

Exercise Sheet n°13

Exercise 1: Starting from any transitive model \mathbf{M} of **ZFA**, any countable infinite set of atoms \mathbb{A} , \mathcal{G} the group of permutations of \mathbb{A} , and $\mathcal{F} \subseteq \mathcal{P}(\mathcal{G})$ be the filter generated¹ by

$$\{fix_{\mathcal{G}}(F) \subseteq \mathcal{G} \mid F \in \mathcal{P}_{fin}(\mathbb{A})\}$$

where²

$$fix_{\mathcal{G}}(F) = \{\pi \in \mathcal{G} \mid \forall \mathfrak{o} \in F \ \check{\pi}(\mathfrak{o}) = \mathfrak{o}\}.$$

The submodel of \mathbf{M} of all its hereditarily symmetric sets is the permutation model known as the basic Fraenkel Model: $\mathcal{M}_{\mathcal{F}_0}^{\text{HS}} = \mathbf{M} \cap \text{HS}_{\mathcal{F}}$.

1. Show that \mathcal{F} is a normal filter. Namely,

- (a) $\mathcal{G} \in \mathcal{F}$,
- (b) if $\mathcal{H} \in \mathcal{F}$ and $\mathcal{H} \subseteq \mathcal{K}$, then $\mathcal{K} \in \mathcal{F}$,
- (c) if $\mathcal{H} \in \mathcal{F}$ and $\mathcal{K} \in \mathcal{F}$, then $\mathcal{H} \cap \mathcal{K} \in \mathcal{F}$,
- (d) if $\mathcal{H} \in \mathcal{F}$, then $\pi \circ \mathcal{H} \circ \pi^{-1} \in \mathcal{F}$,
- (e) for each atom $\mathfrak{o} \in \mathbb{A}$, $\{\pi \in \mathcal{G} \mid \pi(\mathfrak{o}) = \mathfrak{o}\} \in \mathcal{F}$.

2. We recall that for any $x \in \mathbf{M}$, $sym_{\mathcal{G}}(x) = \{\pi \in \mathcal{G} \mid \check{\pi}(x) = x\}$.

With same notation as in the previous exercise, show that for any $F \in \mathcal{P}_{fin}(\mathbb{A})$ and any $S \subseteq \mathbb{A}$, if $fix_{\mathcal{G}}(F) \subseteq sym_{\mathcal{G}}(S)$, then S is either finite or co-finite and

- if S is finite, then $S \subseteq F$;
- if S is co-finite, then $(\mathbb{A} \setminus S) \subseteq F$.

(Hint: distinguish between $S \cap (\mathbb{A} \setminus F) = \emptyset$ and $S \cap (\mathbb{A} \setminus F) \neq \emptyset$.)

3. Show that inside the basic Fraenkel model, the set of atoms is Dedekind-finite. Namely,

$$\mathcal{M}_{\mathcal{F}_0}^{\text{HS}} \models \aleph_0 \not\sim \mathbb{A}.$$

(Hint: assume there exists $f : \aleph_0 \xrightarrow{1-1} \mathbb{A}$ and consider the set $S = \{f(2n) \in \mathbb{A} \mid n \in \omega\}$.)

¹This means $\mathcal{H} \in \mathcal{F}$ if and only if there exist $F_0, \dots, F_n \in \mathcal{P}_{fin}(\mathbb{A})$ such that

$$\mathcal{H} \supseteq \bigcap_{i \leq n} fix_{\mathcal{G}}(F_i).$$

²We recall that given any permutation $\pi : \mathbb{A} \xrightarrow{\text{bij.}} \mathbb{A}$, the functional $\check{\pi} : \mathcal{P}^{\infty}(\mathbb{A}) \rightarrow \mathcal{P}^{\infty}(\mathbb{A})$ is defined as: $\check{\pi}(\emptyset) = \emptyset$; if $\mathfrak{o} \in \mathbb{A}$, then $\check{\pi}(\mathfrak{o}) = \pi(\mathfrak{o})$; if $x \notin \mathbb{A} \cup \{\emptyset\}$, then $\check{\pi}(x) = \{\check{\pi}(y) \mid y \in x\}$.

4. Show that the basic Fraenkel model satisfies

$$\mathcal{M}_{\mathcal{F}_0}^{\text{HS}, \text{r}} \models \aleph_0 \stackrel{1-1}{\not\in} \mathcal{P}(\mathbb{A}).$$

(Hint: assume there exists $f : \aleph_0 \xrightarrow{1-1} \mathcal{P}(\mathbb{A})$ such $\text{sym}_{\mathcal{G}}(f)$ belongs to \mathcal{F} in order to get a contradiction.)

