

Solution Sheet n°3

Solution of exercise 1:

1. the natural order on \mathbb{N} ;
2. the natural order on the positive integers and 0 above everything else;
3. for two distinct integers i, j :

$$i \prec j \text{ iff } \begin{cases} i, j \text{ even and } i < j, \text{ or} \\ i, j \text{ odd and } i < j, \text{ or} \\ i \text{ even and } j \text{ odd;} \end{cases}$$

4. for two distinct integers i, j such that $i \equiv n \pmod{3}$ and $j \equiv m \pmod{3}$:

$$i \prec j \text{ iff } \begin{cases} n = m \text{ and } i < j, \text{ or} \\ n < m; \end{cases}$$

5. for two distinct integers i, j :

$$i \prec j \text{ iff } \begin{cases} i, j > 16 \text{ and } i, j \text{ even and } i < j, \text{ or} \\ i, j > 16 \text{ and } i, j \text{ odd and } i < j, \text{ or} \\ i, j > 16 \text{ and } i \text{ odd and } j \text{ pair, or} \\ i, j \leq 16 \text{ and } i < j, \text{ or} \\ j \leq 16 \text{ and } i > 16; \end{cases}$$

6. using a bijection¹ between \mathbb{N}^2 and \mathbb{N} it is enough to define an order on \mathbb{N}^2 .
The lexicographic order

$$(i, j) \prec (k, l) \quad \text{iff} \quad i < k \text{ or } (i = k \text{ and } j < l)$$

works;

7. it is enough to separate the integers in two copies, both of which infinite (for example: even and odd numbers), and then order the first as in 6. and the second as in 4., then place the second after of the first.

Solution of exercise 2:

1. $3 + \omega = \sup\{3 + n \mid n \in \omega\} = \omega$.
2. $\omega + 3$ cannot be simplified further.
3. $\omega + 15 + \omega + 9 + 3 + \omega = \omega + (15 + \omega) + (12 + \omega) = \omega + \omega + \omega = \omega \cdot (1 + 1 + 1) = \omega \cdot 3$.
4. $\omega \cdot 3$ cannot be simplified further.

¹For example: $g_2(n, m) = \frac{(n+m) \cdot (n+m+1)}{2} + m$

5. $3 \cdot \omega = \sup\{3 \cdot n \mid n \in \omega\} = \omega.$
6. $(\omega \cdot 3) \cdot (\omega \cdot 5) = \omega \cdot (3 \cdot \omega) \cdot 5 = \omega^2 \cdot 5.$
7. $\omega^2 \cdot \omega = \omega \cdot \omega \cdot \omega = \omega^3.$
8. $\omega \cdot \omega^2 = \omega \cdot \omega \cdot \omega = \omega^3.$
9. $(\omega + 3) \cdot 4 = \omega + 3 + \omega + 3 + \omega + 3 + \omega + 3 = \omega \cdot 4 + 3.$
10. $4 \cdot (\omega + 3) = 4 \cdot \omega + 4 \cdot 3 = \omega + 12$
11. $(\omega + 3) \cdot \omega = \sup\{(\omega + 3) \cdot n \mid n \in \omega\} = \sup\{\omega \cdot n + 3 \mid n \in \omega\} = \sup\{\omega \cdot (n + 1) \mid n \in \omega\} = \omega^2.$ The second to last equality, namely, $\bigcup\{\omega \cdot n + 3 \mid n \in \omega\} = \bigcup\{\omega \cdot (n + 1) \mid n \in \omega\},$ follows from the fact that for all $n \in \omega,$ on one hand $\omega \cdot n + 3 < \omega \cdot (n + 1)$ and therefore $\omega \cdot n + 3 \subseteq \omega \cdot (n + 1)$ and on the other $\omega \cdot (n + 1) < \omega \cdot (n + 1) + 3$ and therefore $\omega \cdot (n + 1) \subseteq \omega \cdot (n + 1) + 3.$
12. $\omega \cdot (\omega + 3) = \omega \cdot \omega + \omega \cdot 3 = \omega^2 + \omega \cdot 3.$
13. $10 \cdot \omega \cdot 7 \cdot 3 \cdot \omega = \omega^2$ by associativity of the ordinal multiplication.
14. $\omega^3 \cdot \omega^2 \cdot 9 \cdot \omega + 7 \cdot \omega^4 + 3 \cdot (\omega + 2) = \omega^6 + \omega^4 + \omega + 6.$
15. $2 \cdot \omega^3 \cdot 3 + \omega^6 + (\omega + 3) \cdot 12 = \omega^3 \cdot 3 + \omega^6 + \omega \cdot 12 + 3.$

