( Uan Xa) 7

for all X C A. Indeed, we have m(A) = Z = 1, m({a}) = ™) — 0 for all @ < A and the

T I
N;-additivity of m follows from the Ni-additivity of m. Therefore, 7 contradicts the minimality of
K. O
Let k be a real-valued measurable cardinal and m a k-additive measure on k.

5.1 For all X C k with |X| < K, we have m(X) = 0: Indeed, m(X) = m(UxeX{x}> =
> wex m({z}) = 0 by x-additivity of m.

5.2 k is regular. The previous point assures us, in particular, that m(8) = 0 for all 8 < k. Let
a < kand f:a— K be a function. We have |f[a]| < a < k and thus:

misup flaf) = m(|Jfla]) < D m(8) = 0.
Befla]

Since m(k) = 1, it must be that sup f[a] < x and therefore f is not cofinal.

We have the following theorems.
Theorem (Ulam, 1930). If x is real-valued measurable, then k is weakly inaccessible.
Theorem (Ulam, 1930). If there exists a r-additive atomless measure on k, then k < 2%0.

The existence of a real-valued measurable cardinal with an atomless measure thus strongly
contradicts the continuum hypothesis. Indeed, such a cardinal x would be weekly inaccessible, that
is a regular limit cardinal, but less or equal to 28. Since & is limit:

K= U{'y € Kk | 7y cardinal},

so, being that cof(k) = k, it must be that |{y € x| v cardinal}| > k. There would thus exist at
least  infinite cardinals below x, and therefore below 2%0.

Let k be a cardinal and m a x-additive measure with an atom A C k.
6.1 Straightforward.
6.2 The only delicate point is the x-completeness of U,,. To prove it, we show the following lemma:

Lemma. An ultrafilter U on a set S is A-complete if and only if for all v < X and every
family (X, | « < ) of subsets of S, if U,.., Xa € U, then there exists a < v such that
X, €eU.

a<ly

Proof. By contraposition, suppose that there exists v < A and a family (X, | « < v) of
subsets of S such that (J X €U but, for all a < v, X, ¢ U. Thus S — X, € U for all «,

and:
S—(S=Xo) = Xa el
a<y a<ly

Therefore .., (S — Xa) ¢ U and therefore U is not A-complete.

On the other hand, again by contraposition, suppose that there exists v < A and a family
(Xa | @ < v) of elements of U such that (), Xo ¢ U. In this case, |J,., (5 — Xa) =
S—ﬂa<7XaEU,evenifS—Xa¢Uforalla<7. O

a<y



Let us now check that the x-additivity of u implies the x-completeness of U,. Let v < x and
consider a family (X, | & < ) of subsets of x such that (J,.., Xa € Uy,. Then if X, ¢ U, for
all o, i.e. 1(X,) = 0 the s-additivity of 1 would imply that zi( Ua<~ X,) < Yoy M(Xa) =0,

contradicting the fact that U, Xo € Uy

Definition. A cardinal k > w is measurable if there exists a non-principal k-complete ultrafilter

on K.

7.1

Theorem (Ulam-Tarski, 1930). Any measurable cardinal & is strongly inaccessible.

Proof. Let U be a x-complete ultrafilter on a cardinal x > w. It is straightforward to check
that the measure on « defined by my (X) =1, if X € U, and my(X) = 0, if not, is k-additive.
The regularity of x follows therefore from point 5.2 above.

To prove that for all A < x, 2* < &, suppose towards contradiction that for a cardinal A < &,
there is an injective function f : K — *2. Consider, for all & < A, the sets X, = {£ € & |
f(&)(«) = i}, where i, € {0,1} is such that X, € U. By s-completeness of U, we have
X = Nacxr Xa € U. Therefore, if n,§ € X, then for all a € A, f(§)(a) = in = f(n)(a), ie.
f(&) = f(n), and therefore £ = n by injectivity of f. This would imply that X has at most
one element, contradicting the fact that X € U. O



