
Professor J. Duparc MATH-318 Set Theory March 5, 2025

Solution Sheet n◦3

Solution of exercise 1:

1. the natural order on N;

2. the natural order on the positive integers and 0 above everything else;

3. for two distinct integers i, j:

i ≺ j iff


i, j even and i < j, or
i, j odd and i < j, or
i even and j odd;

4. for two distinct integers i, j such that i ≡ n mod 3 and j ≡ m mod 3:

i ≺ j iff

{
n = m and i < j, or
n < m;

5. for two distinct integers i, j:

i ≺ j iff



i, j > 16 and i, j even and i < j, or
i, j > 16 and i, j odd and i < j, or
i, j > 16 and i odd and j pair, or
i, j ≤ 16 and i < j, or
j ≤ 16 and i > 16;

6. using a bijection1 between N2 and N it is enough to define an order on N2.
The lexicographic order

(i, j) ≺ (k, l) iff i < k or (i = k and j < l)

works;

7. it is enough to separate the integers in two copies, both of which infinite
(for example: even and odd numbers), and then order the first as in 6.
and the second as in 4., then place the second after of the first.

Solution of exercise 2:

1. 3 + ω = sup{3 + n | n ∈ ω} = ω.

2. ω + 3 cannot be simplified further.

3. ω+15+ω+9+3+ω = ω+(15+ω)+(12+ω) = ω+ω+ω = ω·(1+1+1) = ω·3.

4. ω · 3 cannot be simplified further.

1For example: g2(n,m) =
(n+m)·(n+m+1)

2
+m
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5. 3 · ω = sup{3 · n | n ∈ ω} = ω.

6. (ω · 3) · (ω · 5) = ω · (3 · ω) · 5 = ω2 · 5.

7. ω2 · ω = ω · ω · ω = ω3.

8. ω · ω2 = ω · ω · ω = ω3.

9. (ω + 3) · 4 = ω + 3 + ω + 3 + ω + 3 + ω + 3 = ω · 4 + 3.

10. 4 · (ω + 3) = 4 · ω + 4 · 3 = ω + 12

11. (ω + 3) · ω = sup{(ω + 3) · n | n ∈ ω} = sup{ω · n + 3 | n ∈ ω} =
sup{ω · (n + 1) | n ∈ ω} = ω2. The second to last equality, namely,⋃
{ω · n + 3 | n ∈ ω} =

⋃
{ω · (n + 1) | n ∈ ω}, follows from the fact

that for all n ∈ ω, on one hand ω · n + 3 < ω · (n + 1) and therefore
ω · n + 3 ⊆ ω · (n + 1) and on the other ω · (n + 1) < ω · (n + 1) + 3 and
therefore ω · (n+ 1) ⊆ ω · (n+ 1) + 3.

12. ω · (ω + 3) = ω · ω + ω · 3 = ω2 + ω · 3.

13. 10 · ω · 7 · 3 · ω = ω2 by associativity of the ordinal multiplication.

14. ω3 · ω2 · 9 · ω + 7 · ω4 + 3 · (ω + 2) = ω6 + ω4 + ω + 6.

15. 2 · ω3 · 3 + ω6 + (ω + 3) · 12 = ω3 · 3 + ω6 + ω · 12 + 3.

Solution of exercise 3:
In order to distinguish the two notions of ordinal addition we are dealing

with, we write α ⊕ β for the unique ordinal γ which is isomorphic to the well
order (α×{0}∪β×{1}, <) where (γ, i) < (η, j) iff i < j or i = j and γ < η. We
remark first of all that for all ordinals α, α+ 1 = s(α+ 0) = s(α) = α ∪ {α} =
type(α×{0}∪1×{1}) = α⊕1 by the isomorphism f : α×{0}∪1×{1} → α∪{α}
given by (β, 0) 7→ β for β ∈ α and (0, 1) 7→ α. Let α be an ordinal. We show
that for each ordinal β, α+ β = α⊕ β by induction on β.

