

Exercise Sheet n°5

Exercise 1:

1. Let $x \in \mathbf{WF}$. Show that $rk(x)$ is the least $\alpha \in \mathbf{ON}$ such that $x \subseteq \mathbf{W}(\alpha)$.
2. Let $x, y \in \mathbf{WF}$, $\alpha \in \mathbf{ON}$, $f \in {}^x y$ and R an ordering on $\mathbf{W}(\alpha)$. For each of the following sets z , show that $z \in \mathbf{WF}$ and compute or give an upper bound for $rk(z)$ as a function of $rk(x)$ and $rk(y)$.

(a) $\{x, y\}$;	(e) $\bigcup x$;	(i) f ;
(b) (x, y) ;	(f) $\mathcal{P}(x)$;	(j) ${}^x y$;
(c) $\langle x, y \rangle$;	(g) $x \cup y$;	(k) $\mathbf{W}(\alpha)$;
(d) $\langle x, y, x \rangle$;	(h) $x \times y$;	(l) R .
3. Find $x, y \in \mathbf{WF}$ such that $rk(\bigcup x) = rk(x)$ but $rk(\bigcup y) < rk(y)$.
4. In the Exercise Sheet 2, we constructed a set-theoretical representation of \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} .
 - (a) Show that all these sets, as well as their elements, are in \mathbf{WF} ;
 - (b) Compute the rank of each of these sets as well as their elements.
5. Can you think of *another* set-theoretical representation of \mathbb{Q} such that $rk(\mathbb{Q}) = \omega$? What about *another* set-theoretical representation of \mathbb{R} such that $rk(\mathbb{R}) = \omega + 1$? And *another* set-theoretical representation such that $rk(\mathbb{R}) = \omega$?

Exercise 2: By a Remark in the Lecture Notes, we can represent any $x \in \mathbf{WF}$ by a well-founded tree $T_x \subseteq A^{<\omega}$, where A is a set.

1. Define the well-founded tree $T_{\bigcup x}$ that represents the set $\bigcup x$.
2. Define the well-founded tree $T_{tc(x)}$ that represents the set $tc(x)$.

Exercise 3:

1. Show that the (class-)function $\aleph : \alpha \mapsto \aleph_\alpha$ admits a fixed point, i.e., there exists $\kappa \in \mathbf{WF}$ such that $\kappa = \aleph_\kappa$.
2. Show that any strong inaccessible cardinal κ is a fixed point of $\aleph : \alpha \mapsto \aleph_\alpha$.

Exercise 4: Let \mathbf{C} be a class characterized by a formula $\varphi_{\mathbf{C}}$. For each of the following formulas, give its corresponding relativization to \mathbf{C} .

1. $\exists x x = x$;
2. $\forall x \exists y x \in y$;
3. $\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y)$;
4. $\forall x \exists y \forall z (\forall u (u \in z \rightarrow u \in x) \rightarrow z \in y)$.

Exercise 5:

Show that the axiom of choice is equivalent to the following statement:

Axiom of Choice (The product of non empty sets is non empty). Let $(A_i)_{i \in I}$ be a collection of sets indexed by a set I , such that $A_i \neq \emptyset$ for all $i \in I$. Then the cartesian product $\prod_{i \in I} A_i$ is non empty.

We recall the following result in topology.

Theorem (Tychonoff's Theorem). *Let $(X_i)_{i \in I}$ be a collection of topological spaces indexed by a set I such that X_i is compact for all $i \in I$. Then the product space $\prod_{i \in I} X_i$ is compact.*

The proof of Tychonoff's theorem uses the axiom of choice. The goal of this exercise is to show that (AC) is necessary. Let $(A_i)_{i \in I}$ be a collection of sets indexed by a set I such that $A_i \neq \emptyset$ for all $i \in I$. Let α be a set which does not belong to $\bigcup A_i$ (why is it possible?). We define, for each $i \in I$, the set $X_i = A_i \cup \{\alpha\}$ which we endow with the topology $\tau_i = \{\emptyset, \{\alpha\}, X_i\}$.

1. Show that for each $i \in I$, (X_i, τ_i) is a compact topological space.
2. Show that for each $i \in I$ the set

$$C_i = \left\{ (x_j)_{j \in I} \in \prod_{j \in I} X_j \mid x_i \in A_i \right\}$$

is a non empty closed subset of the product space $\prod_{j \in I} X_j$.

3. Use Tychonoff's theorem to show that $\bigcap_{i \in I} C_i$ is non empty.
4. Conclude that Tychonoff's theorem implies the axiom of choice.