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Solution Sheet n°2

Solution of exercise 1:

1. The following formula formalises the definition of natural number

ONat(x) : (011(96) Ay (y €S = (y=0vIzy= S(z))))

where On(z) is the formula stating that = is a ordinal and S(z) denotes the successor of
z. By the axiom of Infinity, there exists a set A closed under successors, i.e. such that
0€ ANV € A S(z) € A. Let us show that A contains all the natural numbers. Suppose
towards contradiction that there is a natural number n which does not belong to A. Then
n € S(n) but n ¢ A, therefore the set C = {k € S(n) | k ¢ A} is non empty. Since S(n) is
well ordered by €, C' admits a minimal element m. Since 0 € A, m # 0. Moreover m # S(y)
for all y since if not there would be y € A with S(y) ¢ A. Therefore S(n) is not a natural
number and therefore n is not a natural number.

Thus A contains all the natural numbers. By comprehension, we can therefore form the set
{r € A| pnat(z)} =N.

2. Let us extend the langage by introducing: N, 0, S, U, N, C, P, @ and for all sets a and b
we write

e a x b for the cartesian product of a and of b,
e (a,b) for the set {a,{a,b}},

e b® for the set of functions from a to b.

The recursion principal can thus be stated as:

Vas ...V, ([¢(@/x) A vy € N(o(y/z) — 6(S(y)/2))] — VyeN ¢(y/x)>

ie.
van | ([60/0) Ay [onartu/e) — (s(u/2) — 6(50)/2))] ) — ¥ (enartufa) — ou/a))].

This formula is verified, since if not it suffices to consider the smallest ordinal which does
not verify it to obtain a contradiction.

We say that the image of an element is well defined if it exists and is unique. A function of
f € b* is well defined if the image of all elements of a is well defined. Thus, f € bV is well
defined if

(a) it is defined on 0 and

(b) if it is well defined on a natural number n, then it is well defined on its successor.
Let us define then + € (NM)N by:

(a) +(0) = {(z,2) [z € N}

(b) +(S(n)) = {(2,5W)) | (z,y) € +(n)}
Let +(2)(y) =2+
Similarly we define - € (NY)N by letting:

(a) -(0) = {(2,0) | € N}

(b) +(8(n)) ={(2,(y+2)) | (z,y) € +(n)}



Let -(z)(y) := = - y. Verify that these operations are commutative, associative and admit a
identity element.

3. Let N2 = N x N. The relation ~ is:

(a) reflexive;

(b) symmetric;

(c) transitive, since if (ng, mg) ~ (n1,m1) ~ (ng, ms2) then
e ng+my =ny +mg and ny +mo = ny + myq,
e from which it follows that (ng + msa) + (n1 + m1) = (n2 + mg) + (n1 + my),
e and thus ng + ms = na + mo.

By the comprehension schema and the powerset axiom, the quotient set N?/~ := Z is
well defined. If (ng,mg) ~ (ng,mg) and (n1,my) ~ (n},m}) we have then, by definition,
(no+n1,mo+my) ~ (ny+ny, mh+n}), from which we obtain an addition on Z. If (n,m) € N
we write [n, m] for its equivalence class in Z. N embeds in Z by x — [z,0]. By an abuse of
notation we write —z := [0,z]. Then (Z,+) is a group and (Z,+, -) is a ring.

4. By defining on N x (Z ~ {[0,0]}) the relation:

(pv [(JO7 fh]) = (p/a [qg)vqll}) iff [p : qé)vp : qll] = [p/ : qup/ . ql]
and proceeding as above we obtain (Q, 4+, -).

5. Let
R={XePQ|X#0 AN X#Q AV eXWVWeQ (y<z—yeX)}

Solution of exercise 2:

1. Let E be a finite set. The proof goes by induction on the number of elements of F.
If E = then the empty function := ) is a choice function on E.
If E has n+ 1 elements: E = {ey,...,e,+1} then by the induction hypothesis there exists a
choice function f on {ey,...,e,}. We consider the two following cases:
e if ¢,11 = () then f is a choice function on E;
o if e, 41 # 0 then let a € e,41 and the function f' := fU{(e,11,a)} is a choice function
on F.
2. (AC) = (DC): Let R be a binary relation on a set E verifying Y23y (x,y) € R and by (AC)
let f be a choice function on P(E).

Let us then consider the sequence (z,,)nen of elements of E recursively defined by:
o 1z = f(E);
¢ i1 = f({w € B | (wn,7) € RY).

By hypothesis on R, the set {z € E' | (x,,z) € R} is never empty, therefore (z,,, zny1) € R
is true for all n € N.

3. (DC) = (CC): let E be a countable set and (e;);en an enumeration of its elements.

Let C be the set of all the choice functions on the finite subsets of E of the form {eo,...,e,}.
Notice that by 1. C is non empty. Let R be a binary relation on C' defined by

(f,9) € Riff [dom(f) C dom(g) and g | dom(f) = f}

We show that for each function f in C there exists f’ in C such that (f, ') € R. Indeed, let
f be a choice function on {ey,...,e,}, we have a choice function f’ on {eq,...,en,€nt1} as



defined in 1. Thus there exists a sequence of choice functions (f;);en verifying (f;, fix1) € R

for each natural number i. Consider then the function f = U( fi)ien. This is indeed a
ieN

function since the f;’s are coherent. Moreover, since dom(f;) C dom(f;11) for each i € N

and F is countable , then dom(f) = E. Thus f is a choice function on E.



