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Solution Sheet n◦2

Solution of exercise 1:

1. The following formula formalises the definition of natural number

φNat(x) :

(
On(x) ∧ ∀y

(
y ∈ S(x) →

(
y = 0 ∨ ∃z y = S(z)

)))
.

where On(x) is the formula stating that x is a ordinal and S(z) denotes the successor of
z. By the axiom of Infinity, there exists a set A closed under successors, i.e. such that
0 ∈ A ∧ ∀x ∈ A S(x) ∈ A. Let us show that A contains all the natural numbers. Suppose
towards contradiction that there is a natural number n which does not belong to A. Then
n ∈ S(n) but n ̸∈ A, therefore the set C = {k ∈ S(n) | k ̸∈ A} is non empty. Since S(n) is
well ordered by ∈, C admits a minimal element m. Since 0 ∈ A, m ̸= 0. Moreover m ̸= S(y)
for all y since if not there would be y ∈ A with S(y) ̸∈ A. Therefore S(n) is not a natural
number and therefore n is not a natural number.

Thus A contains all the natural numbers. By comprehension, we can therefore form the set
{x ∈ A | φNat(x)} = N.

2. Let us extend the langage by introducing: N, 0, S, ∪, ∩, ⊆, P, ∅ and for all sets a and b
we write

• a× b for the cartesian product of a and of b,

• (a, b) for the set {a, {a, b}},
• ba for the set of functions from a to b.

The recursion principal can thus be stated as:

∀w1 . . . ∀wn

([
ϕ(∅/x) ∧ ∀y ∈ N

(
ϕ(y/x) −→ ϕ

(
S(y)/x

))]
−→ ∀y ∈ N ϕ(y/x)

)
i.e.

∀w1 . . . ∀wn

[([
ϕ(∅/x) ∧ ∀y

[
φNat(y/x) −→

(
ϕ(y/x) −→ ϕ

(
S(y)/x

))])
−→ ∀y

(
φNat(y/x) −→ ϕ(y/x)

)]
.

This formula is verified, since if not it suffices to consider the smallest ordinal which does
not verify it to obtain a contradiction.

We say that the image of an element is well defined if it exists and is unique. A function of
f ∈ ba is well defined if the image of all elements of a is well defined. Thus, f ∈ bN is well
defined if

(a) it is defined on 0 and

(b) if it is well defined on a natural number n, then it is well defined on its successor.

Let us define then + ∈ (NN)N by:

(a) +(0) = {(x, x) | x ∈ N}
(b) +

(
S(n)

)
=

{(
x, S(y)

)
| (x, y) ∈ +(n)

}
Let +(x)(y) := x+ y

Similarly we define · ∈ (NN)N by letting:

(a) ·(0) = {(x, 0) | x ∈ N}
(b) ·

(
S(n)

)
=

{(
x, (y + x)

)
| (x, y) ∈ +(n)

}
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Let ·(x)(y) := x · y. Verify that these operations are commutative, associative and admit a
identity element.

3. Let N2 = N× N. The relation ∼ is:

(a) reflexive;

(b) symmetric;

(c) transitive, since if (n0,m0) ∼ (n1,m1) ∼ (n2,m2) then

• n0 +m1 = n1 +m0 and n1 +m2 = n2 +m1,
• from which it follows that (n0 +m2) + (n1 +m1) = (n2 +m0) + (n1 +m1),
• and thus n0 +m2 = n2 +m2.

By the comprehension schema and the powerset axiom, the quotient set N2/∼ := Z is
well defined. If (n0,m0) ∼ (n′

0,m
′
0) and (n1,m1) ∼ (n′

1,m
′
1) we have then, by definition,

(n0+n1,m0+m1) ∼ (n′
0+n′

1,m
′
0+n′

1), from which we obtain an addition on Z. If (n,m) ∈ N2

we write [n,m] for its equivalence class in Z. N embeds in Z by x −→ [x, 0]. By an abuse of
notation we write −x := [0, x]. Then (Z,+) is a group and (Z,+, ·) is a ring.

4. By defining on N×
(
Z ∖ {[0, 0]}

)
the relation:

(p, [q0, q1]) ≡ (p′, [q′0, q
′
1]) iff [p · q′0, p · q′1] = [p′ · q0, p′ · q1]

and proceeding as above we obtain (Q,+, ·).

5. Let
R := {X ∈ P(Q) | X ̸= ∅ ∧ X ̸= Q ∧ ∀x ∈ X∀y ∈ Q (y < x → y ∈ X)}.

Solution of exercise 2:

1. Let E be a finite set. The proof goes by induction on the number of elements of E.

If E = ∅ then the empty function := ∅ is a choice function on E.

If E has n+ 1 elements: E = {e1, . . . , en+1} then by the induction hypothesis there exists a
choice function f on {e1, . . . , en}. We consider the two following cases:

• if en+1 = ∅ then f is a choice function on E;

• if en+1 ̸= ∅ then let a ∈ en+1 and the function f ′ := f ∪ {(en+1, a)} is a choice function
on E.

2. (AC) ⇒ (DC): Let R be a binary relation on a set E verifying ∀x∃y (x, y) ∈ R and by (AC)
let f be a choice function on P(E).

Let us then consider the sequence (xn)n∈N of elements of E recursively defined by:

• x0 = f(E);

• xn+1 = f({x ∈ E | (xn, x) ∈ R}).

By hypothesis on R, the set {x ∈ E | (xn, x) ∈ R} is never empty, therefore (xn, xn+1) ∈ R
is true for all n ∈ N.

3. (DC) ⇒ (CC): let E be a countable set and (ei)i∈N an enumeration of its elements.

Let C be the set of all the choice functions on the finite subsets of E of the form {e0, . . . , en}.
Notice that by 1. C is non empty. Let R be a binary relation on C defined by

(f, g) ∈ R iff
[
dom(f) ⊊ dom(g) and g ↾ dom(f) = f

]
.

We show that for each function f in C there exists f ′ in C such that (f, f ′) ∈ R. Indeed, let
f be a choice function on {e0, . . . , en}, we have a choice function f ′ on {e0, . . . , en, en+1} as
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defined in 1. Thus there exists a sequence of choice functions (fi)i∈N verifying (fi, fi+1) ∈ R

for each natural number i. Consider then the function f =
⋃
i∈N

(fi)i∈N. This is indeed a

function since the fi’s are coherent. Moreover, since dom(fi) ⊊ dom(fi+1) for each i ∈ N
and E is countable , then dom(f) = E. Thus f is a choice function on E.
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