Solution of exercise 3:

In order to distinguish the two notions of ordinal addition we are dealing with, we write $\alpha \oplus \beta$ for the unique ordinal γ which is isomorphic to the well order $(\alpha \times \{0\} \cup \beta \times \{1\}, <)$ where $(\gamma, i) < (\eta, j)$ iff $i < j$ or $i = j$ and $\gamma < \eta.$ We remark first of all that for all ordinals $\alpha,$ $\alpha + 1 = s(\alpha + 0) = s(\alpha) = \alpha \cup \{\alpha\} = \text{type}(\alpha \times \{0\} \cup 1 \times \{1\}) = \alpha \oplus 1$ by the isomorphism $f : \alpha \times \{0\} \cup 1 \times \{1\} \rightarrow \alpha \cup \{\alpha\}$ given by $(\beta, 0) \mapsto \beta$ for $\beta \in \alpha$ and $(0, 1) \mapsto \alpha.$ Let α be an ordinal. We show that for each ordinal $\beta,$ $\alpha + \beta = \alpha \oplus \beta$ by induction on $\beta.$

1. We have $\alpha \oplus 0 = \text{type}(\alpha \times \{0\} \cup \emptyset \times \{1\}) = \text{type}(\alpha \times \{0\}) = \alpha = \alpha + 0.$
2. Suppose that $\alpha \oplus \beta = \alpha + \beta.$ We have $\alpha + s(\beta) = s(\alpha + \beta) = (\alpha + \beta) + 1 = (\alpha \oplus \beta) + 1 = (\alpha \oplus \beta) \oplus 1 = \alpha \oplus (\beta \oplus 1) = \alpha \oplus s(\beta).$
3. Suppose now that λ is a limit ordinal and that for all $\xi < \lambda$ we have $\alpha + \xi = \alpha \oplus \xi.$ For all $\xi < \lambda,$ we write $f_\xi : \alpha \oplus \xi \rightarrow \alpha + \xi$ for the isomorphism. Let us observe that for all $\xi < \lambda$ the domain $(\alpha \times \{0\} \cup \xi \times \{1\})$ of f_ξ is included in $(\alpha \times \{0\} \cup \lambda \times \{1\}).$ Moreover, for all $\xi < \lambda$ the codomain $\alpha + \xi$ of f_ξ is included in $\alpha + \lambda = \sup_{\zeta < \lambda} \alpha + \zeta = \bigcup_{\zeta < \lambda} \alpha + \zeta.$ We can therefore consider each f_ξ as a subset of $(\alpha \times \{0\} \cup \lambda \times \{1\}) \times \alpha + \lambda.$ Moreover for all $\xi < \zeta < \lambda$ we have that the restriction $f_\zeta \upharpoonright (\alpha \oplus \xi)$ is an isomorphism of $\alpha \oplus \xi$ on a proper initial segment of $\alpha + \zeta,$ i.e. an ordinal γ which belongs to $\alpha + \zeta.$ Also, since there exists a unique ordinal which is isomorphic to $\alpha \oplus \xi,$ namely $\alpha + \xi,$ by the induction hypothesis, and there exists a unique isomorphism of $\alpha \oplus \xi$ on $\alpha + \xi,$ we have $f_\zeta \upharpoonright (\alpha \oplus \xi) = f_\xi.$ It follows that $f = \bigcup_{\xi < \lambda} f_\xi$ and a function $f : \alpha \oplus \lambda \rightarrow \alpha + \lambda.$ It is furthermore an isomorphism since each f_ξ is.

Solution of exercise 4:

1. If $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$.

By induction on γ .

