

Solution Sheet n°12

Solution of exercise 1:

1. The result is trivial when A is empty, for B must be empty as well. So, we assume A and B are non-empty. Since $A \not\lesssim B$, take any $g : B \xrightarrow{\text{onto}} A$ and form $\{g^{-1}(a) \mid a \in A\}$ which is a non-empty set of non-empty sets. By **AC**, one obtains a choice function c which for each $a \in A$ provides a unique $c(a) \in B$ such that $c(a) \in g^{-1}(a)$. By construction, $c : A \xrightarrow{1-1} B$ witnesses that $A \not\lesssim B$.
2. This is immediate from the previous result and the Cantor Schroeder Bernstein Theorem.
3. (\Leftarrow) Given any family $(A_i)_{i \in I}$ of non-empty disjoint sets, we obtain a choice function $f : I \rightarrow \bigcup_{i \in I} A_i$ by letting $g : \bigcup_{i \in I} A_i \xrightarrow{\text{onto}} I$ be defined as $g(a) = i$ iff $a \in A_i$ and $f : I \xrightarrow{1-1} \bigcup_{i \in I} A_i$ be any function such that $g \circ f = id$ — which guarantees that $f(i) \in A_i$ holds for every $i \in I$.
(\Rightarrow) The result is trivial when A is empty, for B must be empty as well. So, we assume A and B are non-empty. Since $g : B \xrightarrow{\text{onto}} A$, form $\{g^{-1}(a) \mid a \in A\}$ which is a non-empty set of non-empty sets. By **AC**, one obtains a choice function f which for each $a \in A$ provides a unique $f(a) \in g^{-1}(a)$. By construction, $f : A \xrightarrow{1-1} B$ and $g \circ f = id$ both hold.
4. Assume $f : A \xrightarrow{1-1} B$, then take any element $a' \in A$ and define $g : B \xrightarrow{\text{onto}} A$ by $g(x) = a'$ if $x \notin f[A]$, and $g(x) = a$ if $f(a) = x$. The fact that f is 1-1 guarantees that g is onto.
5. Given $f : A \xrightarrow{1-1} B$, define $g : \mathcal{P}(A) \xrightarrow{1-1} \mathcal{P}(B)$ by $g(C) = f[C]$.

Solution of exercise 2:

We consider the following set:

$$\mathcal{W} = \{(B, <_B) \subseteq A \times (A \times A) \mid (B, <_B) \text{ is a well-ordering}\}.$$

Notice that this set is non-empty since the empty ordering (\emptyset, \emptyset) belongs to \mathcal{W} . We then consider the functional $\mathbf{F} : \mathcal{W} \rightarrow \mathbf{On}$ defined by

$$\mathbf{F}((B, <_B)) = \text{ the unique ordinal } \beta \text{ s.t. } (\beta, \in_\beta) \simeq (B, <_B).$$

We set

$$\alpha = \sup \left\{ \mathbf{F}((B, <_B)) + 1 \mid (B, <_B) \in \mathcal{W} \right\}.$$

It turns out that $\alpha \not\lesssim A$ holds; for otherwise if we let $f : \alpha \xrightarrow{1-1} A$ and set

$$B = f[\alpha] \text{ and } <_B = \{(f(\gamma), f(\delta)) \mid \gamma < \delta < \alpha\},$$

we then obtain $(B, <_B) \in \mathcal{W}$, hence $\alpha \in \mathbf{F}[\mathcal{W}]$, contradicting $\alpha > \mathbf{F}((B, <_B))$.

Solution of exercise 3:

1. $\mathbb{R} \simeq {}^\omega\omega \simeq {}^\omega 2$: By Cantor Schroeder Bernstein Theorem, we only need to show $\mathbb{R} \stackrel{1-1}{\sim} {}^\omega\omega \stackrel{1-1}{\sim} {}^\omega 2 \stackrel{1-1}{\sim} \mathbb{R}$.

