

Solution Sheet n°13

Solution of exercise 1:

1. Proof.

(a) $\mathcal{G} \in \mathcal{F}$.

$$\mathcal{G} = \text{fix}_{\mathcal{G}}(\emptyset) = \{\pi \in \mathcal{G} \mid \forall x \in \emptyset \ \check{\pi}(x) = x\}.$$

(b) If $\mathcal{H} \in \mathcal{F}$ and $\mathcal{H} \subseteq \mathcal{K}$, then $\mathcal{K} \in \mathcal{F}$.

This is by the very definition of the fact \mathcal{F} is generated by $\{\text{fix}_{\mathcal{G}}(F) \subseteq \mathcal{G} \mid F \in \mathcal{P}_{\text{fin}}(\mathbb{A})\}$.

(c) If $\mathcal{H} \in \mathcal{F}$ and $\mathcal{K} \in \mathcal{F}$, then $\mathcal{H} \cap \mathcal{K} \in \mathcal{F}$.

Because $\text{fix}_{\mathcal{G}}(F_0) \cap \dots \cap \text{fix}_{\mathcal{G}}(F_n) = \text{fix}_{\mathcal{G}}(F_0 \cup \dots \cup F_n)$.

(d) If $\mathcal{H} \in \mathcal{F}$, then $\pi \circ \mathcal{H} \circ \pi^{-1} \in \mathcal{F}$.

Assume $\text{fix}_{\mathcal{G}}(F) \subseteq \mathcal{H}$. For every $\mathbf{a} \in F$, and $\rho \in \text{fix}_{\mathcal{G}}(F)$, it holds that $\pi \circ \rho \circ \pi^{-1}(\pi(\mathbf{a})) = \pi \circ \rho(\mathbf{a}) = \pi(\mathbf{a})$, so $\pi \circ \text{fix}_{\mathcal{G}}(F) \circ \pi^{-1} = \text{fix}_{\mathcal{G}}(\pi[F])$. But $\pi \circ \text{fix}_{\mathcal{G}}(F) \circ \pi^{-1} \subseteq \pi \circ \mathcal{H} \circ \pi^{-1}$, so we are done.

(e) For each atom $\mathbf{a} \in \mathbb{A}$, $\{\pi \in \mathcal{G} \mid \pi(\mathbf{a}) = \mathbf{a}\} \in \mathcal{F}$.

We have $\{\pi \in \mathcal{G} \mid \pi(\mathbf{a}) = \mathbf{a}\} = \text{fix}_{\mathcal{G}}(\{\mathbf{a}\})$.

□

2. Proof.

- If $S \cap (\mathbb{A} \setminus F) = \emptyset$, then $S \subseteq F$.

- If $S \cap (\mathbb{A} \setminus F) \neq \emptyset$, we show that $S \supseteq (\mathbb{A} \setminus F)$. We fix some $\mathbf{a} \in S \cap (\mathbb{A} \setminus F)$ and consider any $\mathbf{b} \in (\mathbb{A} \setminus F)$ such that $\mathbf{b} \neq \mathbf{a}$. The permutation $\pi_{\mathbf{a} \leftrightarrow \mathbf{b}}$ which exchanges \mathbf{a} and \mathbf{b} , and is the identity everywhere else, belongs to $\text{fix}_{\mathcal{G}}(F)$. Now, $\check{\pi}_{\mathbf{a} \leftrightarrow \mathbf{b}}(S) = S$ implies $\mathbf{a} \in S \iff \check{\pi}_{\mathbf{a} \leftrightarrow \mathbf{b}}(\mathbf{a}) \in S$, which shows that \mathbf{b} belongs to S . Thus $(\mathbb{A} \setminus S) \subseteq F$.

