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Professor J. Duparc MATH-318 Set Theory March 5, 2025

Solution Sheet n°3

Solution of exercise 1:
1. the natural order on N;
2. the natural order on the positive integers and 0 above everything else;
3. for two distinct integers i, j:
1,7 even and ¢ < j, or
i<7iff {4,757 odd and i < j, or

1 even and j odd;
4. for two distinct integers i, j such that i =n mod 3 and j =m mod 3:
S {nzmandi<j,or
i =<jiff
n <m;
5. for two distinct integers ¢, j:

1,7 > 16 and 4, j even and ¢ < j, or

1,7 > 16 and 7,5 odd and ¢ < j, or
i<jiff ¢7,7 > 16 and ¢ odd and j pair, or

1,7 <16 and 7 < j, or

7 <16 and 7@ > 16;

6. using a bijection' between N2 and N it is enough to define an order on N2.
The lexicographic order

(4,§) < (k,1) ff i<kor(i=kandj<l)
works;

7. it is enough to separate the integers in two copies, both of which infinite
(for example: even and odd numbers), and then order the first as in 6.
and the second as in 4., then place the second after of the first.

Solution of exercise 2:
1. 3+w=sup{3+n|ncw}=w.
2. w + 3 cannot be simplified further.
3. w+154w+9+34w = w+(154w)+(124w) = wHw+w = w-(1+14+1) = w-3.

4. w- 3 cannot be simplified further.

(n4+m)-(n+m+1) +m

LFor example: ga(n,m) = 5



5. 3-w=sup{3-n|ncw}=w.

6. (wW-3) - (w-5)=w-(3-w)-5=w?-5.

7. W0 w=ww w=uw

8w w=w w-w=w

9. W+3) 4=w+3+w+3+w+3+w+3=w-4+3.

10. 4- (w+3)=4-w+4-3=w+12

11. (wW+3) - w=sup{(w+3)n|necwl=supfw-n+3 | necw}=
sup{w - (n + 1) | n € w} = w? The second to last equality, namely,
Hw-n+3|new=U{w-(n+1) ]| n e w}, follows from the fact
that for all n € w, on one hand w-n+3 < w- (n+ 1) and therefore
w-n+3Cw-(n+1)and on the other w- (n+1) <w-(n+1)+ 3 and
therefore w- (n+1) Cw-(n+ 1)+ 3.

12w (WH3) =w- - wtw-3=w?+w-3.
13. 10 - w-7-3-w = w? by associativity of the ordinal multiplication.
4w w? 9 w+T7T w43 (wW+2)=wb +w?+w+6.

15. 2 w? 34w+ (w+3) 12=w? - 3+w’ +w-12+3.

Solution of exercise 3:

In order to distinguish the two notions of ordinal addition we are dealing
with, we write a @ 3 for the unique ordinal v which is isomorphic to the well
order (ax {0}UB x {1}, <) where (v,7) < (n,7) iff i <jori=jandy <n We
remark first of all that for all ordinals o, a + 1 = s(a 4+ 0) = s(a) = a U {a} =
type(ax{0}Ulx{1}) = a®1 by the isomorphism f : ax{0}Ulx {1} = aU{a}
given by (8,0) — 8 for 8 € a and (0,1) — «. Let a be an ordinal. We show
that for each ordinal 8, a + 8 = a ® by induction on S.

1. We have a ® 0 = type(a x {0} UD x {1}) = type(a x {0}) =a=a +0.

2. Suppose that a®f = a+ . We have a+s(8) = s(a+ ) = (a+5)+1 =
(a®dB)+1=(a®B)Pl=ad(BD1)=ads(h).

3. Suppose now that A is a limit ordinal and that for all £ < A we have
a+€ = adf. Forall§ < A, we write f¢ : a®f — a+¢ for the isomorphism.
Let us observe that for all £ < A the domain (o x {0} U§ x {1}) of fe is
included in (o x {0} UA x {1}). Moreover, for all £ < X the codomain o+ ¢
of f¢ is included in @+ A = sup.y @+ ¢ = ., @+ (. We can therefore
consider each f¢ as a subset of (a x {0}UA x {1}) x a+ A. Moreover for all
&€ < ¢ < X we have that the restriction f; | (o @ §) is an isomorphism of
a® € on a proper initial segment of o+ (, i.e. an ordinal v which belongs
to a + (. Also, since there exists a unique ordinal which is isomorphic
to a @ &, namely a + &, by the induction hypothesis, and there exists a
unique isomorphism of a®§ on a+¢, we have f; | (a®&) = fe. It follows
that f = U£<A fe and a function f:a® A — a+ A. It is furthermore an
isomorphism since each fe is.



Solution of exercise 4:

1. IfB<~,thena+ 8 <a+7.

By induction on ~.

(a) If v = 0, then for all ordinals /3, 8 £ v and the implication is therefore
verified.