$\mathbb{R} \stackrel{1-1}{\sim} {}^\omega\omega$: assume every real r is written in base 10 as

- in case $0 \leq r$: $r = +e_0 e_1 e_2 \dots e_k, d_0 d_1 d_2 d_3 \dots d_n d_{n+1} d_{n+2} \dots \dots$
- in case $r < 0$: $r = -e_0 e_1 e_2 \dots e_k, d_0 d_1 d_2 d_3 \dots d_n d_{n+1} d_{n+2} \dots \dots$

where

- (a) k is finite,
- (b) for each $i \leq k$ and each $j \in \mathbb{N}$, $e_i, d_j \in \{0,1,2,3,4,5,6,7,8,9\}$
- (c) $e_0 = 0 \implies k = 0$,
- (d) $\langle d_j \mid j \in \mathbb{N} \rangle$ satisfies $\forall j \exists j' > j \ d_j \neq 9$. i.e., it is not ultimately constant with value 9. This means for instance that the real $0,23999999999999 \dots$ is rather represented by $+0,24000000000000 \dots$ and the integer -3 by $-3,000000000000 \dots$

We describe the following mapping $f : \mathbb{R} \xrightarrow{1-1} {}^\omega\omega$ by

- If $r = +e_0 e_1 e_2 \dots e_k, d_0 d_1 d_2 d_3 \dots d_n d_{n+1} d_{n+2} \dots \dots$, then

$$f(r) = \langle 8, 1 + e_0, 1 + e_1, \dots, 1 + e_k, 0, 1 + d_0, 1 + d_1, \dots, 1 + d_n, 1 + d_{n+1}, \dots \rangle.$$

- If $r = +e_0, e_1, e_2 \dots e_k, d_0, d_1, d_2, d_3 \dots d_n, d_{n+1}, d_{n+2} \dots \dots$, then

$$f(r) = \langle 9, 1 + e_0, 1 + e_1, \dots, 1 + e_k, 0, 1 + d_0, 1 + d_1, \dots, 1 + d_n, 1 + d_{n+1}, \dots \rangle.$$

${}^\omega\omega \stackrel{1-1}{\sim} {}^\omega 2$: we define $g : {}^\omega\omega \xrightarrow{1-1} {}^\omega 2$ by $g(\langle a_i \mid i \in \omega \rangle) = 1 \underbrace{0 \dots 0}_{a_0} 1 \underbrace{0 \dots 0}_{a_1} 1 \underbrace{0 \dots 0}_{a_2} 1 \dots$

${}^\omega 2 \stackrel{1-1}{\sim} \mathbb{R}$: we define $h : {}^\omega 2 \xrightarrow{1-1} \mathbb{R}$ by $g(\langle a_i \mid i \in \omega \rangle) = 0, a_0 a_1 a_2 \dots a_n a_{n+1} \dots \dots$

2. ${}^\omega\mathbb{R} \simeq {}^\omega({}^\omega\omega) \simeq {}^\omega({}^\omega 2)$: it is enough to show that whenever $A \stackrel{1-1}{\sim} B$ holds for non-empty sets A and B , then ${}^\omega A \stackrel{1-1}{\sim} {}^\omega B$ holds as well. So, given any $f : A \xrightarrow{1-1} B$, define $h : {}^\omega A \xrightarrow{1-1} {}^\omega B$ by

$$h(\langle a_i \mid i \in \omega \rangle) = \langle f(a_i) \mid i \in \omega \rangle.$$

3. ${}^\omega 2 \simeq {}^\omega({}^\omega 2)$: ${}^\omega 2 \stackrel{1-1}{\sim} {}^\omega({}^\omega 2)$ is obvious. We show ${}^\omega({}^\omega 2) \stackrel{1-1}{\sim} {}^\omega 2$ by providing $f : {}^\omega({}^\omega 2) \xrightarrow{1-1} {}^\omega 2$ defined by $f\left(\langle \langle a_{i,j} \mid j < \omega \rangle \mid i < \omega \rangle\right) = \langle b_k \mid k < \omega \rangle$ where $b_k = a_{i,j}$ iff $k = \frac{(i+j)(i+j+1)}{2} + i$.

(The mapping $(i,j) \mapsto \frac{(i+j)(i+j+1)}{2} + i$ is a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} , but any other bijection would work as well.)

Solution of exercise 4:

1. We construct $f : {}^\omega 2 \xrightarrow{\text{onto}} \omega_1$.

(a) we define a mapping $\lceil \quad \rceil : \mathbb{N} \times \mathbb{N} \xrightarrow{1-1} \mathbb{N}$ by $\lceil n, m \rceil = 2^{n+1} \cdot 3^{m+1}$.