□

3. Proof.

Towards a contradiction, we assume that inside $\mathcal{M}_{\mathcal{F}_0}^{\text{HS}}$ there exists $f : \mathbb{N}_0 \xrightarrow{1-1} \mathbb{A}$. Then we consider the set

$$S = \{f(2n) \in \mathbb{A} \mid n \in \omega\}$$

S belongs to $\mathcal{M}_{\mathcal{F}_0}^{\text{HS}}$ since $\mathcal{M}_{\mathcal{F}_0}^{\text{HS}}$ satisfies **ZFA**; thus, $\text{sym}_{\mathcal{G}}(S) \in \mathcal{F}$, hence there exists some finite $F \subseteq \mathbb{A}$ such that $\text{fix}_{\mathcal{G}}(F) \subseteq \text{sym}_{\mathcal{G}}(S)$.

By previous exercise, S is either finite or co-finite, a contradiction.

□

4. *Proof.* Towards a contradiction, we assume that inside $\mathcal{M}_{F_0}^{\text{HS}}$ there exists $f : \aleph_0 \xrightarrow{1-1} \mathcal{P}(\mathbb{A})$. Since f belongs to $\mathcal{M}_{F_0}^{\text{HS}}$, there exists some finite $F_f \subseteq \mathbb{A}$ such that

$$\text{fix}_{\mathcal{G}}(F_f) \subseteq \text{sym}_{\mathcal{G}}(f).$$

By Point 2. any $S \subseteq \mathbb{A}$ that satisfies $\text{fix}_{\mathcal{G}}(F_f) \subseteq \text{sym}_{\mathcal{G}}(S)$ satisfies also either $S \subseteq F_f$ or $(\mathbb{A} \setminus S) \subseteq F_f$. Since F_f is finite, at most finitely many sets S can satisfy either $S \subseteq F_f$ or $(\mathbb{A} \setminus S) \subseteq F_f$. So, take any $n \in \omega$ such that $f(n) \subseteq \mathbb{A}$ satisfies

$$\text{fix}_{\mathcal{G}}(F_f) \not\subseteq \text{sym}_{\mathcal{G}}(f(n)).$$

Take any $\pi \in \text{fix}_{\mathcal{G}}(F_f) \setminus \text{sym}_{\mathcal{G}}(f(n))$ in order to have both

$$\check{\pi}(f) = f \text{ and } \check{\pi}(f(n)) \neq f(n).$$

Since n belongs to the kernel, $\check{\pi}(n) = n$ holds, which leads to $f(\check{\pi}(n)) = f(n)$.

By construction,

$$\begin{aligned} \check{\pi}(f) &= \check{\pi}\left(\{(k, f(k)) \mid k \in \omega\}\right) \\ &= \left\{\left(\check{\pi}(k), \check{\pi}(f(k))\right) \mid k \in \omega\right\} \\ &= \left\{\left(k, \check{\pi}(f(k))\right) \mid k \in \omega\right\}. \end{aligned}$$

So that, in particular, we have

$$\check{\pi}(f)(n) = \check{\pi}(f(n)),$$

which contradicts $\check{\pi}(f(n)) \neq f(n)$.

□

Solution of exercise 2:

1. *Proof.* For every permutation $\pi \in \mathcal{G}$ and every $(a, b) \in \mathbb{A} \times \mathbb{A}$ we have

$$\begin{aligned} (a, b) \in <_{\mathbf{M}} &\iff a <_{\mathbf{M}} b \\ &\iff \pi(a) <_{\mathbf{M}} \pi(b) \\ &\iff (\pi(a), \pi(b)) \in <_{\mathbf{M}} \\ &\iff \check{\pi}(a, b) \in <_{\mathbf{M}}. \end{aligned}$$

This shows $\check{\pi}(<_{\mathbf{M}}) = <_{\mathbf{M}}$ holds for every $\pi \in \mathcal{G}$, hence $\text{sym}_{\mathcal{G}}(<_{\mathbf{M}}) = \mathcal{G} \in \mathcal{F}$, thus $<_{\mathbf{M}} \in \mathcal{M}$. □