Exercise 2: Starting from any transitive model \mathbf{M} of **ZFA** whose set of atoms consists in a countable set \mathbb{A} equipped with a binary relation $<_{\mathbf{M}} \subseteq \mathbb{A} \times \mathbb{A}$ which is a dense ordering without least nor greatest element. i.e., $(\mathbb{A}, <_{\mathbf{M}})$ is isomorphic to $(\mathbb{Q}, <)$.

We let \mathcal{G} be the group of all order preserving permutations of \mathbb{A} . i.e.,

$$\mathcal{G} = \left\{ \pi : \mathbb{A} \xrightarrow{\text{bij.}} \mathbb{A} \mid \forall a \in \mathbb{A} \forall b \in \mathbb{A} (a <_{\mathbf{M}} b \longleftrightarrow \pi(a) <_{\mathbf{M}} \pi(b)) \right\}.$$

Let $\mathcal{F} \subseteq \mathcal{P}(\mathcal{G})$ be the filter generated by $\{ \text{fix}_{\mathcal{G}}(F) \subseteq \mathcal{G} \mid F \in \mathcal{P}_{\text{fin}}(\mathbb{A}) \}$, which can be proved to be normal. The *ordered Mostowski model* \mathbf{M} is the corresponding permutation model.

1. Show that the set $<_{\mathbf{M}} = \{(a, b) \in \mathbb{A} \times \mathbb{A} \mid a <_{\mathbf{M}} b\}$ belongs to \mathbf{M} .
2. For any set y , we call **support** of y any $F_y \in \mathcal{P}_{\text{fin}}(\mathbb{A})$ which satisfies $\text{fix}_{\mathcal{G}}(F_y) \subseteq \text{sym}_{\mathcal{G}}(y)$.

Notice that if F_y is a support of y and $F_y \subseteq F \in \mathcal{P}_{\text{fin}}(\mathbb{A})$ holds, then $\text{fix}_{\mathcal{G}}(F) \subseteq \text{fix}_{\mathcal{G}}(F_y) \subseteq \text{sym}_{\mathcal{G}}(y)$ holds as well, so that F is also a support of y .

- (a) Show that if F and F' are two supports of y , then $F \cap F'$ is also a support of y .
(Hint: notice that given a permutation $\pi \in \text{fix}_{\mathcal{G}}(F \cap F')$ there exists permutations $\rho_1, \dots, \rho_k \in \text{fix}_{\mathcal{G}}(F)$ and $\rho'_1, \dots, \rho'_k \in \text{fix}_{\mathcal{G}}(F')$ — for some k large enough — such that $\rho_1 \circ \rho'_1 \circ \rho_2 \circ \rho'_2 \circ \dots \circ \rho_k \circ \rho'_k = \pi$.)
- (b) Show that for each set $x \in \mathbf{M}$, there exists some \subseteq -least support of x .
- (c) Show that the following class is symmetric:

$$\{(x, E) \in \mathbf{M} \times \mathcal{P}_{\text{fin}}(\mathbb{A}) \mid E \text{ is the } \subseteq\text{-least support of } x\}.$$

(Hint: for any $\pi \in \mathcal{G}$, look for a support of $\pi(x, E) = (\pi(x), \pi(E))$.)

3. Show that for all $F \in \mathcal{P}_{\text{fin}}(\mathbb{A})$, if F has n elements, then there exist exactly 2^{2n+1} sets of the form $S \subseteq \mathbb{A}$ such that F is a support of S .

(Hint: Assume $F = \{a_1, \dots, a_n\}$ with $a_1 <_{\mathbf{M}} \dots <_{\mathbf{M}} a_n$ and show first that for every integer $1 \leq i < n$ each interval $[a_i, a_{i+1}[$ satisfies either $[a_i, a_{i+1}[\subseteq S$ or $[a_i, a_{i+1}[\cap S = \emptyset$. Show also that the same property holds also for $]-\infty, a_1[$ and $]a_n, +\infty[$. Conclude.)

Exercise 3: The goal of this **difficult exercise** is to show that in the *Mostowski model* \mathcal{M} there exists some mapping $f : \mathcal{P}_{fin}(\mathbb{A}) \xrightarrow{\text{onto}} \mathcal{P}(\mathbb{A})$.

1. For all support $F = \{\mathfrak{o}_1, \dots, \mathfrak{o}_n\}$ with $\mathfrak{o}_1 <_{\mathbf{M}} \dots <_{\mathbf{M}} \mathfrak{o}_n$, define a mapping

$$\begin{array}{ccc} {}^{2n+1}2 & \longrightarrow & \mathcal{P}(\mathbb{A}) \\ \chi & \mapsto & S_\chi \end{array}$$

so that $\{S_\chi \mid \chi \in {}^{2n+1}2\}$ is the set of all subsets of \mathbb{A} which have F as support.

2. Show that in the *Mostowski model* \mathcal{M} there exists some mapping

$$f : \mathcal{P}_{fin}(\mathbb{A}) \xrightarrow{\text{onto}} \mathcal{P}(\mathbb{A}).$$