

Exercise Sheet n°6

Exercise 1:

The goal of this exercise is to show the independence of the axiom of foundation AF in the system $ZFC_{\text{fin}}^- = ZFC_{\text{fin}} \setminus \{AF\}$. More precisely, we show that there exists a model of $ZFC_{\text{fin}}^- \cup \{AF\}$ and another model of $ZFC_{\text{fin}}^- \cup \{\neg AF\}$.

Let φ be a bijection between \mathbb{N} and the set of finite parts of \mathbb{N} , and let $\in_{\varphi} \subseteq \mathbb{N} \times \mathbb{N}$ be the binary relation defined by $x \in_{\varphi} y$ iff $x \in \varphi(y)$.

1. Show (briefly) that the structure $U_{\varphi} = (\mathbb{N}, \in_{\varphi})$ is a model of ZFC_{fin}^- .
2. Show that, if for all $p, q \in \mathbb{N}$, we have that $p \in_{\varphi} q$ implies $p < q$ (the usual order on \mathbb{N}), then U_{φ} is a model of $ZFC_{\text{fin}}^- \cup \{AF\}$.
3. Exhibit a bijection φ such that U_{φ} is a model of $ZFC_{\text{fin}}^- \cup \{\neg AF\}$.

Exercise 2:

1. Find a non transitive class N such that “ $N \not\models$ axiom of extensionality”.
2. Show the following proposition:

Proposition. *Let M be a transitive class, then:*

- (1) “ $M \models$ axiom of extensionality”;
- (2) *If $M \subseteq \mathbf{WF}$, then “ $M \models$ axiom of foundation”;*
- (3) “ $M \models$ pairing axiom” iff $\forall a, b \in M \ \exists c \in M \ \{a, b\} \subseteq c$;
- (4) “ $M \models$ union axiom” iff $\forall a \in M \ \exists b \in M \ \bigcup a \subseteq b$;
- (5) “ $M \models$ powerset axiom” iff $\forall a \in M \ \exists c \in M \ \mathcal{P}(a) \cap M \subseteq c$;
- (6) “ $M \models$ comprehension axioms” iff for every formula $\varphi := \varphi(x, z, \bar{w})$ with free variables among x, z, w_1, \dots, w_n , we have:

$$\forall z \in M \ \forall w_1 \in M \ \dots \forall w_n \in M \ \{x \in z : \varphi(x, z, \bar{w})^M\} \in M$$

;

- (7) “ $M \models$ replacement axioms” iff for every formula $\varphi(x, y, w_1, \dots, w_n)$ with free variables among x, y, w_1, \dots, w_n , we have:

$$\forall c_1 \in M \ \dots \forall c_n \in M \ \forall A \in M \left[\forall x \in A \ \exists ! y \in M \ \varphi^M(x, y, c_1, \dots, c_n) \rightarrow \exists B \in M (\{y : \exists x \in A \ \varphi^M(x, y, c_1, \dots, c_n)\} \subseteq B) \right].$$

Exercise 3:

Denote by ZF^- the axiomatic system ZF without the axiom of foundation.

1. Working in ZF^- , show that " $V_\omega \models ZF - Inf + \neg Inf$ ".

Hint: Use exercise 2 to show that V_ω satisfies $Z - Inf$. For the axiom of infinity, suppose towards contradiction that V_ω satisfies it, and show that this implies that $\omega \in V_\omega$, from which a contradiction follows.

2. Working in ZF^- , show that " $\mathbf{WF} \models ZF$ ".

Hint: Notice that ω contains 0, is closed under successor and belongs to \mathbf{WF} .

3. Working in ZFC , show that " $V_\lambda \models ZC$ ", for all $\lambda > \omega$ limite.

Hint: Use the fact that the formula « R is a well order on a » is absolute for the transitive models of $ZF-P$.

Points 1 and 2 above lead to the following consistency results:

Theorem.

- (1) $ZF^- \vdash Con(ZF^-) \rightarrow Con(ZF - Inf + \neg Inf)$;
- (2) $ZF^- \vdash Con(ZF^-) \leftrightarrow Con(ZF)$.