2. (a) *Proof.* Given an permutation $\pi \in \text{fix}_{\mathcal{G}}(F \cap F')$ there exists permutations $\rho_1, \dots, \rho_k \in \text{fix}_{\mathcal{G}}(F)$ and $\rho'_1, \dots, \rho'_k \in \text{fix}_{\mathcal{G}}(F')$ — for some k large enough — such that $\rho_1 \circ \rho'_1 \circ \rho_2 \circ \rho'_2 \circ \dots \circ \rho_k \circ \rho'_k = \pi$. Instead of

giving a very tedious proof, we illustrate this fact by an example: assume $F = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4\}$ and $F' = \{\mathbf{a}_1, \mathbf{b}_2, \mathbf{a}_4\}$ with $F \cap F' = \{\mathbf{a}_1, \mathbf{a}_4\}$ and

$$\mathbf{a}_1 <_{\mathbf{M}} \mathbf{a}_2 <_{\mathbf{M}} \mathbf{b}_2 <_{\mathbf{M}} \mathbf{a}_3 <_{\mathbf{M}} \mathbf{a}_4$$

Assume π satisfies $\mathbf{a}_2 <_{\mathbf{M}} \pi(\mathbf{a}_2) <_{\mathbf{M}} \mathbf{b}_2 <_{\mathbf{M}} \pi(\mathbf{b}_2) <_{\mathbf{M}} \pi(\mathbf{a}_3) <_{\mathbf{M}} \mathbf{a}_3$, then take:

i. ρ' defined by

- on $]-\infty, \mathbf{a}_2]$, $\rho' = \pi$
- on $]\mathbf{a}_2, \mathbf{b}_2[$, $\rho' = \theta$ for some (any) order isomorphism between $]\mathbf{a}_2, \mathbf{b}_2[$ and $]\pi(\mathbf{a}_2), \mathbf{b}_2[$
- $\rho'(\mathbf{b}_2) = \mathbf{b}_2$
- on $]\mathbf{b}_2, \mathbf{a}_3[$, $\rho' = \delta$ for some (any) order isomorphism between $]\mathbf{b}_2, \mathbf{a}_3[$ and $]\mathbf{b}_2, \pi(\mathbf{a}_3)[$
- $\rho'(\mathbf{a}_3) = \pi(\mathbf{a}_3)$
- on $]\mathbf{a}_3, +\infty]$, $\rho' = \pi$

ii. ρ defined by

- on $]-\infty, \pi(\mathbf{a}_2)]$, $\rho = id$
- on $]\pi(\mathbf{a}_2), \mathbf{b}_2[$, $\rho = \pi \circ \theta^{-1}$
- $\rho(\mathbf{b}_2) = \pi(\mathbf{b}_2)$
- on $]\mathbf{b}_2, \mathbf{a}_3[$, $\rho = \pi \circ \delta^{-1}$
- on $]\mathbf{a}_3, +\infty]$, $\rho = id$

Notice that $\rho' \in fix_{\mathcal{G}}(F')$ and $\rho \in fix_{\mathcal{G}}(F)$ and $\rho \circ \rho' = \pi$.

□

(b) *Proof.* Take any $F \in \mathcal{P}_{fin}(\mathbb{A})$ such that $fix_{\mathcal{G}}(F) \subseteq sym_{\mathcal{G}}(x)$ and consider

$$E = \bigcap \{F' \subseteq F \mid fix_{\mathcal{G}}(F') \subseteq sym_{\mathcal{G}}(x)\}.$$

Clearly, $fix_{\mathcal{G}}(E) \subseteq sym_{\mathcal{G}}(x)$ and E is \subseteq -minimal.

□

(c) *Proof.* For any $\pi \in \mathcal{G}$ we have $\check{\pi}(x, E) = (\check{\pi}(x), \check{\pi}(E))$. Moreover, $fix_{\mathcal{G}}(\check{\pi}(E)) = \pi \circ fix_{\mathcal{G}}(E) \circ \pi^{-1}$ and $sym_{\mathcal{G}}(\check{\pi}(x)) = \pi \circ sym_{\mathcal{G}}(x) \circ \pi^{-1}$. So, if E is the \subseteq -least support of x , then $\check{\pi}(E)$ is the \subseteq -least support of $\check{\pi}(x)$. Therefore, we have shown

$$sym_{\mathcal{G}}\left(\{(x, E) \in \mathcal{M} \times \mathcal{P}_{fin}(\mathbb{A}) \mid E \text{ is least support of } x\}\right) = \mathcal{G} \in \mathcal{F}.$$