(a) If $\gamma = 0$, then for all ordinals β , $\beta \not< \gamma$ and the implication is therefore verified.

(b) Let γ be successor, i.e. $\gamma = S(\gamma')$ for a certain ordinal γ' . If $\beta < \gamma$, then $\beta \leq \gamma'$, so:

- i. if $\beta = \gamma'$, then $\alpha + \beta = \alpha + \gamma' < S(\alpha + \gamma') = \alpha + S(\gamma') = \alpha + \gamma$;
- ii. if $\beta < \gamma'$, then by the induction hypothesis we have $\alpha + \beta < \alpha + \gamma' < S(\alpha + \gamma') = \alpha + S(\gamma') = \alpha + \gamma$.

(c) If γ is limit and $\beta < \gamma$ then for all $\beta < \gamma' < \gamma$ we have $\alpha + \beta < \alpha + \gamma'$. Thus,

$$\alpha + \beta < \bigcup_{\beta < \gamma' < \gamma} \alpha + \gamma' = \sup\{\alpha + \gamma' \mid \beta < \gamma' < \gamma\} = \sup\{\alpha + \gamma' \mid \gamma' < \gamma\} = \alpha + \gamma.$$

2. If $\alpha < \beta$, then there exists a unique ordinal δ such that $\alpha + \delta = \beta$.

The class of ordinals θ such that $\alpha + \theta > \beta$ is not empty since by example $\beta + 1$ belongs to it. It thus admits a minimal element δ' . We show that δ' is successor. If it were limit, we would have $\alpha + \delta' = \sup\{\alpha + \xi \mid \xi < \delta'\} \leq \beta$ since $\alpha + \xi \leq \beta$ for all $\xi < \delta'$ by minimality of δ' with respect to verifying $\alpha + \delta' > \beta$. Now $\alpha + \delta' \leq \beta$ contradicts the fact that $\alpha + \delta' > \beta$. Thus, δ' is successor and therefore $\delta' = S(\delta)$ for a certain ordinal δ . It must be $\alpha + \delta \leq \beta$ and since $\alpha + \delta + 1 > \beta$ we have $\alpha + \delta = \beta$.

The uniqueness is obtained by simplification. Indeed, it follows from point 1. that $\alpha + \delta = \alpha + \delta'$ implies $\delta = \delta'$.

3. If $\alpha \neq 0$ and $\beta < \gamma$, then $\alpha \cdot \beta < \alpha \cdot \gamma$. By induction on γ :

(a) if $\gamma = 0$, then $\beta \not< \gamma$ and the implication is therefore verified;

(b) if $\gamma = S(\gamma')$, then $\beta < \gamma$ is equivalent to $\beta \leq \gamma'$;

- i. if $\beta = \gamma'$, then $\alpha \cdot \beta = \alpha \cdot \gamma' < \alpha \cdot \gamma' + \alpha = \alpha \cdot S(\gamma') = \alpha \cdot \gamma$;

ii. if $\beta < \gamma'$, then $\alpha \cdot \beta < \alpha \cdot \gamma'$ by the induction hypothesis, and we conclude by remarking that $\alpha \cdot \gamma = (\alpha \cdot \gamma') + \alpha$ and using point 1.;

(c) if γ is limit and $\beta < \gamma$, we have by the induction hypothesis that for all $\beta < \gamma' < \gamma$ $\alpha \cdot \beta < \alpha \cdot \gamma'$. Thus,

$$\alpha \cdot \beta < \sup\{\alpha \cdot \gamma' \mid \beta < \gamma' < \gamma\} = \sup\{\alpha \cdot \gamma' \mid \gamma' < \gamma\} = \alpha \cdot \gamma.$$

4. Euclidean Division: if α is an ordinal and $\xi > 0$, then there exist two unique ordinals θ (the quotient) and ρ (the remainder) such that $\rho < \xi$ and $\alpha = \xi \cdot \theta + \rho$.