1. We have α⊕ 0 = type(α× {0} ∪ ∅ × {1}) = type(α× {0}) = α = α+ 0.

2. Suppose that α⊕β = α+β. We have α+s(β) = s(α+β) = (α+β)+1 =
(α⊕ β) + 1 = (α⊕ β)⊕ 1 = α⊕ (β ⊕ 1) = α⊕ s(β).

3. Suppose now that λ is a limit ordinal and that for all ξ < λ we have
α+ξ = α⊕ξ. For all ξ < λ, we write fξ : α⊕ξ → α+ξ for the isomorphism.
Let us observe that for all ξ < λ the domain (α × {0} ∪ ξ × {1}) of fξ is
included in (α×{0}∪λ×{1}). Moreover, for all ξ < λ the codomain α+ξ
of fξ is included in α+ λ = supζ<λ α+ ζ =

⋃
ζ<λ α+ ζ. We can therefore

consider each fξ as a subset of (α×{0}∪λ×{1})×α+λ. Moreover for all
ξ < ζ < λ we have that the restriction fζ ↾ (α ⊕ ξ) is an isomorphism of
α⊕ ξ on a proper initial segment of α+ ζ, i.e. an ordinal γ which belongs
to α + ζ. Also, since there exists a unique ordinal which is isomorphic
to α ⊕ ξ, namely α + ξ, by the induction hypothesis, and there exists a
unique isomorphism of α⊕ξ on α+ξ, we have fζ ↾ (α⊕ξ) = fξ. It follows
that f =

⋃
ξ<λ fξ and a function f : α⊕ λ → α+ λ. It is furthermore an

isomorphism since each fξ is.
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Solution of exercise 4:

1. If β < γ, then α+ β < α+ γ.

By induction on γ.

(a) If γ = 0, then for all ordinals β, β ̸< γ and the implication is therefore
verified.

(b) Let γ be successor, i.e. γ = S(γ′) for a certain ordinal γ′. If β < γ,
then β ≤ γ′, so:

i. if β = γ′, then α+ β = α+ γ′ < S(α+ γ′) = α+ S(γ′) = α+ γ;
ii. if β < γ′, then by the induction hypothesis we have α + β <

α+ γ′ < S(α+ γ′) = α+ S(γ′) = α+ γ.

(c) If γ is limit and β < γ then for all β < γ′ < γ we have α+β < α+γ′.
Thus,

α+β <
⋃

β<γ′<γ

α+γ′ = sup{α+γ′ | β < γ′ < γ} = sup{α+γ′ | γ′ < γ} = α+γ.

2. If α < β, then there exists a unique ordinal δ such that α+ δ = β.

The class of ordinals θ such that α+ θ > β is not empty since by example
β+1 belongs to it. It thus admits a minimal element δ′. We show that δ′ is
successor. If it were limit, we would have α+ δ′ = sup{α+ ξ | ξ < δ′} ≤ β
since α+ ξ ≤ β for all ξ < δ′ by minimality of δ′ with respect to verifying
α + δ′ > β. Now α + δ′ ≤ β contradicts the fact that α + δ′ > β. Thus,
δ′ is successor and therefore δ′ = S(δ) for a certain ordinal δ. It must be
α+ δ ≤ β and since α+ δ + 1 > β we have α+ δ = β.

The uniqueness is obtained by simplification. Indeed, it follows from point
1. that α+ δ = α+ δ′ implies δ = δ′.

3. If α ̸= 0 and β < γ, then α · β < α · γ. By induction on γ:

(a) if γ = 0, then β ̸< γ and the implication is therefore verified;

(b) if γ = S(γ′), then β < γ is equivalent to β ≤ γ′;

i. if β = γ′, then α · β = α · γ′ < α · γ′ + α = α · S(γ′) = α · γ;
ii. if β < γ′, then α · β < α · γ′ by the induction hypothesis, and we

conclude by remarking that α · γ = (α · γ′) + α and using point
1.;

(c) if γ is limit and β < γ, we have by the induction hypothesis that for
all β < γ′ < γ α · β < α · γ′. Thus,

α · β < sup{α · γ′ | β < γ′ < γ} = sup{α · γ′ | γ′ < γ} = α · γ.

4. Euclidean Division: if α is an ordinal and ξ > 0, then there exist two
unique ordinals θ (the quotient) and ρ (the reminder) such that ρ < ξ and
α = ξ · θ + ρ.

Since ξ > 0, there exists at least an ordinal θ0 such that ξ · θ0 > α (for
example θ0 = α + 1). The class of ordinals θ such that ξ · θ > α admits
therefore a minimum θ′. The ordinal θ′ is successor since if it were limit,
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then we would have ξ ·θ′ = sup{ξ ·ζ | ζ < θ′} ≤ α which is a contradiction.
There exists therefore an ordinal θ such that S(θ) = θ′. By minimality of
θ′ we have that ξ · θ ≤ α. If equality holds, then we have ρ = 0. If not we
have ξ · θ < α and by point 2. there exists a unique ordinal ρ such that
ξ · θ + δ = α. Moreover, ξ · θ + ρ = α < ξ · (θ + 1) = ξ · θ + θ from which
it follows that ρ < θ (thus it follows from 1. that α + β < α + β′ implies
β < β′).

