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Solution Sheet n◦12

Solution of exercise 1:

1. The result is trivial when A is empty, for B must be empty as well. So,

we assume A and B are non-empty. Since A
onto←−−−←−−−

≲B, take any g : B
onto−−−→ A

and form {g−1(a) | a ∈ A} which is a non-empty set of non-empty sets.
By AC, one obtains a choice function c which for each a ∈ A provides a
unique c(a) ∈ B such that c(a) ∈ g−1(a). By construction, c : A

1−1−−→ B

witnesses that A
1− 1−−−→−−−→

≲B.

2. This is immediate from the previous result and the Cantor Schroeder
Bernstein Theorem.

3. (⇐=) Given any family (Ai)i∈I of non-empty disjoint sets, we obtain a
choice function f : I →

⋃
i∈I

Ai by letting g :
⋃
i∈I

Ai
onto−−−→ I be defined

as g(a) = i iff a ∈ Ai and f : I
1−1−−→

⋃
i∈I

Ai be any function such that

g ◦ f = id — which guarantees that f(i) ∈ Ai holds for every i ∈ I.

(=⇒) The result is trivial when A is empty, for B must be empty as well.
So, we assume A and B are non-empty. Since g : B

onto−−−→ A, form
{g−1(a) | a ∈ A} which is a non-empty set of non-empty sets. By
AC, one obtains a choice function f which for each a ∈ A provides a
unique f(a) ∈ g−1(a). By construction, f : A

1−1−−→ B and g ◦ f = id
both hold.

4. Assume f : A
1−1−−→ B, then take any element a′ ∈ A and define g : B

onto−−−→
A by g(x) = a′ if x /∈ f [A], and g(x) = a if f(a) = x. The fact that f is
1-1 guarantees that g is onto.

5. Given f : A
1−1−−→ B, define g : P(A)

1−1−−→ P(B) by g(C) = f [C].

Solution of exercise 2: We consider the following set:

W = {(B, <B) ⊆ A× (A×A) | (B,<B) is a well-ordering}.

Notice that this set is non-empty since the empty ordering (∅,∅) belongs to W.
We then consider the functional F :W → On defined by

F
(
(B, <B)

)
= the unique ordinal β s.t. (β, ∈β) ≃ (B, <B).

We set
α = sup

{
F
(
(B, <B)

)
+ 1 | (B, <B) ∈ W

}
.

It turns out that α ̸
1− 1−−−→−−−→

≲A holds; for otherwise if we let f : α
1−1−−→ A and set

B = f [α] and <B= {
(
f(γ),f(δ)

)
| γ < δ < α},
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we then obtain (B,<B) ∈ W, hence α ∈ F[W], contradicting α > F
(
(B, <B)

)
.

Solution of exercise 3:

1. R ≃ ωω ≃ ω2: By Cantor Schroeder Bernstein Theorem, we only need to

show R
1− 1−−−→−−−→

≲ ωω
1− 1−−−→−−−→

≲ ω2
1− 1−−−→−−−→

≲R.

R
1− 1−−−→−−−→

≲ ωω: assume every real r is written in base 10 as

• in case 0 ≤ r: r = + e0 e1 e2 . . . ek, d0 d1 d2 d3 . . . dn dn+1 dn+2 . . . . . .

• in case r < 0: r = − e0 e1 e2 . . . ek, d0 d1 d2 d3 . . . dn dn+1 dn+2 . . . . . .

where

(a) k is finite,
(b) for each i ≤ k and each j ∈ N, ei, dj ∈ {0,1,2,3,4,5,6,7,8,9}
(c) e0 = 0 =⇒ k = 0,
(d) ⟨dj | j ∈ N⟩ satisfies ∀j ∃j′ > j dj ̸= 9. i.e., it is not ultimately

constant with value 9. This means for instance that the real
0,23999999999999 . . . is rather represented by +0,24000000000000 . . .
and the integer −3 by −3,00000000000 . . ..

