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Solution Sheet n°12

Solution of exercise 1:

1.

5.

The result is trivial when A is empty, for B must be empty as well. So,

onto

we assume A and B are non-empty. Since A < B, take any g : B 2% A
and form {g7'(a) | a € A} which is a non-empty set of non-empty sets.
By AC, one obtains a choice function ¢ which for each a € A provides a

unique c(a) € B such that c(a) € g~*(a). By construction, ¢ : A LB
witnesses that A § B.

This is immediate from the previous result and the Cantor Schroeder
Bernstein Theorem.

(<) Given any family (A;);c; of non-empty disjoint sets, we obtain a
choice function f : I — UAi by letting g : UAi 2% T be defined
iel iel
asgla)=iiffac A;and f: 1 Rt UAi be any function such that
g o f = id — which guarantees that }E(Iz) € A; holds for every i € I.
(=) The result is trivial when A is empty, for B must be empty as well.

So, we assume A and B are non-empty. Since g : B onto, A, form

{97 (a) | a € A} which is a non-empty set of non-empty sets. By
AC, one obtains a choice function f which for each a € A provides a
unique f(a) € g~'(a). By construction, f : A =L B and gof=rid
both hold.

onto

Assume f: A = B, then take any element @’ € A and define g : B ——
Aby g(z) =d if x ¢ f[A], and g(z) = a if f(a) = z. The fact that f is
1-1 guarantees that ¢ is onto.

Given f: A =% B, define g : P(A) = P(B) by g(C) = f[C].

Solution of exercise 2: We consider the following set:

W={(B,<p) CAx (AxA)|(B,<p) is a well-ordering}.

Notice that this set is non-empty since the empty ordering (0,0) belongs to W.
We then consider the functional F : W — On defined by

F((B, <p)) = the unique ordinal 8 s.t. (8, €3) ~ (B, <p).

We set

a= S.up{F((B7 <p))+1|(B,<p)eW

——
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It turns out that o /< A holds; for otherwise if we let f: « 170 A and set

B=flo] and <p={(f(1).f(8)) | v < < a},



we then obtain (B, <p) € W, hence a € F[W), contradicting a > F((B, <g)).

Solution of exercise 3:

1. R ~“w ~“2: By Cantor Schroeder Bernstein Theorem, we only need to

show R < “w <2 <R.
R < “w: assume every real r is written in base 10 as
e incase0 <r:r=+4epejes...ex,dopdidods...dydps1dpya.. ...
e incaser < 0: r=—egerea...e5,dodrdads...dydpy1dpto......
where
(a) k is finite,
(b) for each ¢ <k and each j € N, ¢;,d; € {0,1,2,3,4,5,6,7,8,9}
(c) eg=0=k=0,
(d) (d; | j € N) satisfies Vj 35" > j d;j # 9. i.e., it is not ultimately
constant with value 9. This means for instance that the real

0,23999999999999 . . . is rather represented by +0,24000000000000 . . .
and the integer —3 by —3,00000000000. . ..

We describe the following mapping f : R 1o vy, by

o If r = +€0€1€2...ek7d0d1d2d3...dndn+1dn+2 ...... , then
f(’l’): <8,1+60,1+€1,...,1+6k,0,1+d0,1+d1,...,1+dn,1+dn+1,...>.
o Ifr = +,60,61,62...6k,,d0,d1,d2,d3...dn,dn+1,dn+2 ...... ,then

fry=0914ep,14+e1,....1+eg,01+do,1+dy,...,1+dp, 1 +dps1,...).
“w <2 wedefine g : “w ~—— “2by g((a; | i €w)) =10...010...010...01...
—— N N~

ag al a

1-1

w2 <RR: Wedeﬁneh:”2i>Rbyg(<ai|i€w)) =0,a400102 - QpQpiq ------
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2. “R ~ “(“w) ~ “(*“2): it is enough to show that whenever A < B holds
for non-empty sets A and B, then “A < “B holds as well. So, given any
f: AL B define h:vA =L “B by

h({a;|icw)) = (fla)]|icw).

3. 92 ~ 7(w2): w2<7(w2) is obvious. We show ~(¥2) <“2 by providing
£:@2) 2% @2 defined by f(<<am lj<w) |i<w ) = (b | k< w)
where by, = a; ; iff k = FDEEED 4y

(The mapping (4,j) — W + 4 is a bijection between N x N and
N, but any other bijection would work as well.)