(b) Let v be successor, i.e. v = S(v') for a certain ordinal v'. If 8 < v,
then 8 <+, so:
Lif =79 ,thena+f=a++ <Sla++vy)=a+S5H)=a+7;
ii. if B < «/, then by the induction hypothesis we have o + 8 <
aty <Sla+y)=a+S0H)=atr.
(c) If v is limit and 8 < «y then for all 8 < o' < v we have a+ 3 < a+7'.
Thus,

atB< |J a+y =suplaty | B <y <7} =sup{a+y |7 <7} =aty.
By <y

2. If a < 3, then there exists a unique ordinal & such that o+ 6 = (3.

The class of ordinals # such that a4+ 6 > /3 is not empty since by example
B+1 belongs to it. It thus admits a minimal element ¢’. We show that ¢’ is
successor. If it were limit, we would have a4+ ¢ = sup{a+¢ | < '} <
since a + & < 8 for all £ < ¢’ by minimality of ¢’ with respect to verifying
a+¢ > . Now a+ ¢ < contradicts the fact that o + ¢’ > 8. Thus,
¢’ is successor and therefore ¢’ = S(§) for a certain ordinal §. It must be
a+ 0 < and since « + 9+ 1 > S we have a + 6 = 5.

The uniqueness is obtained by simplification. Indeed, it follows from point
1. that o + 6 = o + ¢’ implies § = §'.

3. Ifa#0 and 5 <, then a- § < « - . By induction on ~:

(a) if ¥y =0, then 8 £ v and the implication is therefore verified;
(b) if v = S(v'), then 5 < v is equivalent to 5 < v/;
Lifg=+,thena-B=a-v <a-y+a=a-SH)=a-~;
ii. if 8 </, then o+ 8 < a.-v’ by the induction hypothesis, and we
conclude by remarking that a -y = (a-v') + a and using point
1.
(c) if 7y is limit and 8 < 7, we have by the induction hypothesis that for
all B< vy <~va-B<a-v. Thus,

a-f<sup{a-7 | <y <y} =sup{la-v |7 <y} =a-7.

4. FEuclidean Division: if a is an ordinal and & > 0, then there exist two
unique ordinals 0 (the quotient) and p (the reminder) such that p < § and
a=£&-0+p.

Since £ > 0, there exists at least an ordinal 6y such that £ - 6y > « (for
example 0y = o + 1). The class of ordinals € such that £ - § > « admits
therefore a minimum #’. The ordinal #’ is successor since if it were limit,



then we would have £-6 = sup{¢-¢ | ¢ < 6’} < a which is a contradiction.
There exists therefore an ordinal 6 such that S(#) = #’. By minimality of
0" we have that £ -6 < a. If equality holds, then we have p = 0. If not we
have € - § < a and by point 2. there exists a unique ordinal p such that
£-0+0=a. Moreover, £ -0+p=a<&-(0+1)=¢&-60+ 0 from which
it follows that p < € (thus it follows from 1. that o + 8 < a + ’ implies
B <B).

For uniqueness, let 6,6, p, p’ be such that « =£-0+p =& -0 + p' with
p,p < & Suppose towards contradiction, and without loss on generality,
that § < #’. By points 1. and 3., we have

a=E0+p<EOtE=E-(O+1)<E 0 <a,
a contradiction. Thus, § = ¢’ and by simplification it follows that p = p'.
5. a-(B+7v) =a-f+ a-v. By induction on ~:

(a) ify=0a- (f+0)=a-f=a-B+a-0;

(b) ify=6+1: a-(B+(0+1) = a-((B+6+1)
= o (B+0)+a
= (- f+a-d)+a
= a-f+(a-d+a)
= a B+ (a-(6+1));

(c) if v is limit: «- (B4+7) = supe,a-(B+€)
Supgc, - f+a-§
a- B +supeo,a-§
= a-fta-y

6. If @ > 1 and B < v, then a® < a”. By induction on :

(a) if v =0, then the implication is true;

(b) ify=0+1 ¥ = at!
= o«
> o’ a
> o
(c) if « is limit: o7 = SUDs< al
— sups., ad+1
Qs
7. &t = af - a7. By induction on 7:
(a) if y=0: o0 =0af =af - Y%
(b) if y=6+1: oftO+) = B+o+1
= aft.q
= (o’ % «a
= o (o’ a)
— P adtl



(c) if v is limit: @t = sup;_, aPF?
Sups., @ - a
o - sups., a
a” -

8. (a?)” = o, By induction on :

(a) if y=0: (aﬁ)o =1=a"=a"";

) ify=6+1 @) = (%) of
oBd . 0B
o548

(c) if 5 is limit: (af)” = SUDg <y (045)(s
SUPs <~ b
QSUPs <~ (B-6)
= af7,

Solution of exercise 5: The existence is proved by induction on .

1. If a = 1, then o = w°.
2. If @ > 1, we further distinguish:

(a) if there exists 8 < « such that w? = @, then it gives us the result;

(b) if not we consider the smallest 3 < o such that w” > a. Notice that
£ cannot be limit, therefore 5 = v+ 1. We now check whether there
exists a strictly positive integer n such that w? -n = a:

i. if it is the case, it gives us the result;

ii. if not, consider the smallest integer? n such that w” -n > a.
Notice that n > 1, therefore n = ng 4+ 1 for a strictly positive
integer ng.

We then consider (by Exercice 4 2.) the unique ordinal ¢ such
that w? - m 4+ § = . Notice that § < w? leads to § < o. By the
induction hypothesis § admits a Cantor’s normal form:

§=w ny 4+ ..+ Wy

which furthermore verifies v > (1. It then suffices to let v = Gy
to obtain:

azwﬁ"-n0—|—w61-n1+...—|—wﬂ’“-nk.

Uniqueness is proved easily by remarking that for all Cantor’s normal forms we
have:
Py WP o <P <(n1 +1).

Thus we deduce that two different normal forms “compute” two different ordi-
nals.

2Tt necessarily exists since Sup,ecyw? -n = W > a.