Since $\xi > 0$, there exists at least an ordinal θ_0 such that $\xi \cdot \theta_0 > \alpha$ (for example $\theta_0 = \alpha + 1$). The class of ordinals θ such that $\xi \cdot \theta > \alpha$ admits therefore a minimum θ' . The ordinal θ' is successor since if it were limit,

then we would have $\xi \cdot \theta' = \sup\{\xi \cdot \zeta \mid \zeta < \theta'\} \leq \alpha$ which is a contradiction. There exists therefore an ordinal θ such that $S(\theta) = \theta'$. By minimality of θ' we have that $\xi \cdot \theta \leq \alpha$. If equality holds, then we have $\rho = 0$. If not we have $\xi \cdot \theta < \alpha$ and by point 2. there exists a unique ordinal ρ such that $\xi \cdot \theta + \delta = \alpha$. Moreover, $\xi \cdot \theta + \rho = \alpha < \xi \cdot (\theta + 1) = \xi \cdot \theta + \theta$ from which it follows that $\rho < \theta$ (thus it follows from 1. that $\alpha + \beta < \alpha + \beta'$ implies $\beta < \beta'$).

For uniqueness, let $\theta, \theta', \rho, \rho'$ be such that $\alpha = \xi \cdot \theta + \rho = \xi \cdot \theta' + \rho'$ with $\rho, \rho' < \xi$. Suppose towards contradiction, and without loss on generality, that $\theta < \theta'$. By points 1. and 3., we have

$$\alpha = \xi \cdot \theta + \rho < \xi \cdot \theta + \xi = \xi \cdot (\theta + 1) \leq \xi \cdot \theta' \leq \alpha,$$

a contradiction. Thus, $\theta = \theta'$ and by simplification it follows that $\rho = \rho'$.

5. $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$. By induction on γ :

(a) if $\gamma = 0$: $\alpha \cdot (\beta + 0) = \alpha \cdot \beta = \alpha \cdot \beta + \alpha \cdot 0$;

$$\begin{aligned} \text{(b) if } \gamma = \delta + 1: \quad \alpha \cdot (\beta + (\delta + 1)) &= \alpha \cdot ((\beta + \delta) + 1) \\ &= \alpha \cdot (\beta + \delta) + \alpha \\ &= (\alpha \cdot \beta + \alpha \cdot \delta) + \alpha \\ &= \alpha \cdot \beta + (\alpha \cdot \delta + \alpha) \\ &= \alpha \cdot \beta + (\alpha \cdot (\delta + 1)); \end{aligned}$$

$$\begin{aligned} \text{(c) if } \gamma \text{ is limit: } \alpha \cdot (\beta + \gamma) &= \sup_{\xi < \gamma} \alpha \cdot (\beta + \xi) \\ &= \sup_{\xi < \gamma} \alpha \cdot \beta + \alpha \cdot \xi \\ &= \alpha \cdot \beta + \sup_{\xi < \gamma} \alpha \cdot \xi \\ &= \alpha \cdot \beta + \alpha \cdot \gamma; \end{aligned}$$

6. If $\alpha > 1$ and $\beta < \gamma$, then $\alpha^\beta < \alpha^\gamma$. By induction on γ :

(a) if $\gamma = 0$, then the implication is true;

$$\begin{aligned} \text{(b) if } \gamma = \delta + 1: \quad \alpha^\gamma &= \alpha^{\delta+1} \\ &= \alpha^\delta \cdot \alpha \\ &\geq \alpha^\beta \cdot \alpha \\ &> \alpha^\beta; \end{aligned}$$

$$\begin{aligned} \text{(c) if } \gamma \text{ is limit: } \alpha^\gamma &= \sup_{\delta < \gamma} \alpha^\delta \\ &= \sup_{\delta < \gamma} \alpha^{\delta+1} \\ &> \alpha^\beta; \end{aligned}$$

7. $\alpha^{\beta+\gamma} = \alpha^\beta \cdot \alpha^\gamma$. By induction on γ :