(b) For each $s = \langle a_i \mid i \in \omega \rangle \in {}^\omega 2$ we set

- if $\exists i \forall j \geq i a_j = 0$, then $f(s) = i$ for the least such i ;
- if $\forall i \exists j \geq i a_j = 1$, then
 - if $\exists i \forall n \forall m (a_i = 1 \wedge \lceil n, m \rceil \neq i)$, then $f(s) = 0$
 - if $\forall i \exists n \exists m (a_i = 1 \rightarrow \lceil n, m \rceil = i)$, then
 - * if $(\mathbb{N}, \{(n, m) \mid a_{\lceil n, m \rceil} = 1\})$ is not a well-ordering, then $f(s) = 0$;
 - * if $(\mathbb{N}, \{(n, m) \mid a_{\lceil n, m \rceil} = 1\})$ is a well-ordering, then $f(s) = \alpha$ where α is the unique ordinal isomorphic to $(\mathbb{N}, \{(n, m) \mid a_{\lceil n, m \rceil} = 1\})$. Notice that $\alpha \in \omega_1$ since α is countable.

To show that f is onto, it is enough to show that for every infinite countable ordinal α there exists some $s \in {}^\omega 2$ such that $f(s) = \alpha$. For this, notice that α being countable, any bijection $h : \mathbb{N} \xrightarrow{\text{bij}} \alpha$ induces a well-ordering on \mathbb{N} of type α . Namely, $(\mathbb{N}, <_\alpha)$ where $<_\alpha = \{(n, m) \mid h(n) < h(m)\}$. By construction, $s = \langle a_i \mid i \in \omega \rangle \in {}^\omega 2$ defined by $a_i = 1$ iff there exists $(n, m) \in <_\alpha$ such that $\lceil n, m \rceil = i$.

2. We construct $f : {}^\omega 2 \xrightarrow{\text{onto}} {}^\omega 2 \cup \omega_1$. From the previous case, we are granted with a mapping $f' : {}^\omega 2 \xrightarrow{\text{onto}} \omega_1$. Given any $s = \langle a_i \mid i \in \omega \rangle \in {}^\omega 2$ we define $f(s)$ as follows:

- if $a_0 = 0$, then $f(s) = \langle a_{i+1} \mid i \in \omega \rangle$;
- if $a_0 = 1$, then $f(s) = f'(\langle a_{i+1} \mid i \in \omega \rangle)$.

Solution of exercise 5:

1. Notice first that since $\mathbb{R} \simeq {}^\omega \mathbb{R} \simeq {}^\omega \omega \simeq {}^\omega ({}^\omega \omega) \simeq {}^\omega 2 \simeq {}^\omega ({}^\omega 2)$ holds, the assumption is equivalent to saying that any of these sets is a countable union of countable sets. So, we assume that it is the case of ${}^\omega ({}^\omega 2)$. i.e., there exists $(G_n)_{n < \omega}$ where for each integer n , G_n is countable and

$${}^\omega ({}^\omega 2) = \bigcup_{n < \omega} G_n.$$

Towards a contradiction, we assume that $\omega_1 \xrightarrow{1-1} {}^\omega 2$ holds, so that there exists some $f : \omega_1 \xrightarrow{1-1} {}^\omega 2$. We set

$$H_n = \{s \in {}^\omega 2 \mid \exists S \in G_n \ \exists k < \omega \ S(k) = s\}.$$

We notice that, for each integer n , we have $H_n \xrightarrow{1-1} \omega$. Indeed, we take any $g : G_n \xrightarrow{1-1} \omega$ and construct $\mathcal{I} : H_n \xrightarrow{1-1} \omega$ by $\mathcal{I}(s) = \frac{(i+j)(i+j+1)}{2} + i$

where i is the least integer such that there exists $S \in G_n$ with $g(S) = i$ and there exists some $k < \omega$ $S(k) = n$; and j is the least such k .

We then define $h : \omega \rightarrow {}^\omega 2$ so that for each integer n we have

$$h(n) = f(\alpha_n) \quad \text{where} \quad \alpha_n = \min\{\alpha \in \omega_1 \mid f(\alpha) \notin H_n\}.$$

By definition, $h \in {}^\omega({}^\omega 2) = \bigcup_{n < \omega} G_n$, hence for some integer n we have $h \in G_n$. As usual with this kind of diagonal argument, it is enough to consider $h(n)$ to obtain a contradiction for we end up with

- $h(n) \in H_n$ because $h \in G_n$
- $h(n) \notin H_n$ because $h(n) = f(\alpha_n) \notin H_n$.

