

Exercise Sheet n°9

Exercise 1: Show that if F is a set of formulae of the set theory which is closed under sub-formulae and \mathbf{M} is a class, then the following are equivalent:

1. each $\varphi \in F$ is absolute for \mathbf{M} ,
2. for each $\varphi \in F$ of the form¹ $\exists x \psi(x, \vec{y})$:

$$\forall \vec{y} \in \mathbf{M} (\exists x \psi(x, \vec{y}) \leftrightarrow \exists x \in \mathbf{M} \psi(x, \vec{y})).$$

Exercise 2:

Theorem (Reflexion Theorem). *Let F be a finite set of formulae of the set theory, then:*

1. $ZF \vdash \forall \alpha \exists \beta > \alpha$ “the formulae of F are absolute for V_β'' ”.
2. $ZF \vdash \forall M_0 \exists M \supseteq M_0$ “the formulae of F are absolute for M'' ”.

In particular, if $ZF \vdash \varphi$ for all $\varphi \in F$, then:

1. $ZF \vdash \forall \alpha \exists \beta > \alpha$ “ $V_\beta \models F''$ ”.
2. $ZF \vdash \forall M_0 \exists M \supseteq M_0$ “ $M \models F''$ ”.

Hint: Without loss of generality, suppose that F is closed under sub-formulae. For each $\varphi(\vec{y}) \in F$ of the form $\exists x \psi(x, \vec{y})$ with $\vec{y} = (y_1, \dots, y_n)$ define $G_\varphi : V^n \rightarrow \mathbf{ON}$ by:

$$G_\varphi(y_1, \dots, y_n) = \begin{cases} 0 & \text{if } \neg\varphi(y_1, \dots, y_n) \\ \min\{\eta \in \mathbf{ON} \mid \exists x \in V_\eta \psi(x, y_1, \dots, y_n)\} & \text{if } \varphi(y_1, \dots, y_n). \end{cases}$$

Then define $H_\varphi : \mathbf{ON} \rightarrow \mathbf{ON}$ by:

$$H_\varphi(\xi) = \sup\{G_\varphi(y_1, \dots, y_n) \mid y_1, \dots, y_n \in V_\xi\}.$$

Finally if \tilde{F} is the set of formulae in F which are of the form $\exists x \psi$, define β_k by induction:

$$\begin{aligned} \beta_0 &= \alpha \\ \beta_{n+1} &= \sup(\{\beta_n + 1\} \cup \{H_\varphi(\beta_n) \mid \varphi \in \tilde{F}\}) \end{aligned}$$

Show that the limit ordinal $\beta = \sup\{\beta_k \mid k \in \omega\}$ is as wished.

¹more precisely, logically equivalent to a formula of the form $\exists x \psi(x, \vec{y})$

Exercise 3: Prove the following theorem:

Theorem. Let $\varphi_1, \dots, \varphi_n$ be formulae of set theory, then:

$$\begin{aligned} ZFC \vdash \forall M_0 \left[M_0 \text{ transitive} \rightarrow \exists M \left(M \supseteq M_0 \wedge M \text{ transitive} \right. \right. \\ \left. \left. \wedge |M| \leq \max(\omega, |M_0|) \wedge \varphi_1, \dots, \varphi_n \text{ are absolute for } M \right) \right]. \end{aligned}$$

In particular, for any finite set $\varphi_1, \dots, \varphi_n$ of axioms of ZFC:

$$\begin{aligned} ZFC \vdash \forall M_0 \left[M_0 \text{ transitive} \rightarrow \exists M \left(M \supseteq M_0 \wedge M \text{ transitive} \right. \right. \\ \left. \left. \wedge |M| \leq \max(\omega, |M_0|) \wedge \bigwedge_{i=1}^n \varphi_i^M \right) \right]. \end{aligned}$$

Hint: Enlarge the list $\varphi_1, \dots, \varphi_n$ in such a way that it becomes closed under sub-formulae and it contains the axiom of extensionality. By the reflexion theorem, there exists an ordinal β such that $V_\beta \supset M_0$ and $\varphi_1, \dots, \varphi_n$ are absolute for V_β . Using the axiom of choice, for each existential formula $\varphi_i(y_1, \dots, y_{l_i}) = \exists x \varphi_j(x, y_1, \dots, y_{l_i})$, define a function $H_i : V_\beta^{l_i} \rightarrow V_\beta$ such that: $\varphi_j(H_i(y_1, \dots, y_{l_i}), y_1, \dots, y_{l_i})$ if $\exists x \in V_\beta \varphi_j(x, y_1, \dots, y_{l_i})$ and $H_i(y_1, \dots, y_{l_i}) = 0$ if not. Let \bar{M} be the smallest set containing M_0 and closed under all the functions H_i (i.e. $\forall \vec{y} \in \bar{M}^{l_i}, H_i(\vec{y}) \in \bar{M}$). Notice that $\varphi_1, \dots, \varphi_n$ are absolute for \bar{M} and that $|\bar{M}| \leq \max(\omega, |M_0|)$. On the other hand, \bar{M} could be not transitive. To overcome this, notice that (\bar{M}, \in) is extensional and consider the Mostowski collapse M of \bar{M} . Finally, show that M satisfies all the required properties.

Deduce the following results:

Corollary. Let T be a theory which extends ZFC and let $\varphi_1, \dots, \varphi_n$ be a finite set of axioms of T , then:

$$T \vdash \exists M \left(M \text{ transitive} \wedge |M| = \omega \wedge \bigwedge_{i=1}^n \varphi_i^M \right).$$

In particular, for any finite set of axioms $\varphi_1, \dots, \varphi_n$ of ZFC:

$$ZFC \vdash \exists M \left(M \text{ transitive} \wedge |M| = \omega \wedge \bigwedge_{i=1}^n \varphi_i^M \right).$$

Exercise 4: Let $\varphi_1, \dots, \varphi_n$ be a finite set of axioms of ZFC from which it is possible to define the sets ω and ω_1 , to prove that $\mathcal{P}(\omega)$ and ω_1 are not countable, and to prove all the “classic” results of absoluteness for the transitive class models of (a great enough finite number of axioms of) $ZF - P$. Show that there exists a countable transitive set M such that $ZFC \vdash “(\mathcal{P}(\omega))^M \text{ and } (\omega_1)^M \text{ are countable}”$. Explain this apparent paradox (usually referred to as “Skolem’s paradox”).