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Solution Sheet n°13

Solution of exercise 1:

1. Proof.

(a) G e Z.
G=fiuy(0)={red|Vz el % (z)=ux}.
(b) If H €. and H C K, then K € Z.
This is by the very definition of the fact % is generated by { fizgy (F) C
G| F € Phn(A)}.
(¢c) fHe.Z and K €., then HNK € Z#.
Because fizy (Fo) N ...N firg(Fy,) = firg(Fo U...UF,).
(d) fHe F, thenmoHon e Z.
Assume fizg (F) C H. Forevery a € F, and p € fizg(F), it holds that

mopon~Y(m(a)) = wop(a) = m(a), so wo firy(F)or ! = fizy (n[F)).
But 7o fizg(F)on ! CmoHon 1, so we are done.

(e) For each atoma€ A, {r€G|n(a)=a} € .Z.
We have {7 € G | 7(a) = a} = fizy ({a}).

2. Proof.

e IfSN(ANF)=0, then SC F.

e If SN(ANF) # 0, we show that S O (AN F). We fix some
ae SN(ANF) and consider any b € (A~ F) such that b # a.
The permutation ma.p which exchanges a and b, and is the iden-
tity everywhere else, belongs to fizg (F). Now, Taub(S) = S implies
aesS < Taub(@) € S, which shows that b belongs to S. Thus
(AN S)CF.

O

3. Proof. Towards a contradiction, we assume that inside M- there exists

[N 171 A. Then we consider the set

S={f2n)eA|ncw}

S belongs to M3 since MY satisfies ZFA; thus, syme, (S) € #, hence
there exists some finite F' C A such that fizy (F) C symy (5).

By previous exercise, S is either finite or co-finite, a contradiction.



4. Proof. Towards a contradiction, we assume that inside MY%> there exists
f Vg RN P(A). Since f belongs to M’ , there exists some finite Fy C A
such that

fizg (Fy) S symg (f) -

By Point 2. any S C A that satisfies fizg (Fy) C symy (S) satisfies also
either S C Fy or (A~ S) C Fy. Since FY is finite, at most finitely many
sets S can satisfy either S C Fy or (AN S) C Fy. So, take any n € w such
that f(n) C A satisfies

fizg (Fy) € symy (f(”))~

Take any 7 € fizy (Ff) N\ symg (f(n)) in order to have both
7(f)=f and 7(f(n)) # f(n).

Since n belongs to the kernel, # (n) = n holds, which leads to f(# (n)) =
f(n).

By construction,
# () =7 ({(k.S09) | k€ w})
7 (k) 2 (f(R))) | k€ w}
={(kA(rm)) 1 ke w}.

So that, in particular, we have

which contradicts 7 (f(n)) # f(n).

O
Solution of exercise 2:
1. Proof. For every permutation 7 € ¢4 and every (a,b) € A x A we have
(a,b)e<y < a<mb
— w(a) <m 7(b)
<~ (n(a),7(b)) e<m
<~ #(a,b)e<m.
This shows 7“7( <M ) =<m holds for every m € ¢, hence symg( <M ) =
& € F, thus <y € M. O

2. (a) Proof. Given an permutation 7 € fizg,(F' N F’) there exists permu-
tations p1,...,px € fity(F) and pi, ..., p) € fizgy(F') — for some k
large enough — such that p1 0 p} opsop)o...pyop) =m. Instead of



giving a very tedious proof, we illustrate this fact by an example: as-
sume F' = {al, ds, as, 3.4} and F/ = {al, b, 34} with FNF' = {al, 3.4}
and
a; <y a2 <y bs <m a3 <n Ay
Assume 7 satisfies ay <pp 7T(a2) <M b2 <M 7T(b2) <M 71'(8.3) <M a3,
then take:
i. p' defined by
eon|—o0,a)l,p=m
e on |ag, by, p’ = 6 for some (any) order isomorphism between
]3.2, bg[ and ]7‘(‘(3.2), bg[
e p'(b2) = Db,
e on |by,a3], p’ = 0 for some (any) order isomorphism between
]bg, ag[ and ]bg, 7r(a3)[
o 0/(as) = m(as)
e on Jag,+oo], p =7
ii. p defined by
e on | —oo,m(as)], p=1id
on |m(az),baf, p=mo0 07!
p(b) = m(b)
e on |by,a3[, p=mod!
e on Jag,+oo], p=id
Notice that p’ € fizy,(F') and p € firg(F) and po p’ = 7.

