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Exercise 1: Show that if F is a set of formulae of the set theory which is
closed under sub-formulae and M is a class, then the following are equivalent:

1. each φ ∈ F is absolute for M,

2. for each φ ∈ F of the form1 ∃xψ(x, y⃗).:

∀y⃗ ∈ M
(
∃xψ(x, y⃗) ↔ ∃x ∈ M ψ(x, y⃗)

)
.

Exercise 2:

Theorem (Reflexion Theorem). Let F be a finite set of formulae of the set
theory, then:

1. ZF ⊢ ∀α ∃β > α “the formulae of F are absolute for Vβ ′′.

2. ZF ⊢ ∀M0 ∃M ⊇M0 “the formulae of F are absolute for M ′′.

In particular, if ZF ⊢ φ for all φ ∈ F , then:

1. ZF ⊢ ∀α ∃β > α “Vβ |= F
′′.

2. ZF ⊢ ∀M0 ∃M ⊇M0 “M |= F
′′.

Hint: Without loss of generality, suppose that F is closed under sub-formulae.
For each φ(y⃗) ∈ F of the form ∃xψ(x, y⃗) with y⃗ = (y1, . . . , yn) define Gφ : V n → ON
by:

Gφ(y1, . . . , yn) =

{
0 if ¬φ(y1, . . . , yn)
min{η ∈ ON | ∃x ∈ Vη ψ(x, y1, . . . , yn)} if φ(y1, . . . , yn).

Then define Hφ : ON → ON by:

Hφ(ξ) = sup{Gφ(y1, . . . , yn) | y1, . . . , yn ∈ Vξ}.

Finally if F̃ is the set of formulae in F which are of the form ∃xψ, define βk by
induction:

β0 = α

βn+1 = sup
(
{βn + 1} ∪ {Hφ(βn) | φ ∈ F̃}

)
Show that the limit ordinal β = sup{βk | k ∈ ω} is as wished.

1more precisely, logically equivalent to a formula of the form ∃xψ(x, y⃗)
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Exercise 3: Prove the following theorem:

Theorem. Let φ1, . . . , φn be formulae of set theory, then:

ZFC ⊢ ∀M0

[
M0 transitive → ∃M

(
M ⊇M0 ∧ M transitive

∧ |M | ≤ max(ω, |M0|) ∧ φ1, . . . , φn are absolute for M
)]
.

In particular, for any finite set φ1, . . . , φn of axioms of ZFC:

ZFC ⊢ ∀M0

[
M0 transitive → ∃M

(
M ⊇M0 ∧ M transitive

∧ |M | ≤ max(ω, |M0|) ∧
n∧

i=1

φM
i

)]
.

Hint: Enlarge the list φ1, . . . , φn in such a way that it becomes closed under
sub-formulae and it contains the axiom of extensionality. By the reflexion theorem,
there exists an ordinal β such that Vβ ⊃M0 and φ1, . . . , φn are absolute for Vβ. Using
the axiom of choice, for each existential formula φi(y1, . . . , yli) = ∃xφj(x, y1, . . . , yli),
define a function Hi : V li

β → Vβ such that: φj(Hi(y1, . . . , yli), y1, . . . , yli) if ∃x ∈
Vβ φj(x, y1, . . . , yli) and Hi(y1, . . . , yli) = 0 if not. Let M be the smallest set contain-
ing M0 and closed under all the functions Hi (i.e. ∀y⃗ ∈M

li , Hi(y⃗) ∈M). Notice that
φ1, . . . , φn are absolute for M and that |M | ≤ max(ω, |M0|). On the other hand, M
could be not transitive. To overcome this, notice that (M,∈) is extensional and con-
sider the Mostowski collapse M of M . Finally, show that M satisfies all the required
properties.

Deduce the following results:

Corollary. Let T be a theory which extends ZFC and let φ1, . . . , φn be a finite
set of axioms of T , then:

T ⊢ ∃M
(
M transitive ∧ |M | = ω ∧

n∧
i=1

φM
i

)
.

In particular, for any finite set of axioms φ1, . . . , φn of ZFC:

ZFC ⊢ ∃M
(
M transitive ∧ |M | = ω ∧

n∧
i=1

φM
i

)
.

Exercise 4: Let φ1, . . . , φn be a finite set of axioms of ZFC from which
it is possible to define the sets ω and ω1, to prove that P(ω) and ω1 are not
countable, and to prove all the “classic” results of absoluteness for the transitive
class models of (a great enough finite number of axioms of) ZF − P . Show
that there exists a countable transitive set M such that ZFC ⊢ “ (P(ω))

M and
(ω1)

M are countable”. Explain this apparent paradox (usually referred to as
“Skolem’s paradox”).
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