Solution of exercise 4:



1. We construct f:“2 onto, w1.
(a) we define a mapping”  :NxN 125 N by "nym T = 2+l gm+l,
(b) For each s = (a; | i € w) € ¥2 we set
e if 3iVj >ia; =0, then f(s) =t for the least such i;
e if Vidj > 17 a; =1, then
— if JIVnVm (a; = 1 A"n,m' # i), then f(s) =0
— ifVidn3Im (a; =1 — "n,m ' = 1), then
x if (N,{(n,m) | arpm = 1}) is not a well-ordering, then
f(s) = 0;
* if (N,{(n,m) | arpm = 1}) is a well-ordering, then f(s) =

o where « is the unique ordinal isomorphic to (N,{(n,m) |

Arpm = 1}) Notice that o € wy since « is countable.
To show that f is onto, it is enough to show that for every
infinite countable ordinal « there exists some s € “2 such
that f(s) = «. For this, notice that a being countable, any
bijection h : N &9y o induces a well-ordering on N of type
. Namely, (N, <, ) where <q= {(n,m) | h(n) < h(m)}.
By construction, s = (a; | i € w) € “2 defined by a; = 1 iff
there exists (n,m) € <, such that "n,m"' = i.

t .
2. We construct f : “2 2% “2Jw;. From the previous case, we are granted
onto

with a mapping f' : “2 —= w;. Given any s = (a; |1 €Ew) € “2 we
define f(s) as follows:

oif a9 = 0, then f(s) = o if aqp = 1, then f(s) =
<ai+1 | ) Gw); f’(<ai+1 |Z€w>)

Solution of exercise 5:

1. Notice first that since R ~ “R ~ “w ~ “(“w) ~ “2 ~ “(¥2) holds, the
assumption is equivalent to saying that any of these sets is is a countable
union of countable sets. So, we assume that it is the case of ~(¥2). i..,
there exists (G, )n<w where for each integer n, G,, is countable and

“(“2) = | Gn

nw
Towards a contradiction, we assume that w; §“2 holds, so that there
exists some f :wq i> “2. We set

H,={se“2|35€G, Tk <w S(k) =s}.

1-1

We notice that, for each integer n, we have H,, <w. Indeed, we take any

~

g: Gn =% w and construct T : H, ~— w by Z(s) = M;]H)—i—z



where i is the least integer such that there exists S € G,, with ¢g(S) =i
and there exists some k < w S(k) = n; and j is the least such k.

We then define h : w — “2 so that for each integer n we have
h(n) = f(a,) where @, =min{a €w; | f(a) ¢ Hy,}.

By definition, h € “(¥2) = U G, hence for some integer n we have

n<w

h € G,. As usual with this kind of diagonal argument, it is enough to
consider h(n) to obtain a contradiction for we end up with

e h(n) € H, because h € G,, e h(n) ¢ H, because h(n) =
flan) ¢ Hy.

11 11

. The statements R f R and R § R are equivalent to the existence of some

1-1 1-1

partition C of “2 such that “2 § C and C Z “2. Indeed, if R 3 R holds,

then take any f : R &9 @9 and define C = {flp] | p € R}. Clearly C is
a partition of “2 that satisfies R ~ C, which yields “2 5 C since one has
“2~R 5 R ~C. Similarly, if “2 5 C holds, then take any g : “2 N
in order to obtain the partition R = {f[p] | p € C} that satisfies C ~ R

which leads to R 5 R since one has R ~“2 5 C ~R.

We prove that there exists some partition C of “2 such that “2 5 C. For

onto

this, we make use of “2 Jw; < < “2 holds and take any f :“2 — “2 U w;
to form the partition

= {ts€*2] f(s) =2} | v €200 }
(I e} e e 20w},

‘We obtain

1-1

“2 < C: The mapping g : “2 —— C defined by

g(a) ={s €“2| f(s) = =}
~{=}]
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is obviously 1 — 1, hence witnesses that “2 < C holds.

1-1

C f w2: Towards a contradiction, we assume C <“2. We notice that

w1 < C holds for the following mapping is 1-1: h : w; —— C defined
by

h(z) = {s € 2| f(s) = =}
~{=}]



Therefore, we have both

wlic and 65”2

which leads to w; < “2, contradicting Exercise 5 (1).