O

(b) Proof. Take any F' € Pg,(A) such that fizy(F) C symy (z) and
consider

E=({F' CF|fizg(F)) C symy (x) }
Clearly, fizg,(E) C symy (z) and E is C-minimal. O
(c) Proof. For any ™ € & we have #(z,E) = (7 (z), % (E) ). Moreover,
fizg (7 (E)) = mo firg (E)or ™" and symy (7 (x)) = mosymy (z)om~".
So, if E is the C-least support of z, then 7 (E) is the C-least support
of 7 (z). Therefore, we have shown

symey ({(a:,E) € M x Pgn(A) | E is least support of m}) =9Yec7.

O

3. Proof. Assume F = {az,...,an} with a; <pm ... <m @, and F is a
support of S. We have for every b € S:

(a) if b <pgr @g, then {C eAlc<m al} C S holds since for any ¢ <pp a;
there exists some mapping 7 € fizg (F') which satisfies 7(b) = ¢. So,
we have

beS=mnb)er(S)=cex(S)=25.

(b) if @, <m b, then {c € A|a, <m ¢} C S since for any a, <m ¢
there exists some mapping 7 € fizg (F') which satisfies 7(b) = ¢. So,
we have

beS=nb)er(S)=cex(S)=25.



(c) if & <p b <m ;41 then {c € A|a; <p € <m @1} C S since for
any a; <y C <p @;4+1 there exists some mapping 7w € fizg (F') which
satisfies w(b) = ¢. So, we have

beS=nb)ex(S) =cen(S)==5.

So, there are exactly n + 1 such intervals, each of them either entirely
belongs to S or is disjoint from S. There are also n atoms in F', each of
which may or may not belong to S. So, there are as many sets of the form
S as there are mappings from n + 1 +n into {0, 1} which makes a total of
22n+1 different subsets of A.

O

Solution of exercise 3:

1. Proof. we write
o Ipfor] —oo,a1[={beA|b<ypa}
o I for Jay,apr1[={b €A]ar <m b <m ap1} (any 1 <k <n)
e I, for Ja,,+oo[={b e Ala; <m b}

We map every sequence x € 2"12 to S, C A defined by
SX:U<{Ik CAL0<k<nAx(2k) =1 0{ay €A|1§k§n/\x(2k—1):1})

so that {S) | x € ?"*12} is the set of all subsets of A which have F =
{ai,...,a,} as support.

O

2. Proof. We equip 2<% with the lexicographic ordering <,, defined by
X< X = 3 (XD =0 A x(@) =1 A ¥ < x(G) = X'()

For every sequence x € 2<% we write X for the sequence of same length

P

as y that satisfies x(n) = 1— X (n) (any integer n < lh(x)). We define a
mapping g : 2<% — 2<% by ¢()) = @ and for x a non-empty sequence,

gx) = x if x(0)=0
= X if x(0) =1

So, g(x) is the one among y and its dual 3? which starts with a 0.

For every integer n and every y € 2" we write x0 for the sequence in 2"+!
which satisfies x0 [ n = x and x0(n) = 0.

We define an ordering <,, on 2"*12 by

X =<n X = g(x0) <w. 9(x'0).



and denote by
J - 92n+l ©nio 2n41g

¢ = X(im)
the enumeration of 2"*12 along <,,. i.e., we have
X(0,n) =n X(1,n) =n -+ =n X(22n+1-1,n)-
We finally define the surjection by

onto

f: Pﬁn(A) — P(A)
F # (Z) = SX(\F\,\F\)
0 — 0.

So, if the cardinality of F is n, then x(jp|, r) is the n'* mapping — with
regard to the ordering <,, — of the form y : 2n +1 — {0,1}.

This mapping belongs to the Mostowski model M., essentially because, as
a permutation model, it satisfies ZFA .

It remains to show that f is onto. For this purpose, take any S € P(A)\0
with E the C-least support of S and |E| = n. By construction, there exists
some integer 7 < 2***! such that Sy, | = S. The way the ordering <,, is
defined guarantees ¢ > n: this is because E being the C-least support of
S, there are at least n many 1’s in the sequence x(; ) (by construction,
X(i,n) (2§ —1) = 1 holds for all 1 <i < n). So, if i = n, then we are done.
Otherwise, it is tedious but straightforward to see that E can be extended
into a set I' O E which satisfies || =i and S, ,, = Sy, ,,, which gives
the result.

O