We describe the following mapping f : R 1−1−−→ ωω by

• If r = + e0 e1 e2 . . . ek, d0 d1 d2 d3 . . . dn dn+1 dn+2 . . . . . ., then

f(r) = ⟨8,1 + e0,1 + e1, . . . ,1 + ek,0,1 + d0, 1 + d1, . . . , 1 + dn, 1 + dn+1, . . .⟩ .

• If r = +,e0,e1,e2 . . . ek,,d0, d1, d2, d3 . . . dn, dn+1, dn+2 . . . . . ., then

f(r) = ⟨9,1 + e0,1 + e1, . . . ,1 + ek,0,1 + d0, 1 + d1, . . . , 1 + dn, 1 + dn+1, . . .⟩ .

ωω
1− 1−−−→−−−→

≲ ω2: we define g : ωω
1−1−−→ ω2 by g

(
⟨ai | i ∈ ω⟩

)
= 10 . . . 0︸ ︷︷ ︸

a0

1 0 . . . 0︸ ︷︷ ︸
a1

1 0 . . . 0︸ ︷︷ ︸
a2

1 . . .

ω2
1− 1−−−→−−−→

≲R: we define h : ω2
1−1−−→ R by g

(
⟨ai | i ∈ ω⟩

)
= 0,a0 a1 a2 . . . an an+1 . . . . . .

2. ωR ≃ ω

(ωω) ≃ ω

(ω2): it is enough to show that whenever A
1− 1−−−→−−−→

≲B holds

for non-empty sets A and B, then ωA
1− 1−−−→−−−→

≲ ωB holds as well. So, given any
f : A

1−1−−→ B, define h : ωA
1−1−−→ ωB by

h
(
⟨ai | i ∈ ω⟩

)
= ⟨f(ai) | i ∈ ω⟩ .

3. ω2 ≃ ω

(ω2): ω2
1− 1−−−→−−−→

≲
ω

(ω2) is obvious. We show
ω

(ω2)
1− 1−−−→−−−→

≲ ω2 by providing
f :

ω

(ω2)
1−1−−→ ω2 defined by f

(〈
⟨ai,j | j < ω⟩ | i < ω

〉)
= ⟨bk | k < ω⟩

where bk = ai,j iff k = (i+j)(i+j+1)
2 + i.

(The mapping (i,j) 7→ (i+j)(i+j+1)
2 + i is a bijection between N × N and

N, but any other bijection would work as well.)

Solution of exercise 4:
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1. We construct f : ω2
onto−−−→ ω1.

(a) we define a mapping ⌜ ⌝ : N×N 1−1−−→ N by ⌜n,m⌝ = 2n+1 · 3m+1.
(b) For each s = ⟨ai | i ∈ ω⟩ ∈ ω2 we set

• if ∃i ∀j ≥ i aj = 0, then f(s) = i for the least such i;
• if ∀i ∃j ≥ i aj = 1, then

– if ∃i ∀n ∀m (ai = 1 ∧ ⌜n,m⌝ ̸= i), then f(s) = 0

– if ∀i ∃n ∃m (ai = 1 −→ ⌜n,m⌝ = i), then

∗ if
(
N,{(n,m) | a⌜n,m⌝ = 1}

)
is not a well-ordering, then

f(s) = 0;

∗ if
(
N,{(n,m) | a⌜n,m⌝ = 1}

)
is a well-ordering, then f(s) =

α where α is the unique ordinal isomorphic to
(
N,{(n,m) |

a⌜n,m⌝ = 1}
)
. Notice that α ∈ ω1 since α is countable.

To show that f is onto, it is enough to show that for every
infinite countable ordinal α there exists some s ∈ ω2 such
that f(s) = α. For this, notice that α being countable, any
bijection h : N bij.←−→ α induces a well-ordering on N of type
α. Namely,

(
N, <α

)
where <α= {(n,m) | h(n) < h(m)}.

By construction, s = ⟨ai | i ∈ ω⟩ ∈ ω2 defined by ai = 1 iff
there exists (n,m) ∈<α such that ⌜n,m⌝ = i.

