

Exercise Sheet n°7

Exercise 1:

Prove *some* of the following points:

Let \mathbf{M} be a transitive class model of $ZF - \text{Pow} - \text{Inf}$. Then the following formulae and operations are absolute for \mathbf{M} .

(a) $\{x, y\}$	(h) α is an ordinal
(b) $\bigcup x$	(i) α is a limit ordinal
(c) $x \cup y$	(j) α is a successor ordinal
(d) $\langle x, y \rangle$	(k) α is a finite ordinal
(e) \emptyset	(l) R is a binary relation on A
(f) $S(x)$	(m) f is a function from A to B
(g) x is transitive	(n) f is a bijection between A and B

Prove that the notion of cardinality, however, is not absolute for the transitive class models of ZFC . More precisely, prove that:

Proposition. *Let \mathbf{M} be a transitive class model of ZFC . Then for all $a \in \mathbf{M}$, $\text{Card}(a) \leq \text{Card}^{\mathbf{M}}(a)$.*

Exercise 2:

Show the following proposition:

Proposition. (i) $(ZF^-) \vdash "V_{\omega+\omega} \models ZF - \text{Repl} + \neg \text{Repl}"$.
 (ii) $(ZFC^-) \vdash "V_{\omega+\omega} \models ZFC - \text{Repl} + \neg \text{Repl}"$.

Hint: in $V_{\omega+\omega}$, consider the functional $\varphi(n, \alpha) = \exists f (n \in \omega \wedge \text{Ord}(\alpha) \wedge "f \text{ is an isomorphism between } \alpha \text{ and } \omega + n")$. Notice that the image of this functional cannot be a set belonging to $V_{\omega+\omega}$.

These results directly imply the relative consistency of the replacement axioms relative to the other axioms, that is:

Theorem. (i) $\text{Con}(ZF^-) \rightarrow \text{Con}(ZF - \text{Repl} + \neg \text{Repl})$,
 i.e. $\text{Con}(ZF^-) \rightarrow "ZF - \text{Repl} \not\vdash \text{Repl}"$.
 (ii) $\text{Con}(ZFC^-) \rightarrow \text{Con}(ZFC - \text{Repl} + \neg \text{Repl})$,
 i.e. $\text{Con}(ZFC^-) \rightarrow "ZFC - \text{Repl} \not\vdash \text{Repl}"$.

Exercise 3:

Working inside the theory $ZFC + \exists \kappa (\kappa \text{ strongly inaccessible})$, show that if κ is a strongly inaccessible cardinal, then $"V_\kappa \models ZFC"$.

It follows that, in $ZFC + \exists \kappa (\kappa \text{ strongly inaccessible})$, it is possible to exhibit a set model of ZFC , that is:

$$ZFC + \exists \kappa (\kappa \text{ strongly inaccessible}) \vdash \text{Con}(ZFC).$$

Hint: For replacement, show first of all that if κ is a strongly inaccessible cardinal, then for all $\alpha < \kappa$, we have $|V_\alpha| < \kappa$. Consider a set $A \in V_\kappa$ and a formula $\varphi(x, y, \vec{z})$ which is functional on A in V_κ , then prove that the image of A by f belongs to V_κ , using the previous point.

Deduce the following theorem:

Theorem.

$Con(ZFC)$ implies $Con(ZFC + \neg\exists\kappa \text{ ``}\kappa \text{ strongly inaccessible''})$.

In particular, if ZFC is consistent, then ZFC cannot prove the existence of a strongly inaccessible cardinal.

Hint: use the fact that for all limit ordinals λ , the formula “ κ is a strongly inaccessible cardinal” is absolute for V_λ .