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Solution Sheet n◦13

Solution of exercise 1:

1. Proof.

(a) G ∈ F .
G = fixG (∅) =

{
π ∈ G | ∀x ∈ ∅ π̆ (x) = x

}
.

(b) If H ∈ F and H ⊆ K, then K ∈ F .
This is by the very definition of the fact F is generated by

{
fixG (F ) ⊆

G | F ∈ Pfin(A)
}
.

(c) If H ∈ F and K ∈ F , then H ∩K ∈ F .
Because fixG (F0) ∩ . . . ∩ fixG (Fn) = fixG (F0 ∪ . . . ∪ Fn).

(d) If H ∈ F , then π ◦ H ◦ π−1 ∈ F .
Assume fixG (F ) ⊆ H. For every a ∈ F , and ρ ∈ fixG (F ), it holds that
π ◦ρ ◦π−1(π(a)) = π ◦ρ(a) = π(a), so π ◦fixG (F ) ◦π−1 = fixG (π[F ]).
But π ◦ fixG (F ) ◦ π−1 ⊆ π ◦ H ◦ π−1, so we are done.

(e) For each atom a ∈ A,
{
π ∈ G | π(a) = a

}
∈ F .

We have
{
π ∈ G | π(a) = a

}
= fixG

(
{a}

)
.

2. Proof.

• If S ∩ (A ∖ F ) = ∅, then S ⊆ F .

• If S ∩ (A ∖ F ) ̸= ∅, we show that S ⊇ (A ∖ F ). We fix some
a ∈ S ∩ (A ∖ F ) and consider any b ∈ (A ∖ F ) such that b ̸= a.
The permutation πa↔b which exchanges a and b, and is the iden-
tity everywhere else, belongs to fixG (F ). Now, π̆a↔b(S) = S implies
a ∈ S ⇐⇒ π̆a↔b(a) ∈ S, which shows that b belongs to S. Thus
(A ∖ S) ⊆ F .

3. Proof. Towards a contradiction, we assume that inside MHSF

F0
there exists

f : ℵ0
1−1−−→ A. Then we consider the set

S =
{
f(2n) ∈ A | n ∈ ω

}
S belongs to MHSF

F0
since MHSF

F0
satisfies ZFA; thus, symG (S) ∈ F , hence

there exists some finite F ⊆ A such that fixG (F ) ⊆ symG (S).

By previous exercise, S is either finite or co-finite, a contradiction.
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4. Proof. Towards a contradiction, we assume that inside MHSF

F0
there exists

f : ℵ0
1−1−−→ P(A). Since f belongs to MHSF

F0
, there exists some finite Ff ⊆ A

such that
fixG (Ff ) ⊆ symG (f) .

By Point 2. any S ⊆ A that satisfies fixG (Ff ) ⊆ symG (S) satisfies also
either S ⊆ Ff or (A ∖ S) ⊆ Ff . Since Ff is finite, at most finitely many
sets S can satisfy either S ⊆ Ff or (A∖S) ⊆ Ff . So, take any n ∈ ω such
that f(n) ⊆ A satisfies

fixG (Ff ) ̸⊆ symG

(
f(n)

)
.

Take any π ∈ fixG (Ff )∖ symG

(
f(n)

)
in order to have both

π̆ (f) = f and π̆
(
f(n)

)
̸= f(n).

Since n belongs to the kernel, π̆ (n) = n holds, which leads to f
(
π̆ (n)

)
=

f(n).

By construction,

π̆ (f) = π̆
({(

k, f(k)
)
| k ∈ ω

})
=

{(
π̆ (k) , π̆

(
f(k)

))
| k ∈ ω

}
=

{(
k, π̆

(
f(k)

))
| k ∈ ω

}
.

So that, in particular, we have

π̆ (f) (n) = π̆
(
f(n)

)
,

which contradicts π̆
(
f(n)

)
̸= f(n).

Solution of exercise 2:

1. Proof. For every permutation π ∈ G and every (a,b) ∈ A × A we have

(a,b) ∈<M ⇐⇒ a <M b

⇐⇒ π(a) <M π(b)

⇐⇒
(
π(a), π(b)

)
∈<M

⇐⇒ π̆
(
a,b

)
∈<M .

This shows π̆
(
<M

)
=<M holds for every π ∈ G , hence symG

(
<M

)
=

G ∈ F , thus <M∈ M.

2. (a) Proof. Given an permutation π ∈ fixG (F ∩ F ′) there exists permu-
tations ρ1, . . . , ρk ∈ fixG (F ) and ρ′1, . . . , ρ

′
k ∈ fixG (F

′) — for some k
large enough — such that ρ1 ◦ ρ′1 ◦ ρ2 ◦ ρ′2 ◦ . . . ρk ◦ ρ′k = π. Instead of
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giving a very tedious proof, we illustrate this fact by an example: as-
sume F = {a1, a2, a3, a4} and F ′ = {a1,b2, a4} with F∩F ′ = {a1, a4}
and

a1 <M a2 <M b2 <M a3 <M a4

Assume π satisfies a2 <M π(a2) <M b2 <M π(b2) <M π(a3) <M a3,
then take:

i. ρ′ defined by
• on ]−∞, a2], ρ′ = π

• on ]a2,b2[, ρ′ = θ for some (any) order isomorphism between
]a2,b2[ and ]π(a2),b2[

• ρ′(b2) = b2

• on ]b2, a3[, ρ′ = δ for some (any) order isomorphism between
]b2, a3[ and ]b2, π(a3)[

• ρ′(a3) = π(a3)
• on ]a3,+∞], ρ′ = π

ii. ρ defined by
• on ]−∞, π(a2)], ρ = id

• on ]π(a2),b2[, ρ = π ◦ θ−1

• ρ(b2) = π(b2)

• on ]b2, a3[, ρ = π ◦ δ−1

• on ]a3,+∞], ρ = id

Notice that ρ′ ∈ fixG (F
′) and ρ ∈ fixG (F ) and ρ ◦ ρ′ = π.

