

Exercise Sheet n°12

During the lecture we will establish that if **ZF** is consistent, then we can have a model of **ZF** in which the set of reals (\mathbb{R}) is a countable union of countable sets. The exercises of this week aim at showing some surprising consequences of having \mathbb{R} as a countable union of countable sets (Exercise 5).

For any sets A, B we use the notations: $A \simeq B$ for “there exists $f : A \xrightarrow{\text{bij.}} B$ ”; $A \xrightarrow{\text{1-1}} B$ if there exists $f : A \xrightarrow{\text{1-1}} B$; $A \xrightarrow{\text{onto}} B$ if there exists $f : B \xrightarrow{\text{onto}} A$.

Exercise 1: Give a proof of the following statements:

1. $\mathbf{ZFC} \vdash_c \forall A \forall B (A \xrightarrow{\text{onto}} B \longrightarrow A \xrightarrow{\text{1-1}} B)$;
2. $\mathbf{ZFC} \vdash_c \forall A \forall B ((A \xrightarrow{\text{1-1}} B \wedge B \xrightarrow{\text{onto}} A) \longrightarrow A \simeq B)$;
3. $\mathbf{ZF} \vdash_c (\mathbf{AC} \longleftrightarrow \forall A \forall B \text{ “for all } g : B \xrightarrow{\text{onto}} A, \text{ there exists } f : A \xrightarrow{\text{1-1}} B \text{ s.t. } g \circ f = \text{id”})$;
4. $\mathbf{ZF} \vdash_c \forall A \forall B \text{ “if there exists } f : A \xrightarrow{\text{1-1}} B, \text{ there exists } g : B \xrightarrow{\text{onto}} A\text{”}$;
5. $\mathbf{ZF} \vdash_c \forall A \forall B \text{ “if there exists } f : A \xrightarrow{\text{1-1}} B, \text{ then there exists } g : \mathcal{P}(A) \xrightarrow{\text{1-1}} \mathcal{P}(B)\text{”}$;

Exercise 2:

Show that Hartog's Lemma is provable in **ZF** (without **AC**). Namely,

Given any set A , there exists some ordinal α such that $\alpha \not\sim A$.

(Hint: Consider $\mathcal{W} = \{(B, <_B) \subseteq A \times (A \times A) \mid (B, <_B) \text{ is a well-ordering}\}.$)

Exercise 3:

Briefly show that **ZF** proves that the following sets¹ are all equipotent:

- \mathbb{R}
- ${}^\omega \omega$
- ${}^\omega 2$
- ${}^\omega ({}^\omega \omega)$
- ${}^\omega ({}^\omega 2)$.

(Hint: you may use Cantor-Schröder-Bernstein Theorem which asserts that $A \simeq B$ holds if $A \xrightarrow{\text{1-1}} B$ and $B \xrightarrow{\text{1-1}} A$ both hold, and was proved without **AC**).

Exercise 4: Give a proof of the following statements:

1. $\mathbf{ZF} \vdash_c \omega_1 \xrightarrow{\text{onto}} {}^\omega 2$

(Hint: view some of the infinite sequences of 0's and 1's that contain infinitely many 1's as “coding” the well-orderings of the integers).

¹We recall that ${}^\omega \omega = \{f : \mathbb{N} \rightarrow \mathbb{N}\}$ and ${}^\omega 2 = \{f : \mathbb{N} \rightarrow \{0,1\}\}$.

2. $\mathbf{ZF} \vdash_c {}^\omega 2 \sqcup \omega_1 \xrightarrow{\text{onto}} {}^\omega 2$.

$({}^\omega 2 \sqcup \omega_1 := ({}^\omega 2 \times \{0\}) \cup (\omega_1 \times \{1\})$ is the disjoint union of ${}^\omega 2$ and ω_1 .)

Exercise 5: Give a proof of the following statements:

1. $\mathbf{ZF} \vdash_c$ “if \mathbb{R} is a countable union of countable sets, then $\omega_1 \not\lesssim {}^\omega 2$ ”.

(*Hints:*

(a) notice that since \mathbf{ZF} proves $\mathbb{R} \simeq {}^\omega ({}^\omega 2)$, the assumption “if \mathbb{R} is a countable union of countable sets...” is equivalent to “if ${}^\omega ({}^\omega 2)$ is a countable union of countable sets...”

(b) Assume towards a contradiction that ${}^\omega ({}^\omega 2) = \bigcup_{n < \omega} G_n$, where $(G_n)_{n \in \omega}$ is some family of countable sets, and there also exists some mapping $f : \omega_1 \xrightarrow{1-1} {}^\omega 2$.

(c) Show that $H_n = \{s \in {}^\omega 2 \mid \exists S \in G_n \ \exists k < \omega \ S(k) = s\}$ satisfies $H_n \not\lesssim \omega$.

(d) Define $h : \omega \rightarrow {}^\omega 2$ by $h(n) = f(\alpha_n)$ where

$$\alpha_n = \min\{\alpha \in \omega_1 \mid f(\alpha) \notin H_n\}.$$

(e) Show that $h \in {}^\omega ({}^\omega 2) = \bigcup_{n < \omega} G_n$ leads to a contradiction.)

2. $\mathbf{ZF} \vdash_c$ “if \mathbb{R} is a countable union of countable sets, then there exists some partition \mathcal{R} of \mathbb{R}

such that $\mathbb{R} \not\lesssim \mathcal{R}$ but $\mathcal{R} \not\lesssim \mathbb{R}$ ”.

(*Hints:*

(a) notice that the statement $\mathcal{R} \not\lesssim \mathbb{R}$ and $\mathbb{R} \not\lesssim \mathcal{R}$ is equivalent to the existence of some partition \mathcal{C} of ${}^\omega 2$ such that ${}^\omega 2 \not\lesssim \mathcal{C}$ and $\mathcal{C} \not\lesssim {}^\omega 2$.

(b) make use of ${}^\omega 2 \sqcup \omega_1 \xrightarrow{\text{onto}} {}^\omega 2$ and take any $f : {}^\omega 2 \xrightarrow{\text{onto}} {}^\omega 2 \sqcup \omega_1$ to form the partition

$$\mathcal{C} = \left\{ \{s \in {}^\omega 2 \mid f(s) = x\} \mid x \in {}^\omega 2 \sqcup \omega_1 \right\} = \left\{ f^{-1}[\{x\}] \mid x \in {}^\omega 2 \sqcup \omega_1 \right\}.$$

i. Show directly that ${}^\omega 2 \not\lesssim \mathcal{C}$.

ii. Show that $\mathcal{C} \not\lesssim {}^\omega 2$ leads to a contradiction.)