

Exercise Sheet n°8

Recall that for any set x , the transitive closure of x is defined by $cl(x) = \bigcup\{\bigcup^n x : n \in \omega\}$, where $\bigcup^0 x = x$ and $\bigcup^{n+1} x = \bigcup(\bigcup^n x)$. The transitive closure of x is the smallest transitive set containing x . For every infinite cardinal κ , we let $H_\kappa = \{x : |cl(x)| < \kappa\}$, that is: H_κ is the class of sets which are hereditarily of cardinality $< \kappa$.

1. Show that for every infinite cardinal κ , $H_\kappa \subseteq V_\kappa$, so H_κ is actually a set.

Hint: For $t = cl(x)$, show that the set of ordinals $S = \{rk(y) : y \in t\}$ is an ordinal. To do so, consider the smallest ordinal α which does not belong to S , suppose towards contradiction that $S \neq \alpha$ and find a contradiction by considering $y \in t$ with $rk(y) = \min(S \setminus \alpha)$. Show that $\alpha < \kappa$. Conclude by showing that $rk(x) \leq \alpha < \kappa$.

2. Using the axiom of choice, show that if κ is an infinite regular cardinal, then $\forall x(x \in H_\kappa \leftrightarrow x \subseteq H_\kappa \wedge |x| < \kappa)$.

Hint: Use the property $cl(x) = x \cup \bigcup\{cl(y) : y \in x\}$.

3. Working in ZFC , show that if κ is an uncountable regular cardinal, then H_κ is a model of $ZFC - P$.

Hint: Show that H_κ is transitive and use Exercise 2 of Sheet 7. For the axioms of replacement and choice, use point 2. For the axiom of infinity, show that $H_\kappa \cap \text{ON} = \kappa$, and use this property to show that $\omega \in H_\kappa$.

4. Working in ZFC , show that if κ is a regular uncountable cardinal which is not strongly inaccessible, then H_κ is a model of $ZFC - P + \neg P$.

Hint: Show that " $H_\kappa \models P$ " iff $\forall x \in H_\kappa (\mathcal{P}(x) \in H_\kappa)$, and use this property to deduce that " $H_\kappa \models \neg P$ " for κ not strongly inaccessible.

We then have the following relative consistency result:

Theorem. $Con(ZFC) \rightarrow Con(ZFC - P + \neg P)$, i.e.
 $ZFC \vdash "ZFC - P \not\vdash P"$.

5. Working in ZFC , show that if κ is a strongly inaccessible cardinal then H_κ is a set model of ZFC .

Hint: Show that for a strongly inaccessible κ , we have $\forall \alpha < \kappa (|V_\alpha| < \kappa)$. Deduce that $H_\kappa = V_\kappa$. Conclude that " $H_\kappa \models P$ ".

We have thus reproved the following:

Theorem. $ZFC + \exists \kappa (\kappa \text{ strongly inaccessible}) \vdash Con(ZFC)$.

6. Deduce the following result that we have also already proved:

Theorem. $Con(ZFC) \rightarrow Con(ZFC + \neg \exists \kappa (\kappa \text{ strongly inaccessible}))$,
i.e. $Con(ZFC) \rightarrow "ZFC \not\vdash \exists \kappa (\kappa \text{ strongly inaccessible})"$.