(a) if $\gamma = 0$: $\alpha^{\beta+0} = \alpha^\beta = \alpha^\beta \cdot \alpha^0$;

$$\begin{aligned} \text{(b) if } \gamma = \delta + 1: \quad \alpha^{\beta+(\delta+1)} &= \alpha^{(\beta+\delta)+1} \\ &= \alpha^{\beta+\delta} \cdot \alpha \\ &= (\alpha^\beta \cdot \alpha^\delta) \cdot \alpha \\ &= \alpha^\beta \cdot (\alpha^\delta \cdot \alpha) \\ &= \alpha^\beta \cdot \alpha^{\delta+1}; \end{aligned}$$

$$\begin{aligned}
(c) \text{ if } \gamma \text{ is limit: } \alpha^{\beta+\gamma} &= \sup_{\delta < \gamma} \alpha^{\beta+\delta} \\
&= \sup_{\delta < \gamma} \alpha^\beta \cdot \alpha^\delta \\
&= \alpha^\beta \cdot \sup_{\delta < \gamma} \alpha^\delta \\
&= \alpha^\beta \cdot \alpha^\gamma;
\end{aligned}$$

8. $(\alpha^\beta)^\gamma = \alpha^{\beta \cdot \gamma}$. By induction on γ :

$$\begin{aligned}
(a) \text{ if } \gamma = 0: (\alpha^\beta)^0 &= 1 = \alpha^0 = \alpha^{\beta \cdot 0}; \\
(b) \text{ if } \gamma = \delta + 1: (\alpha^\beta)^{\delta+1} &= (\alpha^\beta)^\delta \cdot \alpha^\beta \\
&= \alpha^{\beta \cdot \delta} \cdot \alpha^\beta \\
&= \alpha^{\beta \cdot \delta + \beta} \\
&= \alpha^{(\beta \cdot \delta) + 1} \\
&= \alpha^{\beta \cdot (\delta + 1)}; \\
(c) \text{ if } \gamma \text{ is limit: } (\alpha^\beta)^\gamma &= \sup_{\delta < \gamma} (\alpha^\beta)^\delta \\
&= \sup_{\delta < \gamma} \alpha^{\beta \cdot \delta} \\
&= \alpha^{\sup_{\delta < \gamma} (\beta \cdot \delta)} \\
&= \alpha^{\beta \cdot \gamma};
\end{aligned}$$

Solution of exercise 5: The existence is proved by induction on α .

1. If $\alpha = 1$, then $\alpha = \omega^0$.

2. If $\alpha > 1$, we further distinguish:

- (a) if there exists $\beta \leq \alpha$ such that $\omega^\beta = \alpha$, then it gives us the result;
- (b) if not we consider the smallest $\beta \leq \alpha$ such that $\omega^\beta > \alpha$. Notice that β cannot be limit, therefore $\beta = \gamma + 1$. We now check whether there exists a strictly positive integer n such that $\omega^\gamma \cdot n = \alpha$:

- i. if it is the case, it gives us the result;
- ii. if not, consider the smallest integer² n such that $\omega^\gamma \cdot n > \alpha$. Notice that $n > 1$, therefore $n = n_0 + 1$ for a strictly positive integer n_0 .

We then consider (by **Exercice 4 2.**) the unique ordinal δ such that $\omega^\gamma \cdot m + \delta = \alpha$. Notice that $\delta < \omega^\gamma$ leads to $\delta < \alpha$. By the induction hypothesis δ admits a Cantor's normal form:

$$\delta = \omega^{\beta_1} \cdot n_1 + \dots + \omega^{\beta_k} \cdot n_k$$

which furthermore verifies $\gamma > \beta_1$. It then suffices to let $\gamma = \beta_0$ to obtain:

$$\alpha = \omega^{\beta_0} \cdot n_0 + \omega^{\beta_1} \cdot n_1 + \dots + \omega^{\beta_k} \cdot n_k.$$

Uniqueness is proved easily by remarking that for all Cantor's normal forms we have:

$$\omega^{\beta_1} \cdot n_1 + \dots + \omega^{\beta_k} \cdot n_k < \omega^{\beta_1} \cdot (n_1 + 1).$$

Thus we deduce that two different normal forms "compute" two different ordinals.

²It necessarily exists since $\sup_{n \in \mathbb{N}} \omega^\gamma \cdot n = \omega^\beta > \alpha$.