2. We construct f : ω2
onto−−−→ ω2 ·∪ω1. From the previous case, we are granted

with a mapping f ′ : ω2
onto−−−→ ω1. Given any s = ⟨ai | i ∈ ω⟩ ∈ ω2 we

define f(s) as follows:

• if a0 = 0, then f(s) =
⟨ai+1 | i ∈ ω⟩;

• if a0 = 1, then f(s) =
f ′( ⟨ai+1 | i ∈ ω⟩

)
.

Solution of exercise 5:

1. Notice first that since R ≃ ωR ≃ ωω ≃ ω

(ωω) ≃ ω2 ≃ ω

(ω2) holds, the
assumption is equivalent to saying that any of these sets is is a countable
union of countable sets. So, we assume that it is the case of

ω

(ω2). i.e.,
there exists (Gn)n<ω where for each integer n, Gn is countable and

ω

(ω2) =
⋃
n<ω

Gn.

Towards a contradiction, we assume that ω1

1− 1−−−→−−−→

≲ ω2 holds, so that there
exists some f : ω1

1−1−−→ ω2. We set

Hn = {s ∈ ω2 | ∃S ∈ Gn ∃k < ω S(k) = s}.

We notice that, for each integer n, we have Hn

1− 1−−−→−−−→

≲ ω. Indeed, we take any
g : Gn

1−1−−→ ω and construct I : Hn
1−1−−→ ω by I(s) = (i+j)(i+j+1)

2 + i
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where i is the least integer such that there exists S ∈ Gn with g(S) = i
and there exists some k < ω S(k) = n; and j is the least such k.

We then define h : ω → ω2 so that for each integer n we have

h(n) = f(αn) where αn = min{α ∈ ω1 | f(α) /∈ Hn}.

By definition, h ∈ ω

(ω2) =
⋃
n<ω

Gn, hence for some integer n we have

h ∈ Gn. As usual with this kind of diagonal argument, it is enough to
consider h(n) to obtain a contradiction for we end up with

• h(n) ∈ Hn because h ∈ Gn • h(n) /∈ Hn because h(n) =
f(αn) /∈ Hn.

2. The statements R
1− 1−−−→−−−→

��≲ R and R
1− 1−−−→−−−→

≲R are equivalent to the existence of some

partition C of ω2 such that ω2
1− 1−−−→−−−→

≲ C and C
1− 1−−−→−−−→

��≲
ω2. Indeed, if R � R holds,

then take any f : R bij.←−→ ω2 and define C = {f [p] | p ∈ R}. Clearly C is
a partition of ω2 that satisfies R ≃ C, which yields ω2 � C since one has
ω2 ≃ R � R ≃ C. Similarly, if ω2 � C holds, then take any g : ω2

bij.←−→ R
in order to obtain the partition R = {f [p] | p ∈ C} that satisfies C ≃ R
which leads to R � R since one has R ≃ ω2 � C ≃ R.

We prove that there exists some partition C of ω2 such that ω2 � C. For

this, we make use of ω2 ·∪ ω1

onto←−−−←−−−

≲ ω2 holds and take any f : ω2
onto−−−→ ω2 ·∪ ω1

to form the partition

C =
{
{s ∈ ω2 | f(s) = x} | x ∈ ω2 ·∪ ω1

}
=

{
f−1

[
{x}

]
| x ∈ ω2 ·∪ ω1

}
.

We obtain

ω2
1− 1−−−→−−−→

≲ C: The mapping g : ω2 −−→ C defined by

g(x) = {s ∈ ω2 | f(s) = x}

= f−1
[
{x}

]
is obviously 1− 1, hence witnesses that ω2

1− 1−−−→−−−→

≲ C holds.

C
1− 1−−−→−−−→

��≲
ω2: Towards a contradiction, we assume C

1− 1−−−→−−−→

≲ ω2. We notice that

ω1

1− 1−−−→−−−→

≲ C holds for the following mapping is 1-1: h : ω1 −−→ C defined
by

h(x) = {s ∈ ω2 | f(s) = x}

= f−1
[
{x}

]
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Therefore, we have both

ω1

1− 1−−−→−−−→

≲ C and C
1− 1−−−→−−−→

≲ ω2

which leads to ω1

1− 1−−−→−−−→

≲ ω2, contradicting Exercise 5 (1).
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