For uniqueness, let θ, θ′, ρ, ρ′ be such that α = ξ · θ + ρ = ξ · θ′ + ρ′ with
ρ, ρ′ < ξ. Suppose towards contradiction, and without loss on generality,
that θ < θ′. By points 1. and 3., we have

α = ξ · θ + ρ < ξ · θ + ξ = ξ · (θ + 1) ≤ ξ · θ′ ≤ α,

a contradiction. Thus, θ = θ′ and by simplification it follows that ρ = ρ′.

5. α · (β + γ) = α · β + α · γ. By induction on γ:

(a) if γ = 0: α · (β + 0) = α · β = α · β + α · 0;
(b) if γ = δ + 1: α ·

(
β + (δ + 1)

)
= α ·

(
(β + δ) + 1

)
= α · (β + δ) + α
= (α · β + α · δ) + α
= α · β + (α · δ + α)
= α · β +

(
α · (δ + 1)

)
;

(c) if γ is limit: α · (β + γ) = supξ<γ α · (β + ξ)
= supξ<γ α · β + α · ξ
= α · β + supξ<γ α · ξ
= α · β + α · γ;

6. If α > 1 and β < γ, then αβ < αγ . By induction on γ:

(a) if γ = 0, then the implication is true;

(b) if γ = δ + 1: αγ = αδ+1

= αδ · α
≥ αβ · α
> αβ ;

(c) if γ is limit: αγ = supδ<γ α
δ

= supδ<γ α
δ+1

> αβ ;

7. αβ+γ = αβ · αγ . By induction on γ:

(a) if γ = 0: αβ+0 = αβ = αβ · α0;

(b) if γ = δ + 1: αβ+(δ+1) = α(β+δ)+1

= αβ+δ · α
= (αβ · αδ) · α
= αβ · (αδ · α)
= αβ · αδ+1;
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(c) if γ is limit: αβ+γ = supδ<γ α
β+δ

= supδ<γ α
β · αδ

= αβ · supδ<γ α
δ

= αβ · αγ ;

8. (αβ)
γ
= αβ·γ . By induction on γ:

(a) if γ = 0: (αβ)
0
= 1 = α0 = αβ·0;

(b) if γ = δ + 1: (αβ)
δ+1

= (αβ)
δ · αβ

= αβ·δ · αβ

= αβ·δ+β

= α(β·δ)+1

= αβ·(δ+1);

(c) if γ is limit: (αβ)
γ

= supδ<γ (α
β)

δ

= supδ<γ α
β·δ

= αsupδ<γ(β·δ)

= αβ·γ ;

Solution of exercise 5: The existence is proved by induction on α.

1. If α = 1, then α = ω0.

2. If α > 1, we further distinguish:

(a) if there exists β ≤ α such that ωβ = α, then it gives us the result;
(b) if not we consider the smallest β ≤ α such that ωβ > α. Notice that

β cannot be limit, therefore β = γ + 1. We now check whether there
exists a strictly positive integer n such that ωγ · n = α:

i. if it is the case, it gives us the result;
ii. if not, consider the smallest integer2 n such that ωγ · n > α.

Notice that n > 1, therefore n = n0 + 1 for a strictly positive
integer n0.
We then consider (by Exercice 4 2.) the unique ordinal δ such
that ωγ ·m+ δ = α. Notice that δ < ωγ leads to δ < α. By the
induction hypothesis δ admits a Cantor’s normal form:

δ = ωβ1 · n1 + . . .+ ωβk · nk

which furthermore verifies γ > β1. It then suffices to let γ = β0

to obtain:

α = ωβ0 · n0 + ωβ1 · n1 + . . .+ ωβk · nk.

Uniqueness is proved easily by remarking that for all Cantor’s normal forms we
have:

ωβ1 · n1 + . . .+ ωβk · nk < ωβ1 · (n1 + 1).

Thus we deduce that two different normal forms “compute” two different ordi-
nals.

2It necessarily exists since supn∈N ωγ · n = ωβ > α.
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