2. The statements $\mathcal{R} \not\underset{\text{1-1}}{\sim} \mathbb{R}$ and $\mathbb{R} \not\underset{\text{1-1}}{\sim} \mathcal{R}$ are equivalent to the existence of some partition \mathcal{C} of ${}^\omega 2$ such that ${}^\omega 2 \not\underset{\text{1-1}}{\sim} \mathcal{C}$ and $\mathcal{C} \not\underset{\text{1-1}}{\sim} {}^\omega 2$. Indeed, if $\mathbb{R} \not\underset{\text{1-1}}{\sim} \mathcal{R}$ holds, then take any $f : \mathbb{R} \xrightarrow{\text{bij.}} {}^\omega 2$ and define $\mathcal{C} = \{f[p] \mid p \in \mathcal{R}\}$. Clearly \mathcal{C} is a partition of ${}^\omega 2$ that satisfies $\mathcal{R} \simeq \mathcal{C}$, which yields ${}^\omega 2 \not\underset{\text{1-1}}{\sim} \mathcal{C}$ since one has ${}^\omega 2 \simeq \mathbb{R} \not\underset{\text{1-1}}{\sim} \mathcal{R} \simeq \mathcal{C}$. Similarly, if ${}^\omega 2 \not\underset{\text{1-1}}{\sim} \mathcal{C}$ holds, then take any $g : {}^\omega 2 \xrightarrow{\text{onto}} \mathbb{R}$ in order to obtain the partition $\mathcal{R} = \{g[p] \mid p \in \mathcal{C}\}$ that satisfies $\mathcal{C} \simeq \mathcal{R}$ which leads to $\mathbb{R} \not\underset{\text{1-1}}{\sim} \mathcal{R}$ since one has $\mathbb{R} \simeq {}^\omega 2 \not\underset{\text{1-1}}{\sim} \mathcal{C} \simeq \mathcal{R}$.

We prove that there exists some partition \mathcal{C} of ${}^\omega 2$ such that ${}^\omega 2 \not\underset{\text{1-1}}{\sim} \mathcal{C}$. For this, we make use of ${}^\omega 2 \uplus \omega_1 \not\underset{\text{onto}}{\sim} {}^\omega 2$ holds and take any $f : {}^\omega 2 \xrightarrow{\text{onto}} {}^\omega 2 \uplus \omega_1$ to form the partition

$$\begin{aligned} \mathcal{C} &= \left\{ \{s \in {}^\omega 2 \mid f(s) = x\} \mid x \in {}^\omega 2 \uplus \omega_1 \right\} \\ &= \left\{ f^{-1}[\{x\}] \mid x \in {}^\omega 2 \uplus \omega_1 \right\}. \end{aligned}$$

We obtain

${}^\omega 2 \not\underset{\text{1-1}}{\sim} \mathcal{C}$: The mapping $g : {}^\omega 2 \longrightarrow \mathcal{C}$ defined by

$$\begin{aligned} g(x) &= \{s \in {}^\omega 2 \mid f(s) = x\} \\ &= f^{-1}[\{x\}] \end{aligned}$$

is obviously 1 – 1, hence witnesses that ${}^\omega 2 \not\underset{\text{1-1}}{\sim} \mathcal{C}$ holds.

$\mathcal{C} \not\underset{\text{1-1}}{\sim} {}^\omega 2$: Towards a contradiction, we assume $\mathcal{C} \not\underset{\text{1-1}}{\sim} {}^\omega 2$. We notice that $\omega_1 \not\underset{\text{1-1}}{\sim} \mathcal{C}$ holds for the following mapping is 1-1: $h : \omega_1 \longrightarrow \mathcal{C}$ defined by

$$\begin{aligned} h(x) &= \{s \in {}^\omega 2 \mid f(s) = x\} \\ &= f^{-1}[\{x\}] \end{aligned}$$

Therefore, we have both

$$\omega_1 \overset{\text{def}}{\sim} \mathcal{C} \text{ and } \mathcal{C} \overset{\text{def}}{\sim} \omega_2$$

which leads to $\omega_1 \overset{\text{def}}{\sim} \omega_2$, contradicting Exercise 5 (1).