□

3. *Proof.* Assume $F = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ with $\mathbf{a}_1 <_{\mathbf{M}} \dots <_{\mathbf{M}} \mathbf{a}_n$ and F is a support of S . We have for every $\mathbf{b} \in S$:

(a) if $\mathbf{b} <_{\mathbf{M}} \mathbf{a}_1$, then $\{\mathbf{c} \in \mathbb{A} \mid \mathbf{c} <_{\mathbf{M}} \mathbf{a}_1\} \subseteq S$ holds since for any $\mathbf{c} <_{\mathbf{M}} \mathbf{a}_1$ there exists some mapping $\pi \in fix_{\mathcal{G}}(F)$ which satisfies $\pi(\mathbf{b}) = \mathbf{c}$. So, we have

$$\mathbf{b} \in S \implies \pi(\mathbf{b}) \in \check{\pi}(S) \implies \mathbf{c} \in \check{\pi}(S) = S.$$

(b) if $\mathbf{a}_n <_{\mathbf{M}} \mathbf{b}$, then $\{\mathbf{c} \in \mathbb{A} \mid \mathbf{a}_n <_{\mathbf{M}} \mathbf{c}\} \subseteq S$ since for any $\mathbf{a}_n <_{\mathbf{M}} \mathbf{c}$ there exists some mapping $\pi \in fix_{\mathcal{G}}(F)$ which satisfies $\pi(\mathbf{b}) = \mathbf{c}$. So, we have

$$\mathbf{b} \in S \implies \pi(\mathbf{b}) \in \check{\pi}(S) \implies \mathbf{c} \in \check{\pi}(S) = S.$$

(c) if $\mathbf{c}_i <_{\mathbf{M}} \mathbf{b} <_{\mathbf{M}} \mathbf{c}_{i+1}$ then $\{\mathbf{c} \in \mathbb{A} \mid \mathbf{c}_i <_{\mathbf{M}} \mathbf{c} <_{\mathbf{M}} \mathbf{c}_{i+1}\} \subseteq S$ since for any $\mathbf{c}_i <_{\mathbf{M}} \mathbf{c} <_{\mathbf{M}} \mathbf{c}_{i+1}$ there exists some mapping $\pi \in \text{fix}_{\mathcal{G}}(F)$ which satisfies $\pi(\mathbf{b}) = \mathbf{c}$. So, we have

$$\mathbf{b} \in S \implies \pi(\mathbf{b}) \in \pi(S) \implies \mathbf{c} \in \pi(S) = S.$$

So, there are exactly $n + 1$ such intervals, each of them either entirely belongs to S or is disjoint from S . There are also n atoms in F , each of which may or may not belong to S . So, there are as many sets of the form S as there are mappings from $n + 1 + n$ into $\{0, 1\}$ which makes a total of 2^{2n+1} different subsets of \mathbb{A} .

□

Solution of exercise 3:

1. *Proof.* we write

- I_0 for $]-\infty, \mathbf{a}_1[= \{\mathbf{b} \in \mathbb{A} \mid \mathbf{b} <_{\mathbf{M}} \mathbf{a}_1\}$
- I_k for $\mathbf{a}_k, \mathbf{a}_{k+1}[= \{\mathbf{b} \in \mathbb{A} \mid \mathbf{a}_k <_{\mathbf{M}} \mathbf{b} <_{\mathbf{M}} \mathbf{a}_{k+1}\}$ (any $1 \leq k < n$)
- I_n for $\mathbf{a}_n, +\infty[= \{\mathbf{b} \in \mathbb{A} \mid \mathbf{a}_n <_{\mathbf{M}} \mathbf{b}\}$

We map every sequence $\chi \in {}^{2n+1}2$ to $S_\chi \subseteq \mathbb{A}$ defined by

$$S_\chi = \bigcup \left(\{I_k \subseteq \mathbb{A} \mid 0 \leq k \leq n \wedge \chi(2k) = 1\} \cup \{a_k \in \mathbb{A} \mid 1 \leq k \leq n \wedge \chi(2k-1) = 1\} \right)$$

so that $\{S_\chi \mid \chi \in {}^{2n+1}2\}$ is the set of all subsets of \mathbb{A} which have $F = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ as support.