(b) Proof. Take any F ∈ Pfin(A) such that fixG (F ) ⊆ symG (x) and
consider

E =
⋂{

F ′ ⊆ F | fixG (F
′) ⊆ symG (x)

}
.

Clearly, fixG (E) ⊆ symG (x) and E is ⊆-minimal.
(c) Proof. For any π ∈ G we have π̆

(
x,E

)
=

(
π̆ (x) , π̆ (E)

)
. Moreover,

fixG (π̆ (E)) = π◦fixG (E)◦π−1 and symG (π̆ (x)) = π◦symG (x)◦π−1.
So, if E is the ⊆-least support of x, then π̆ (E) is the ⊆-least support
of π̆ (x). Therefore, we have shown

symG

({
(x,E) ∈ M× Pfin(A) | E is least support of x

})
= G ∈ F .

3. Proof. Assume F = {a1, . . . , an} with a1 <M . . . <M an and F is a
support of S. We have for every b ∈ S:

(a) if b <M a1, then
{

c ∈ A | c <M a1
}
⊆ S holds since for any c <M a1

there exists some mapping π ∈ fixG (F ) which satisfies π(b) = c. So,
we have

b ∈ S =⇒ π(b) ∈ π̆ (S) =⇒ c ∈ π̆ (S) = S.

(b) if an <M b, then
{

c ∈ A | an <M c
}
⊆ S since for any an <M c

there exists some mapping π ∈ fixG (F ) which satisfies π(b) = c. So,
we have

b ∈ S =⇒ π(b) ∈ π̆ (S) =⇒ c ∈ π̆ (S) = S.
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(c) if ai <M b <M ai+1 then
{

c ∈ A | ai <M c <M ai+1

}
⊆ S since for

any ai <M c <M ai+1 there exists some mapping π ∈ fixG (F ) which
satisfies π(b) = c. So, we have

b ∈ S =⇒ π(b) ∈ π̆ (S) =⇒ c ∈ π̆ (S) = S.

So, there are exactly n + 1 such intervals, each of them either entirely
belongs to S or is disjoint from S. There are also n atoms in F , each of
which may or may not belong to S. So, there are as many sets of the form
S as there are mappings from n+1+n into {0, 1} which makes a total of
22n+1 different subsets of A.

Solution of exercise 3:

1. Proof. we write

• I0 for ]−∞, a1[=
{

b ∈ A | b <M a1
}

• Ik for ]ak, ak+1[=
{

b ∈ A | ak <M b <M ak+1

}
(any 1 ≤ k < n)

• In for ]an,+∞[=
{

b ∈ A | a1 <M b
}

We map every sequence χ ∈ 2n+12 to Sχ ⊆ A defined by

Sχ =
⋃({

Ik ⊆ A | 0 ≤ k ≤ n ∧ χ(2k) = 1
}
∪
{
ak ∈ A | 1 ≤ k ≤ n ∧ χ(2k−1) = 1

})
so that

{
Sχ | χ ∈ 2n+12

}
is the set of all subsets of A which have F =

{a1, . . . , an} as support.

2. Proof. We equip 2<ω with the lexicographic ordering <lex. defined by

χ <lex. χ
′ ⇐⇒ ∃i

(
χ(i) = 0 ∧ χ(i) = 1 ∧ ∀j < i χ(j) = χ′(j)

)
.

For every sequence χ ∈ 2<ω we write
↭
χ for the sequence of same length

as χ that satisfies χ(n) = 1−
↭
χ (n) (any integer n < lh (χ)). We define a

mapping g : 2<ω → 2<ω by g(∅) = ∅ and for χ a non-empty sequence,

g(χ) = χ if χ(0) = 0

=
↭
χ if χ(0) = 1

So, g(χ) is the one among χ and its dual
↭
χ which starts with a 0.

For every integer n and every χ ∈ 2n we write χ0 for the sequence in 2n+1

which satisfies χ0 ↾ n = χ and χ0(n) = 0.

We define an ordering ≺n on 2n+12 by

χ ≺n χ′ ⇐⇒ g(χ0) <lex. g(χ
′0).
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and denote by

h : 22n+1 onto−−−→ 2n+12

i 7→ χ(i,n)

the enumeration of 2n+12 along ≺n. i.e., we have

χ(0,n) ≺n χ(1,n) ≺n . . . ≺n χ(22n+1−1,n).

We finally define the surjection by

f : Pfin(A)
onto−−−→ P(A)

F ̸= ∅ 7→ Sχ(|F |,|F |)

∅ 7→ ∅.

So, if the cardinality of F is n, then χ(|F |,|F |) is the nth mapping — with
regard to the ordering ≺n — of the form χ : 2n+ 1 → {0, 1}.
This mapping belongs to the Mostowski model M, essentially because, as
a permutation model, it satisfies ZFA .

It remains to show that f is onto. For this purpose, take any S ∈ P(A)∖∅
with E the ⊆-least support of S and |E| = n. By construction, there exists
some integer i < 22n+1 such that Sχ(i,n)

= S. The way the ordering ≺n is
defined guarantees i ≥ n: this is because E being the ⊆-least support of
S, there are at least n many 1’s in the sequence χ(i,n) (by construction,
χ(i,n)(2j − 1) = 1 holds for all 1 ≤ i ≤ n). So, if i = n, then we are done.
Otherwise, it is tedious but straightforward to see that E can be extended
into a set F ⊇ E which satisfies |F | = i and Sχ(i,i)

= Sχ(i,n)
, which gives

the result.
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