□

2. *Proof.* We equip $2^{<\omega}$ with the lexicographic ordering $<_{lex}$ defined by

$$\chi <_{lex} \chi' \iff \exists i \left(\chi(i) = 0 \wedge \chi'(i) = 1 \wedge \forall j < i \chi(j) = \chi'(j) \right).$$

For every sequence $\chi \in 2^{<\omega}$ we write $\overset{\leftrightarrow}{\chi}$ for the sequence of same length as χ that satisfies $\chi(n) = 1 - \overset{\leftrightarrow}{\chi}(n)$ (any integer $n < lh(\chi)$). We define a mapping $g : 2^{<\omega} \rightarrow 2^{<\omega}$ by $g(\emptyset) = \emptyset$ and for χ a non-empty sequence,

$$\begin{aligned} g(\chi) &= \chi & \text{if } \chi(0) = 0 \\ &= \overset{\leftrightarrow}{\chi} & \text{if } \chi(0) = 1 \end{aligned}$$

So, $g(\chi)$ is the one among χ and its dual $\overset{\leftrightarrow}{\chi}$ which starts with a 0.

For every integer n and every $\chi \in 2^n$ we write $\chi 0$ for the sequence in 2^{n+1} which satisfies $\chi 0 \upharpoonright n = \chi$ and $\chi 0(n) = 0$.

We define an ordering \prec_n on ${}^{2n+1}2$ by

$$\chi \prec_n \chi' \iff g(\chi 0) <_{lex} g(\chi' 0).$$

and denote by

$$h : 2^{2n+1} \xrightarrow{\text{onto}} 2^{n+1}2$$

$$i \quad \mapsto \quad \chi_{(i,n)}$$

the enumeration of $2^{n+1}2$ along \prec_n . i.e., we have

$$\chi_{(0,n)} \prec_n \chi_{(1,n)} \prec_n \dots \prec_n \chi_{(2^{2n+1}-1,n)}.$$

We finally define the surjection by

$$\begin{aligned} f : \mathcal{P}_{fin}(\mathbb{A}) &\xrightarrow{\text{onto}} \mathcal{P}(\mathbb{A}) \\ F \neq \emptyset &\mapsto S_{\chi_{(|F|,|F|)}} \\ \emptyset &\mapsto \emptyset. \end{aligned}$$

So, if the cardinality of F is n , then $\chi_{(|F|,|F|)}$ is the n^{th} mapping — with regard to the ordering \prec_n — of the form $\chi : 2n+1 \rightarrow \{0, 1\}$.

This mapping belongs to the *Mostowski model* \mathcal{M} , essentially because, as a permutation model, it satisfies **ZFA**.

It remains to show that f is onto. For this purpose, take any $S \in \mathcal{P}(\mathbb{A}) \setminus \emptyset$ with E the \subseteq -least support of S and $|E| = n$. By construction, there exists some integer $i < 2^{2n+1}$ such that $S_{\chi_{(i,n)}} = S$. The way the ordering \prec_n is defined guarantees $i \geq n$: this is because E being the \subseteq -least support of S , there are at least n many 1's in the sequence $\chi_{(i,n)}$ (by construction, $\chi_{(i,n)}(2j-1) = 1$ holds for all $1 \leq i \leq n$). So, if $i = n$, then we are done. Otherwise, it is tedious but straightforward to see that E can be extended into a set $F \supseteq E$ which satisfies $|F| = i$ and $S_{\chi_{(i,i)}} = S_{\chi_{(i,n)}}$, which gives the result.

□